a) Pre-run step:
- Clone the repository
- Install packages and dependencies:
pip install -r requirements.txt - Download Yelp dataset from here: https://www.yelp.com/dataset/challenge
- Place the extracted folder into the
data/of the repository - Run
Data_Pre_Processing.ipynbfromsrcfolder. This will create the relevant datasets necessary to run the models we have defined
b) For Bias Baseline and ALS model:
- Run
src/ALS_Baseline.ipynb
c) For Factorization Machine model:
- Run
src/CMF_FM.ipynb
d) For Wide and Deep model:
- Run
src/Wide and Deep.ipynb
e) For Content-based recommendation:
- Download glove, infersent model mentioned here: https://github.com/facebookresearch/InferSent
- Move the
infersent2.pkltosrc/Content-Recommendation - Run
python src/json_to_csv.pyto convert json to csv consisting of Las Vegas restaurant dataset for 2018. - Run
python src/Content-Recommendation/get_review_embedding.pyto generate weighted review2vec and export it to a file. - Run
python src/Content-Recommendation/content_recommendation.pyto create annoy index from review embeddings and provide top 10 recommendations for the input string.