这是indexloc提供的服务,不要输入任何密码
Skip to content

Some answers are incorrect #24

@timdingman-scale

Description

@timdingman-scale

Q1

If $\det \mathbf{A} = -1,$ then find $\det (\mathbf{7A}).$

GT

In general, $\det (k \mathbf{A}) = k^2 \det \mathbf{A}.$ Thus,
[\det (7 \mathbf{A}) = 7^2 (-1) = \boxed{-49}.]

Problem & Correction

The GT answer is only true if A is 2x2, but that's not stated or implied in the question.

The general solution is -7^n, where n is the dimension of the matrix.

Q2

In the diagram below, $AB = AC = 115,$ $AD = 38,$ and $CF = 77.$ Compute $\frac{[CEF]}{[DBE]}.$

[asy]
unitsize(0.025 cm);

pair A, B, C, D, E, F;

B = (0,0);
C = (80,0);
A = intersectionpoint(arc(B,115,0,180),arc(C,115,0,180));
D = interp(A,B,38/115);
F = interp(A,C,(115 + 77)/115);
E = extension(B,C,D,F);

draw(C--B--A--F--D);

label("$A$", A, N);
label("$B$", B, SW);
label("$C$", C, NE);
label("$D$", D, W);
label("$E$", E, SW);
label("$F$", F, SE);
[/asy]

GT

\begin{align*} \frac{[CEF]}{[DBE]} &= \frac{\frac{1}{2} \cdot EF \cdot CE \cdot \sin \angle CEF}{\frac{1}{2} \cdot DE \cdot BE \cdot \sin \angle BED} \ &= \frac{EF}{DE} \cdot \frac{CE}{BE} \cdot \frac{\sin \angle CEF}{\sin \angle BED} \ &= \boxed{\frac{19}{96}}. \end{align*}

(In case it doesn't render, the final answer says 19/96)

Problem & Correction

$\frac{[CEF]}{[DBE]} = \frac{EF}{DE} \cdot \frac{CE}{BE} = 1 \cdot \frac{96}{19} = \frac{96}{19}$

In other words, the GT answer is inverted

Q3

The real number $x$ satisfies
[3x + \frac{1}{2x} = 3.]

Find
[64x^6 + \frac{1}{729x^6}.]

GT

Multiplying both sides of $3x + \frac{1}{2x} = 3$ by $\frac{2}{3},$ we get
[2x + \frac{1}{3x} = 2.]

Squaring both sides, we get
[4x^2 + \frac{4}{3} + \frac{1}{9x^2} = 4,]

so
[4x^2 + \frac{1}{9x^2} = \frac{8}{3}.]

Cubing both sides, we get

[64x^3 + 3 \cdot \frac{(4x^2)^2}{9x^2} + 3 \cdot \frac{4x^2}{(9x^2)^2} + \frac{1}{729x^6} = \frac{512}{27}.]

Then
\begin{align*}
64x^3 + \frac{1}{729x^6} &= \frac{512}{27} - \frac{3 \cdot 4x^2}{9x^2} \left( 4x^2 + \frac{1}{9x^2} \right) \
&= \frac{512}{27} - \frac{3 \cdot 4}{9} \cdot \frac{8}{3} \
&= \boxed{\frac{416}{27}}.
\end{align*}

Problem & Correction

The first term in the cubed expression should be 64x^6, not 64x^3.

Q4

Let $a,$ $b,$ $c$ be distinct complex numbers such that
[\frac{a}{1 - b} = \frac{b}{1 - c} = \frac{c}{1 - a} = k.]

Find the sum of all possible values of $k.$

GT

From the given equation,
\begin{align*}
a &= k(1 - b), \
b &= k(1 - c), \
c &= k(1 - a).
\end{align*}Then
\begin{align*}
a &= k(1 - b) \
&= k(1 - k(1 - c)) \
&= k(1 - k(1 - k(1 - a))).
\end{align*}Expanding, we get $ak^3 + a - k^3 + k^2 - k = 0,$ which factors as
[(k^2 - k + 1)(ak + a - k) = 0.]If $ak + a - k = 0,$ then $a = \frac{k}{k + 1},$ in which case $b = c = \frac{k}{k + 1}.$ This is not allowed, as $a,$ $b,$ and $c$ are distinct, so $k^2 - k + 1 = 0.$ The sum of the roots is $\boxed{1}.$

Note: The roots of $k^2 - k + 1 = 0$ are
[\frac{1 \pm i \sqrt{3}}{2}.]For either value of $k,$ we can take $a = 0,$ $b = 1,$ and $c = k.$

Problem & Solution

$a = 0,$ $b = 1,$ and $c = k$ is not permitted since it would make $\frac{a}{1 - b}$ undefined

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions