这是indexloc提供的服务,不要输入任何密码
Skip to content

evaluation accuracy remains 0 #14

@2proveit

Description

@2proveit

Thanks for your great work in creating this dataset, I have questions while evaluating llama2-7b-chat on this dataset.

  • The accuracy of the llama2-7b-chat output remains 0 when the training goes, here is my code:
def acc(eval_preds:EvalPrediction):
        logits, labels = eval_preds
        preds = tokenizer.batch_decode(logits, skip_special_tokens=True)
        labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
        save_results(preds, labels) # save results to json file
        preds = [last_boxed_only_string(s) for s in preds]
        correct = 0
        total = 0
        for pred, label in zip(preds, labels):
            if is_equiv(pred, label):
                correct += 1
            total += 1
        return {"accuracy": correct / total}
    return acc
  • whether the preprocess is required or recommended to use?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions