diff --git a/reco_encoder/model/model.py b/reco_encoder/model/model.py index 339a32b..323fc98 100644 --- a/reco_encoder/model/model.py +++ b/reco_encoder/model/model.py @@ -57,7 +57,7 @@ def __init__(self, layer_sizes, nl_type='selu', is_constrained=True, dp_drop_pro self.encode_w = nn.ParameterList( [nn.Parameter(torch.rand(layer_sizes[i + 1], layer_sizes[i])) for i in range(len(layer_sizes) - 1)]) for ind, w in enumerate(self.encode_w): - weight_init.xavier_uniform(w) + weight_init.xavier_uniform_(w) self.encode_b = nn.ParameterList( [nn.Parameter(torch.zeros(layer_sizes[i + 1])) for i in range(len(layer_sizes) - 1)]) @@ -69,7 +69,7 @@ def __init__(self, layer_sizes, nl_type='selu', is_constrained=True, dp_drop_pro self.decode_w = nn.ParameterList( [nn.Parameter(torch.rand(reversed_enc_layers[i + 1], reversed_enc_layers[i])) for i in range(len(reversed_enc_layers) - 1)]) for ind, w in enumerate(self.decode_w): - weight_init.xavier_uniform(w) + weight_init.xavier_uniform_(w) self.decode_b = nn.ParameterList( [nn.Parameter(torch.zeros(reversed_enc_layers[i + 1])) for i in range(len(reversed_enc_layers) - 1)]) diff --git a/run.py b/run.py index 3936781..05d5fe1 100644 --- a/run.py +++ b/run.py @@ -71,8 +71,8 @@ def do_eval(encoder, evaluation_data_layer): targets = Variable(eval.cuda().to_dense() if use_gpu else eval.to_dense()) outputs = encoder(inputs) loss, num_ratings = model.MSEloss(outputs, targets) - total_epoch_loss += loss.data[0] - denom += num_ratings.data[0] + total_epoch_loss += loss.item() + denom += num_ratings.item() return sqrt(total_epoch_loss / denom) def log_var_and_grad_summaries(logger, layers, global_step, prefix, log_histograms=False): @@ -195,7 +195,7 @@ def main(): loss.backward() optimizer.step() global_step += 1 - t_loss += loss.data[0] + t_loss += loss.item() t_loss_denom += 1 if i % args.summary_frequency == 0: @@ -209,7 +209,7 @@ def main(): log_var_and_grad_summaries(logger, rencoder.decode_w, global_step, "Decode_W") log_var_and_grad_summaries(logger, rencoder.decode_b, global_step, "Decode_b") - total_epoch_loss += loss.data[0] + total_epoch_loss += loss.item() denom += 1 #if args.aug_step > 0 and i % args.aug_step == 0 and i > 0: diff --git a/test/test_model.py b/test/test_model.py index 6f54f5f..ab72385 100644 --- a/test/test_model.py +++ b/test/test_model.py @@ -31,7 +31,7 @@ def test_CPU(self): loss = loss / num_ratings loss.backward() optimizer.step() - print('[%d, %5d] loss: %.7f' % (epoch, i, loss.data[0])) + print('[%d, %5d] loss: %.7f' % (epoch, i, loss.item())) def test_GPU(self): print("iRecAutoEncoderTest Test on GPU started") @@ -56,7 +56,7 @@ def test_GPU(self): loss = loss / num_ratings loss.backward() optimizer.step() - total_epoch_loss += loss.data[0] + total_epoch_loss += loss.item() denom += 1 print("Total epoch {} loss: {}".format(epoch, total_epoch_loss/denom)) @@ -81,7 +81,7 @@ def test_CPU(self): loss = loss / num_ratings loss.backward() optimizer.step() - print('[%d, %5d] loss: %.7f' % (epoch, i, loss.data[0])) + print('[%d, %5d] loss: %.7f' % (epoch, i, loss.item())) if i == 5: # too much compute for CPU break @@ -108,7 +108,7 @@ def test_GPU(self): loss = loss / num_ratings loss.backward() optimizer.step() - total_epoch_loss += loss.data[0] + total_epoch_loss += loss.item() denom += 1 print("Total epoch {} loss: {}".format(epoch, total_epoch_loss / denom))