
Arıkan meets Shannon:
Polar codes with near-optimal convergence to channel capacity

Venkatesan Guruswami∗ Andrii Riazanov† Min Ye‡

Abstract

Let W be a binary-input memoryless symmetric (BMS) channel with Shannon capacity
I(W) and fix any α > 0. We construct, for any sufficiently small δ > 0, binary linear codes of
block length O(1/δ2+α) and rate I(W)−δ that enable reliable communication on W with quasi-
linear time encoding and decoding. Shannon’s noisy coding theorem established the existence
of such codes (without efficient constructions or decoding) with block length O(1/δ2). This
quadratic dependence on the gap δ to capacity is known to be best possible. Our result thus
yields a constructive version of Shannon’s theorem with near-optimal convergence to capacity
as a function of the block length. This resolves a central theoretical challenge associated with
the attainment of Shannon capacity. Previously such a result was only known for the erasure
channel.

Our codes are a variant of Arıkan’s polar codes based on multiple carefully constructed local
kernels, one for each intermediate channel that arises in the decoding. A crucial ingredient in
the analysis is a strong converse of the noisy coding theorem when communicating using random
linear codes on arbitrary BMS channels. Our converse theorem shows extreme unpredictability
of even a single message bit for random coding at rates slightly above capacity.

Keywords:
Polar codes, capacity-achieving codes, scaling exponent, finite blocklength

An extended abstract of this paper was presented at 2020 ACM Symposia on Theory of Computing
(STOC) [GRY20].

∗Computer Science Departmemt, Carnegie Mellon University, Pittsburgh, PA 15213. Email: venkatg@cs.cmu.edu.
Research supported in part by NSF grants CCF-1422045 and CCF-1563742, and a Google Research Award.
†Computer Science Departmemt, Carnegie Mellon University, Pittsburgh, PA 15213. Email: riazanov@cs.cmu.edu.

Research supported in part by NSF grants CCF-1422045 and CCF-1563742.
‡Data Science and Information Technology Research Center, Tsinghua-Berkeley Shenzhen Institute, Shenzhen,

China. Email: yeemmi@gmail.com. Some of this research was carried out when the author was visiting Carnegie
Mellon University.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 154 (2019)

Contents

1 Introduction 1

2 Overview of our construction and analysis 2
2.1 Channel transforms, entropy polarization, and polar codes 3
2.2 Scaling exponents: prior work . 4
2.3 Polar codes for erasure channels . 4
2.4 The road to BSC: Using multiple kernels . 5
2.5 Analysis of polarization via recursive potential function 6
2.6 Sharp transition in polarization . 7
2.7 Encoding and decoding . 8
2.8 Inverse sub-exponential decoding error probability 9

3 Outline of strong converse for random linear codes 10

4 Preliminaries 12
4.1 Binary entropy function . 12
4.2 Channel degradation . 12

5 Give me a channel, I’ll give you a kernel 12
5.1 Local kernel construction . 13
5.2 Strong channel coding and converse theorems . 15

5.2.1 The BEC case . 16
5.2.2 Part (a): channel capacity theorem . 16
5.2.3 Part (b): strong converse for bit-decoding under noisy channel coding 17

6 Strong converse for BSCp 18

7 Strong converse for BMS channel 24
7.1 Bounded alphabet size . 24

7.1.1 Fix a typical output . 25
7.1.2 Concentration of entropy . 30
7.1.3 Proof that the typical set is indeed typical . 32
7.1.4 Concentration Lemma . 34

7.2 Arbitrary alphabet size . 37

8 Suction at the ends 40
8.1 Suction at the lower end . 41
8.2 Suction at the upper end . 43

9 Code construction, encoding and decoding procedures 44
9.1 Analysis of bit-channels . 50
9.2 Complexity of code construction, encoding and decoding 52
9.3 Code rate and decoding error probability . 53
9.4 Main theorem: Putting everything together . 55

10 Inverse sub-exponential decoding error probability 56
10.1 Step 1 . 58
10.2 Step 2 . 59
10.3 Step 3 . 62

A Proofs of entropic lemmas for BMS channels 65

2

B Proofs in Section 7.1.4 68

C Proof in Section 7.2 69

D Proof of Proposition 9.1 70

1 Introduction

We construct binary linear codes that achieve the Shannon capacity of the binary symmetric chan-
nel, and indeed any binary-input memoryless symmetric (BMS) channel, with a near-optimal scaling
between the code length and the gap to capacity. Further, our codes have efficient (quasi-linear
time) encoding and decoding algorithms. Let us now describe the context of our result and its
precise statement in more detail.

The binary symmetric channel (BSC) is one of the most fundamental and well-studied noise
models in coding theory. The BSC with crossover probability p ∈ (0, 1/2) (BSCp) flips each
transmitted bit independently with probability p. By Shannon’s seminal noisy coding theorem
[Sha48], we know that the capacity of BSCp is 1− h(p), where h(·) is the binary entropy function.
This means that reliable communication over BSCp is possible at information rates approaching
1 − h(p), and at rates above 1 − h(p) this is not possible. More precisely, for any δ > 0, there
exist codes of rate 1−h(p)− δ using which one can achieve miscommunication probability at most
2−Ω(δ2n) where n is the block length of the code. In fact, random linear codes under maximum
likelihood decoding offer this guarantee with high probability. Thus Shannon’s theorem implies
the existence of codes of block length O(1/δ2) that can achieve small error probability on BSCp at
rates within δ of capacity. Conversely, by several classical results [Wol57, Str62, Str09, PPV10], we
know that the block length has to be at least Ω(1/δ2) in order to approach capacity within δ.

Shannon’s theorem is based on the probabilistic method and does not describe the codes that
approach capacity or give efficient algorithms to decode them from errors caused by BSCp. Thus
the codes with rates 1 − h(p) − δ take at least time exponential in 1/δ2 to construct as well as
decode. This is also true for concatenated coding schemes [For67] as the inner codes have to be
decoded by brute-force, and either have to also be found by a brute-force search or allowed to vary
over an exponentially large ensemble (leading to exponentially large block length).

The theoretical challenge of constructing codes of rate 1− h(p)− δ with construction/decoding
complexity scaling polynomially in 1/δ in fact remained wide open for a long time. Finally, around
2013, two independent works [GX15, HAU14] gave an effective finite-length analysis of Arıkan’s
remarkable polar codes construction [Arı09]. (Arıkan’s original analysis, as well as follow-ups like
[AT09], proved convergence to capacity as the block length grew to infinity but did not quantify the
speed of convergence.) Based on this, a construction of polar codes with block length, construction,
and decoding complexity all bounded by a polynomial in 1/δ to capacity was obtained in [GX15,
HAU14]. The result also applies to any BMS channel, not just the BSC.

If the block length of the code scales as O(1/δµ) as a function of the gap δ to capacity, we say
that µ is the scaling exponent. The above results established that the scaling exponent of polar
codes is finite. It is worth pointing out that polar codes are the only known efficiently decodable
capacity-achieving family proven to have a finite scaling exponent. The work [GX15] did not give
an explicit upper bound on the scaling exponent of polar codes, whereas [HAU14] showed the bound
µ ≤ 6. Following some improvements in [GB14, MHU16], the current best known upper bound on
µ for the BSC (and any BMS channel) is 4.714.

Note that random linear codes have optimal scaling exponent 2. The above results thus raise
the intriguing challenge of constructing codes with scaling exponent close to 2, a goal we could not
even dream of till the recent successes of polar codes.

Arıkan’s original polar coding construction is based on a large tensor power of a simple 2 × 2
matrix, which is called the kernel of the construction. For this construction, it was shown in
[HAU14] that the scaling exponent µ for Arıkan’s original polar code construction is lower bounded

1

by 3.579, even for the simple binary erasure channel. Given this limitation, one approach to improve
µ is to consider polar codes based on ` × ` kernels for larger `. However, better upper bounds on
the scaling exponent of polar codes based on larger kernels have not been established except for the
simple case of the binary erasure channel (BEC).1 For the BEC, using large kernels, polar codes
with scaling exponent 2+α for any desired α > 0 were given in the very nice paper [FHMV17] which
spurred our work. (We will discuss this and other related works in more detail in Sections 2.2–2.3.)

Our main result in this work is a polynomial time construction of polar codes based on large
kernels that approach the optimal scaling exponent of 2 for every BMS channel. Specifically, for
any desired α > 0, by picking sufficiently large kernels (as a function of α), the block length N can
be made as small as Oα(1/δ2+α) for codes of rate I(W) − δ (the notation Oα(·) hides a constant
that depends only on α). The encoding and decoding complexity will be quasi-linear in N , and
thus can also have a near-quadratic growth with 1/δ.

Theorem 1.1 (Main). Let W be an arbitrary BMS channel with Shannon capacity I(W). For
arbitrarily small α > 0, if we choose a large enough constant ` ≥ `0(α) to be a power of 2, then
there is a code C generated by the polar coding construction using kernels of size `× ` such that the
following four properties hold when the code length N grows:

1. the code construction has NOα(1) complexity;
2. both encoding and decoding have Oα(N logN) complexity;
3. the rate of C is at least I(W)−N−1/2+18α; and
4. the block decoding error probability is bounded by exp(−Nα) when C is used for channel coding

over W .

The above “constructivizes” the quantitative finite-length version of Shannon’s theorem with
a small α slack in the speed of convergence to capacity. The lower bound on ` can be chosen as
`0(α) = exp(α−1.01). Note that a similar lower bound on ` also appears in the aforementioned
result for the BEC from [FHMV17].

We would like to point out that in the conference version of this work [GRY20] we only proved
inverse polynomial decoding error probability, as opposed to the inverse sub-exponential exp(−Nα)
bound which we show here. This improvement uses the subsequent analysis of polarization due to
Wang and Duursma in [WD19], where they extended the results of Theorem 1.1 to arbitrary discrete
memoryless channels, possibly non-binary and asymmetric, and proved the exp

(
−NO(α)

)
bound

on the decoding error probability. However, this was done at a cost of losing the polynomial-time
construction complexity of the code. We are able to non-trivially combine the analysis from [WD19]
with our approach of constructing the code to achieve both polynomial time construction and sub-
exponentially small decoding error probability simultaneously.

2 Overview of our construction and analysis

In order to better explain our work and situate it in the rich backdrop of related works on polar
codes, we begin with some context and background on the phenomenon of channel polarization
that lies at the heart of Arıkan’s polar coding approach.

1Polar codes based on `× ` kernels have much larger block length `t compared to 2t for the 2× 2 case. So to get
an improvement in µ, one has to compensate for the increasing block length via better bounds on the local behavior
of the kernel.

2

2.1 Channel transforms, entropy polarization, and polar codes

Consider an arbitrary binary-input memoryless symmetric (BMS)2 channel W : {0, 1} → Y, and
an `× ` invertible binary matrix K (referred to as the kernel). Suppose that we are transmitting
a binary vector U = (U1, U2, . . . , U`) uniformly chosen from {0, 1}` in the following way: first, it
is transformed into X = UK, which is then transmitted through ` copies of the channel W to get
the output Y = W `(X) ∈ Y`.

Now imagine decoding the input bits Ui successively in the order of increasing i. This naturally
leads to a binary-input channel Wi : {0, 1} → Y` × {0, 1}i−1, for each i ∈ [`], which is the channel
“seen” by the bit Ui when all the previous bits U<i and all the channel outputs Y ∈ Y` are known.
Formally, the transition probabilities of this channel are

Wi(Y ,U<i |Ui) = 1
2`−i

∑
V∈{0,1}`−i

W `
(
Y | (U<i, Ui,V)K

)
, (1)

where U<i ∈ {0, 1}i−1 are the first (i − 1) bits of U , and the sum is over all possible values
V ∈ {0, 1}`−i that the last (`− i) bits of U can take. In this paper we will address the channel Wi

as “Arıkan’s bit-channel of W with respect to K.”
A polarization transform associated with the kernel K is then defined as a transformation that

maps ` copies of the channel W to the channels W1, W2, . . . ,W`. For a BMS channel W , we define
H(W) as the conditional entropy of the channel input random variable given the channel output
random variable when the channel input has uniform distribution. Since K is invertible, a direct
implication of the chain rule for entropy gives entropy conservation property, which is

` ·H(W) = H(X |Y) = H(U |Y) =
∑̀
i=1

H(Ui|U<i,Y) =
∑̀
i=1

H(Wi). (2)

If K is invertible and is not upper-triangular under any column permutation (which we refer to
as a mixing matrix), then the bit-channels W1,W2, . . . ,W` start polarizing—some of them become
better than W (have smaller entropy), and some become worse. The standard approach is then to
recursively apply the polarization transform of K to these bit-channels. This naturally leads to an
`-ary tree of channels. The t’th level of the tree corresponds to the linear transformation K⊗t, the
t-fold Kronecker product of K. 3

In his landmark paper [Arı09], Arıkan proved that when K = (1 0
1 1), at the t’th level, all but a

o(1) fraction of the channels (as t→∞) are either almost noiseless (have tiny entropy) or completely
useless (have entropy very close to 1). To get capacity-achieving codes from polarization, the idea
is to use the almost-noiseless channels, which will constitute ≈ I(W) fraction by conservation
of entropy, to carry the message bits, and “freeze” the bits in the remaining positions to pre-
determined values (eg. all 0s). Thus the generator matrix of the code will consist of those rows of
K⊗t that correspond to the almost-noiseless positions. Arıkan presented a successive cancellation
(SC) decoder and proved that it can be implemented using O(N logN) operations where N = `t is
the code length, thanks to the nice recursive structure of K⊗t.

For the parameters of the code, if one shows that at most δt fraction of the channels at the
t’th level have entropies in the range (ζt, 1 − ζt), then one (roughly) gets codes of length 2t, rate

2We say that a channel W : {0, 1} → Y is a BMS channel if there is a permutation π on the output alphabet Y
satisfying i) π−1 = π and ii) W (y|1) = W (π(y)|0) for all y ∈ Y.

3Actually, the analysis is more convenient if one applies a bit-reversal permutation of the Ui’s, and indeed we do
so also in this paper, but this is not important for our current discussion.

3

I(W)− δt − ζt, for which the SC decoder achieves decoding error probability ζt`t for noise caused
by W (see, for example [BGN+18, Theorem A.3]). Thus, one needs ζt sub-exponentially small in t
(i.e., at most exp(−ω(t))) to achieve good decoding error. For Arıkan’s original 2 × 2 kernel, this
was shown in [AT09]. Korada, Sasoglu and Urbanke extended the analysis to arbitrary `×` mixing
matrices over the binary field [KSU10], and Mori and Tanaka established a similar claim over all
finite fields [MT14].

The fraction δt of unpolarized channels (whose entropies fail to be sub-exponentially close to 0
or 1) governs the gap to capacity of polar codes. The above works established that limt→∞ δt = 0,
and thus polar codes achieve capacity asymptotically as the block length grows to infinity. However,
they did not provide any bounds on the speed at which δt → 0 as a function t, much less quantify a
scaling exponent. Note that one would need to show δt ≤ O(`−t/µ) to establish a scaling exponent
of µ, since the code length is `t.

2.2 Scaling exponents: prior work

For Arıkan’s original kernel (1 0
1 1), two independent works [HAU14, GX15] proved that δt drops to

0 exponentially fast in t. This proved that Arıkan’s polar codes have finite scaling exponent (i.e.,
converge to capacity polynomially fast in the block length), the first codes with this important
feature. Blasiok et al generalized this result significantly [BGN+18], proving that the entire class of
polar codes, based on arbitrary mixing matrices over any prime field as kernels, has finite scaling
exponent.

For concrete upper bounds on the scaling exponent, the work of Hassani, Alishahi, and Ur-
banke [HAU14] had proved µ ≤ 6 for Arıkan’s original kernel. This was improved to µ ≤ 5.702 in
[GB14]. Mondelli, Hassani, and Urbanke [MHU16] showed that µ ≤ 4.714 for any BMS channel
W , and showed a better upper bound µ ≤ 3.639 for the case when W is a binary erasure channel
(BEC). A lower bound µ ≥ 3.579 appears in [HAU14] which suggests that polar codes based on
Arıkan’s original 2× 2 kernel might inherently fall short of the optimal scaling exponent of 2.

For larger kernels, effective upper bounds on the scaling exponent are harder to establish as the
local evolution of the channels is more complex. In fact, to the best of our knowledge, there is no
such explicit bound in the literature, for any kernel of size bigger than 2.4 The analysis of polar
codes is a lot more tractable for the case of erasure channels, where symbols get erased (replaced
by a ’?’ but never corrupted). Next we describe some results for erasure channels as well as the
difficulty in extending these results to channels such as the BSC.

2.3 Polar codes for erasure channels

For the erasure channel, we have analyses of larger kernels and even codes with scaling exponent
approaching 2. Binary ` × ` kernels for powers of two ` ≤ 64 optimized for the binary erasure
channel appear in [MT12, FV14, YFV19]; a 64× 64 kernel achieving µ < 3 is reported in [YFV19].

Pfister and Urbanke proved in [PU16] that the optimal scaling exponent µ = 2 can be ap-
proached if one considers transmission over the q-ary erasure channel for large alphabet size q.
They used polar codes based on q × q kernels. Fazeli, Hassani, Mondelli, and Vardy [FHMV17]
then established a similar result for the more challenging and also more interesting case of q = 2,
i.e., for the binary erasure channel, using `× ` kernels for large `. They pose proving an analogous
result for arbitrary BMS channels as an important challenge. Their conjecture that this can be

4Here we exclude special cases such as a block diagonal matrix with blocks of size at most 2 which can be reduced
to the 2× 2 case but will only have a worse scaling exponent.

4

accomplished provided some of the impetus for our work. Our analysis structure follows a similar
blueprint to [FHMV17] though the technical ingredients become significantly more complex for
channels other than the BEC, as explained next.

The polarization process for erasure channels has a particularly nice structure. If the initial
channel W is the binary erasure channel with erasure probability z (denoted BEC(z)), then the
Arıkan channels Wi, i ∈ [`], arising from the linear transformation by the kernel are also binary
erasure channels (specifically, BEC(pi(z)) where pi(·) are some polynomials of degree at most
`). Crucially, all the channels in the recursive tree remain BEC. Therefore it suffices to prove the
existence of a good polarizing kernel for the class of binary erasure channels, which is parameterized
by a single number, the erasure probability, which also equals the entropy of the channel. As shown
in [FHMV17], a random kernel works with good probability for all BEC universally. However,
fundamentally the calculations for BEC revolve around the rank of various random subspaces, as
decoding under the BEC is a linear-algebraic task. Moving beyond the BEC takes us outside the
realm of linear algebra into information-theoretic settings where tight quantitative results are much
harder to establish.

2.4 The road to BSC: Using multiple kernels

For the case when the initial channel W is a BSC, a fundamental difficulty (among others) is that
the channels in the recursion tree will no longer remain BSC (even after the first step). Further, to
the best of our knowledge, the various channels that arise do not share a nice common exploitable
structure. Therefore, we have to think of the intermediate channels as arbitrary BMS channels,
a very large and diverse class of channels. It is not clear (to us) if there exists a single kernel
to universally polarize all BMS channels at a rapid rate. Even if such a kernel exists, proving so
seems out of reach of current techniques. Finally, even for a specific BMS, proving that a random
kernel polarizes it fast enough requires some very strong quantitative bounds on the performance
and limitations of random linear codes for channel coding. We next describe these issues dealing
with which constitutes the core of our contributions.

Since we are not able to establish that a single kernel could work for the whole construction
universally, our idea is to pick different kernels, which depend on the channels that we face during
the procedure. That way, by picking a suitable kernel for each channel in the tree, we can ensure
that polarization is fast enough throughout the whole process.

Though we use different kernels in the code construction, all of them have the same size `× `.
We say that a kernel is good if all but a Õ(`−1/2) fraction of the bit-channels obtained after polar
transform by this kernel have entropy `−Ω(log `)-close to either 0 or 1. Given a BMS channel W , the
code construction consists of t steps, from Step 0 to Step t − 1. At Step 0, we find a good kernel
K

(0)
1 for the original channel W . After the polar transform of W using kernel K(0)

1 , we obtain `
bit-channels W1, . . . ,W`. Then in Step 1, we find good kernels for each of these ` bit-channels.
More precisely, the good kernel for Wi is denoted as K(1)

i , and the bit-channels obtained by polar
transforms of Wi using kernel K(1)

i are denoted as {Wi,j : j ∈ [`]}; see Figure 1 for an illustration.
At Step j, we will have `j bit-channels {Wi1,...,ij : i1, . . . , ij ∈ [`]}. For each of them, we find a
good kernel K(j)

i1,...,ij
. After polar transform of {Wi1,...,ij : i1, . . . , ij ∈ [`]} using these kernels, we

will obtain `j+1 bit-channels. Finally, after the last step (Step t − 1), we will obtain N = `t bit-
channels {Wi1,...,it : i1, . . . , it ∈ [`]}. Using the good kernels we obtained in this code construction
procedure, we can build an N ×N matrix (or we can view it as a large kernel) M (t) such that the
N bit-channels resulting from the polar transform of the original channel W using this large kernel

5

W

Find K
(0)
1

W1 W2 W3

Find K
(1)
1 Find K

(1)
2 Find K

(1)
3

W1,1 W1,2 W1,3 W2,1 W2,2 W2,3 W3,1 W3,2 W3,3...

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

W

W

W

W

W

W

W

W

W

X1

X2

X3

X4

X5

X6

X7

X8

X9

K
(0)
1

K
(0)
1

K
(0)
1

K
(1)
1

K
(1)
2

K
(1)
3

U1

U2

U3

U4

U5

U6

U7

U8

U9

Figure 1: The left figure illustrates the code construction, and the right figure shows the encoding
procedure for the special case of ` = 3 and t = 2. All the kernels in this figure have size 3× 3. One
can show that the bit-channel Wi,j in the left figure is exactly the channel mapping from U3(i−1)+j
to (U[1:3(i−1)+j−1],Y[1:9]) in the right figure.

M (t) are exactly {Wi1,...,it : i1, . . . , it ∈ [`]}. We will say a few more words about this in Section 2.7
and provide all the details in Section 9.

Define now a random process by W (0) = W and W (j) = W
(j−1)
i for i uniformly chosen from

[`], where W (j−1)
i is the ith Arıkan bit-channel of W (j−1) with respect to the appropriate kernel

chosen in the construction phase. In other words, this is a random process of going down the tree
of channels, where a uniformly random child of a current node is taken at each step. Finally, define
another random process H(j) := H

(
W (j)

)
. Since every kernel in the construction is chosen to be

invertible, H(j) is a martingale due to the conservation of entropy property (2). It is clear that
W (j) marginally is a uniformly random channel of the jth level of channel tree, and then H(j) is
the entropy of such a randomly chosen channel.

2.5 Analysis of polarization via recursive potential function

The principle behind polarization is that for large enough t, almost all of the channels on the t’s-level
of the tree from Figure 2 will be close to either the useless or noiseless channel, i.e., their entropy
is very close to 1 or 0, correspondingly. To estimate how fast such polarization actually happens,
one needs to bound the fraction of channels on tth level that are not yet sufficiently polarized, i.e.,
P
[
H(t) ∈ (ζ, 1 − ζ)

]
for some tiny threshold ζ, and show that this fraction vanishes rapidly with

increasing t.
Specifically, we have the following result (stated explicitly in [BGN+18, Theorem A.3]) already

alluded to in Section 2.1: if for all t

P[H(t) ∈ (p`−t, 1− p`−t)] ≤ D · βt, (3)

then this corresponds to a polar code with block length N = `t, rate (D · βt + p`−t)-close to the
capacity of the channel, and decoding error at most p under the successive cancellation decoder 5.

To track the fractions of polarized and non-polarized channels at each level of the construction,
we use a potential function gα(h) = (h(1 − h))α for some small fixed α > 0, which was also used

5For this part the reader should think of p as being inverse polynomial (of fixed degree) in N . We will discuss
improving the decoding error probability in Section 2.8.

6

in [MHU16] and [FHMV17]. Specifically, we are going to track E[gα(H(t)] as t increases, since
Markov’s inequality implies

P[H(t) ∈ (p`−t, 1− p`−t)] = P[gα(H(t)) ≥ gα(p`−t)] ≤ E[gα(H(t))]
gα(p`−t) ≤ 2

(
`t/p

)α
· E[gα(H(t))]. (4)

To upper bound E[gα(H(t))] we choose kernels in our construction so that the average of the
potential function of all the children of any channel in the tree decreases significantly with respect
to the potential function of this channel. Precisely, we want for any channel W ′ in the tree

E
i∼[`]

[
gα
(
H(W ′i)

)]
≤ λα · gα

(
H(W ′)

)
, (5)

where W ′i are the children of W ′ in the construction tree for i ∈ [`], and the constant λα only
depends on α and `, but is universal for all the channels in the tree (and thus for all the kernels
chosen during the construction). If one can guarantee that (5) holds throughout the construction
process, then for the martingale process H(t) obtain

E
[
gα
(
H(t)

)]
= E

[
E

j∼[`]

[
gα
(
H(W (t−1)

j)
)] ∣∣∣∣W (t−1)

]

= E

1
`

∑`
j=1 gα

(
H(W (t−1)

j)
)

gα
(
H(W (t−1))

) · gα
(
H(W (t−1))

) ∣∣∣∣W (t−1)


≤ λα · E

[
gα
(
H(t−1)

)]
,

and then inductively

E
[
gα
(
H(t)

)]
≤ λα · E

[
gα
(
H(t−1)

)]
≤ λ2

α · E
[
gα
(
H(t−2)

)]
≤ · · · ≤ λtαH(0) ≤ λtα. (6)

Then (4) and (3) imply existence of code with rate O
(
(N/p)α · λtα

)
-close to capacity of the

channel. Since our main task is to achieve a gap which is close to N−1/2 = `−t/2, we need to argue
that it is possible to choose kernels at each step in the construction so that (5) always holds for
some α→ 0 and λα ≈ `−1/2.

2.6 Sharp transition in polarization

The main technical contribution of this paper consists in showing that if ` is large enough, it is
possible to choose kernels in the construction process for which λα is close to `−1/2. Specifically,
we prove that if ` is a power of 2 such that log ` = Ω

(
1

α1.01

)
, then it is possible to achieve

λα ≤ `−1/2+5α. (7)

To obtain such a behavior, while choosing the kernel for the current channel W ′ during the recursive
process we differentiate between two cases:

Case 1: W ′ is already very noisy or almost noiseless. Such regime is called suction at the
ends (following [BGN+18]), and it is known that polarization happens (much) faster for this case.
So in this case we take a standard Arıkan’s polarization kernel K = (1 0

1 1)⊗ log ` and prove (5) with
a geometric decrease factor λα ≤ `−1/2.

7

Case 2: W ′ is neither very noisy nor almost noiseless. We refer to this case as vari-
ance in the middle regime (following [BGN+18] again). For such a channel we adopt the framework
from [FHMV17] and show a sharp transition in polarization for a random kernel K and W ′. Specif-
ically, we prove that with high probability over K ∼ {0, 1}`×` (for ` large enough) it holds

H(W ′i (K)) ≤ `−Ω(log `) for i ≥ ` ·H(W ′) + Ω(`1/2 log3 `),
H(W ′i (K)) ≥ 1− `−Ω(log `) for i ≤ ` ·H(W ′)− Ω(`1/2 log3 `).

(8)

It then follows that only about Õ(`−1/2) fraction of bit-channels are not polarized for some kernel
K, which then easily translates into the bound (7) on λα that we desire. Note that we can always
ensure that we take an invertible kernel K, since a random binary matrix is invertible with at least
some constant probability.

Proving such a sharp transition constitutes bulk of the technical work in this paper. In Sec-
tion 5.2 we show that inequalities in (8) correspond to decoding a single bit of a message which
is transmitted through W ′ using a random linear code. The first set of inequalities in (8) then
correspond to saying that one can decode this single bit with low error probability with high prob-
ability over the randomness of the code, if the rate of the code is at least approximately `−1/2

smaller than the capacity of the channel (where ` is the blocklength of the code). This follows from
the well-studied fact that random linear codes achieve Shannon’s capacity over any BMS ([Gal65],
[BF02]).

The second set of inequalities, on the other hand, corresponds to saying that for random linear
codes with rate exceeding capacity by at least ≈ `−1/2, even predicting a single bit of the message
with tiny advantage over a uniform guess is not possible. While it follows from converse Shannon’s
coding theorem that decoding the entire message is not possible (even with small success probabil-
ity) for any code above capacity, it does not follow that one cannot recover a particular message
bit with accuracy noticeably better than random guessing. In fact, if we only want to decode a
specific message bit and we do not put any constraints on the code, then we can easily construct
codes with rate substantially above capacity that still allow us to decode this specific message bit
with high probability. All we need to do here is to repeat the message bit sufficiently many times
in the codeword, decode each copy based on the corresponding channel output, and then take a
majority vote. The overal code rate does not even figure in this argument. Therefore, one can
only hope that the converse theorem for bit-decoding holds for certain code ensembles, and for the
purpose of this paper, we restrict ourselves to random linear code ensemble. While the converse
for bit-decoding in this case is surely intuitive, establishing it in the strong quantitative form (8)
that we need, and also for all BMS channels, turns out to be a challenging task. We describe some
of the ideas behind our strong converse theorem for bit-decoding in Section 3.

2.7 Encoding and decoding

Once we have obtained the kernels in the code construction (see Section 2.4), the encoding pro-
cedure is pretty standard; see [PSL15, YB15, GBLB17, BBGL17, WD18] for discussions on po-
lar codes using multiple kernels. As mentioned in Section 2.4, we can build a N × N matrix
M (t) := D(t−1)Q(t−1)D(t−2)Q(t−2) . . . D(1)Q(1)D(0), where the matrices Q(1), Q(2), . . . , Q(t−1) are
some permutation matrices, and D(0), D(1), . . . , D(t−1) are block diagonal matrices. In particular,
all the blocks on the diagonal of D(j) are the kernels that we obtained in Step j of the code con-
struction. We illustrate the special case of ` = 3 and t = 2 in Figure 1. We take a random vector
U[1:N] consisting of N = `t i.i.d. Bernoulli-1/2 random variables and we transmit the random vec-
tor X[1:N] through N independent copies of W . Denote the output vector as Y[1:N]. Then for every

8

i ∈ [N], the bit-channel mapping from Ui to (U[1:i−1],Y[1:N]) is exactly Wi1,...,it , where (i1, . . . , it)
is `-ary expansion of i.

We have shown that almost all of the N bit-channels {Wi1,...,it : i1, . . . , it ∈ [`]} become ei-
ther noiseless or completely noisy. In the code construction, we can track H(Wi1,...,it) for every
(i1, . . . , it) ∈ [`]t, and this allows us to identify which Ui’s are noiseless under successive decoding.
Then in the encoding procedure, we only put information in these noiseless Ui’s and set all the
other Ui’s to be some “frozen” value, e.g., 0. This is equivalent to saying that the generator matrix
of our code is the submatrix of M (t) consisting of rows corresponding to indices i of the noiseless
Ui’s. In Section 9, we will show that similarly to the classical polar codes, both the encoding and
decoding of our code also have O(N logN) complexity.

As a final remark, we mention that we need to quantize every bit-channel we obtain in every
step of the code construction. More precisely, we merge the output symbols whose log-likelihood
ratios are close to each other, so that after the quantization, the output alphabet size of every
bit-channel is always polynomial in N . This allows us to construct the code in polynomial time.
Without quantization, the output alphabet size would eventually be exponential in N . We will
provide more details about this aspect, and how it affects the code construction and the analysis
of decoding, in Section 5.1 and Section 9.

2.8 Inverse sub-exponential decoding error probability

Up to this moment, the described construction only achieved inverse polynomial decoding error
probability. One reason for this restriction comes from the quantization of the bit-channels that we
do, which leads to only having approximations of the actual bit-channels. In particular this means
that we only track the parameters (entropy and Bhattacharyya parameter) of the bit-channels
approximately, with an additive error inverse polynomial in the blocklength. This directly translates
to only claiming inverse polynomial decoding error probability.

It a recent work Wang and Duursma [WD19] show that it is possible to achieve a good scaling
exponent (2 +O(α)) and inverse sub-exponential decoding error probability (exp(−Nα)) for polar
codes simultaneously, using the idea of multiple kernels in the construction. However, the construc-
tion phase in [WD19] tracked the exact bit-channels that are obtained in the `-ary tree of channels
(without quantization), which means that the construction of such polar codes is no longer doable
in polynomial time. This is because (most of) the exact bit-channels cannot even be described in
a tractable way, since they have exponential size of output alphabet.

We combine our approach of using Arıkan’s kernels for polarized bit-channels (Case 1 in Sec-
tion 2.6) with a strong analysis of polarization from [WD19] to achieve good scaling exponent,
inverse sub-exponential decoding error probability, and polynomial time complexity of construc-
tion, all at the same time. The main idea behind our argument is that even though we cannot
track the exact bit-channels in the construction, we know how basic Arıkan’s kernel evolves the
parameters of the bit-channels. Then, if we start with a slightly polarized bit-channel, and take
a sufficient amount of ”good” branches of Arıkan’s 2 × 2 kernels, we end up with a strongly po-
larized channel. The crucial observation here is that it suffices to only track the approximation of
the bit-channel to verify that it is slightly polarized, and no additional computation is needed to
check how many ”good” branches were taken in the tree of bit-channels. In such a way, we show
that it is possible to prove very strong polarization for bit-channels, which leads to good decoding
error probability, while still only tracking the approximations of the bit-channels, which keeps the
construction complexity polynomial. All of these arguments, which lead to the main result of this
paper, are made precise and proven in Section 10.

9

3 Outline of strong converse for random linear codes

In this section we describe the plan of the proof for the strong converse theorem for bit-decoding
random linear codes under the binary symmetric channel. In particular, we need to show the
sharp transition as in (8), when the channel is BSC. The proof for the general BMS channel case
follows the same blueprint by using the fact that a BMS channel can be represented as a convex
combination of BSC subchannels, but executing it involves overcoming several additional technical
hurdles. Let us fist formulate the precise theorem for the binary symmetric channel.

Theorem 3.1. Let W be the BSCp channel, and let `, k be integers that satisfy
` ≥ k ≥ `(1−H(W)) + Ω(`1/2 log `). Let G be a random binary matrix uniform over {0, 1}k×`.
Suppose a message V ·G is transmitted through ` copies of the channel W , where V is uniformly
random over {0, 1}k, and let Y be the output vector, i.e. Y = W `(V ·G). Then, with probability
at least 1− `−Ω(log `) over the choice of G it holds H

(
V1
∣∣ Y) ≥ 1− `−Ω(log `).

We want to point out two quantitative features of the above theorem. First, it applies at rates
≈ Ω(`−1/2) above capacity. Second, it rules out predicting the bit V1 with advantage `−ω(1) over
random guessing. Both these features are important to guarantee the desired bound λα . `−1/2.

Proof plan. We prove the lower bound on H
(
V1
∣∣ Y) by lower bounding E

g∼G

[
H
(
V1
∣∣ Y)] and

using Markov’s inequality. Thus we write

E
g∼G

[
H(g)(V1|Y)

]
=
∑
g

P(G = g)H(g)(V1|Y) =
∑
g

P(G = g)

∑
y∈Y`

P(g)(Y = y)H(g)(V1|Y = y)

 ,
where the summation of g is over {0, 1}k×`, and by P(g)(·) and H(g)(·) we denote probability and
entropy over the randomness of the message V and channel noise for a fixed matrix g.

1: Restrict to zero-input. The first step is to use the linearity of the (random linear) code and
the additive structure of BSC to prove that we can change P(g)(Y = y) to P(g)(Y = y |V = 0) in
the above summation, where 0 is the all-zero vector. This observation is crucial for our arguments,
since it allows to only consider the outputs which are “typical” for the all-zero codeword, and there
is no dependence on g in this case. Formally, in Appendix A we prove

E
g∼G

[
H(g)(V1|Y)

]
=
∑
y∈Y`

P(Y = y |V = 0) · E
g∼G

[
H(g)(V1|Y = y)

]
.

2: Define a typical set of outputs. We define a typical output set for the zero-input as
F :=

{
y ∈ Y` : |wt(y)− `p| ≤ 2

√
` log `

}
. It is clear that if zero-vector is transmitted through the

channel, the output will be a vector from F with high probability. It means that we do not lose
too much in terms of accuracy if we restrict our attention only to this typical set, so the following
lower suffice as a good lower bound on the expectation.

E
g∼G

[
H(g)(V1|Y)

]
≥
∑
y∈F

P(Y = y |V = 0) · E
g∼G

[
H(g)(V1|Y = y)

]
. (9)

3: Fix a typical output y ∈ F . For a fixed choice of y ∈ F , we express H(g)(V1|Y = y) =
h(P(g)(V1 = 0|Y = y)) = h

(
P(g)(V1=0,Y=y)

P(g)(Y=y)

)
. It suffices to show that the ratio of these probabilities

is very close to 1/2 w.h.p. To this end, we will show that both denominator and numerator are

10

highly concentrated around their respective means for g ∼ G, and that the means have a ratio
nearly 1/2 . Focusing on the denominator (the argument for the numerator is very similar), we
have:

2k · P(g)(Y = y) = P(Y = y |V = 0) +
∑̀
d=0

Bg(d,y)pd(1− p)`−d, (10)

where Bg(d,y) is equal to the number of nonzero codewords in the code spanned by the rows of g
at Hamming distance d from y . We proceed with proving concentration on the summation above
by splitting it into two parts.

3a: Negligible part. It is very unlikely that an input codeword x such that |dist(x,y)− `p| ≥
6
√
` log ` was transmitted, if y was received as the output. It is then possible to show that the

expectation (over g ∼ G) of
∑

d : |d−`p|≥6
√
` log `
Bg(d,y)pd(1 − p)`−d is negligible with respect to the

expectation of the whole summation. Markov’s inequality implies then that this sum is negligible
with high probability over g ∼ G.

3b: Substantial part. On the other hand, for any d such that |d − `p| ≤ 6
√
` log `, the

expectation of Bg(d,y) is going to be extremely large for the above-capacity regime. We can
apply Chebyshev’s inequality to prove concentration on every single weight coefficient Bg(d,y)
with d in such a range. A union bound then implies that they are all concentrated around their
means simultaneously.

This proves that the summation over d is concentrated around its mean in (10). Finally, since
|wt(y) − `p| ≤ 2

√
` log ` for y ∈ F and we leave enough room above the capacity of the channel,

w.h.p. over choice of g we have Bg(wt(y),y) � 1, and consequently P(Y = y |V = 0) =
pwt(y)(1− p)`−wt(y) is negligible compared to the second sum term in in (10).

4: Concentration of entropy. Proving in the same way concentration on P(g)(V1 = 0,Y = y),
we derive that P(g)(V1=0,Y=y)

P(g)(Y=y) is close to 1
2 with high probability for any typical y ∈ F , and thus

Eg∼G[H(g)(V1|Y = y)] is close to 1 with high probability for such y . Recalling that the probability
to receive y ∈ F is overwhelming for zero-vector input, out of (9) obtain the desired lower bound
on E

g∼G

[
H(g)(V1|Y)

]
.

The full proof for the BSC case is presented in Section 6. In order to generalize the proof to
general BMS channels we need to track and prove concentration bounds for many more parameters
(in the BSC case, we had a single parameter d that was crucial). More specifically, in the BSC
case we have to deal with a single binomial distribution when trying to estimate the expectation of
Bg(d,y). For general BMS channels, however, we have to cope with a multinomial distribution and
an ensemble of binomially distributed variables that depend on the particular realization of that
multinomial distribution. Moreover, we emphasize that Theorem 3.1 and its analogue for BMS
must hold in the non-asymptotic regime, namely for all code lengths above some absolute constant
which does not depend on the channel. (In contrast, in typical coding theorems in information
theory one fixes the channel and lets the block length grow to infinity.) We show how to overcome
all these technical challenges for the general BMS case in Section 7.

Organization of rest of the paper

The rest of the paper, which contains all the formal theorem statements and full proofs, is organized
as follows. In Section 5, we describe how to find a good polarizing kernel for any BMS, and reduce

11

its analysis to a strong coding theorem and its converse for bit-decoding of random linear codes.
The case when the BMS has entropy already reasonably close to either 0 or 1 is handled in Section 8.
Also, the analysis of the complexity of the kernel finding algorithm is deferred to Section 9.

Turning to the converse coding theorem for random codes, as a warmup this is first proven for
the case of the binary symmetric channel in Section 6. We then present the proof for general BMS
channels in Section 7. Finally, Section 9 has the complete details of our code construction based on
the multiple kernels found at various levels, and a sketch of the encoding and decoding algorithms,
which when all combined yield Theorem 9.6, which is almost our main result, but with decoding
error probability proven to be only inverse polynomial in the blocklength.

Lastly, in Section 10 we show how to combine the tight analysis of the polarization from [WD19]
and our construction of codes from Section 9 to obtain our final result, also stated in the introduc-
tory section as Theorem 1.1, with inverse sub-exponential exp(−Nα) decoding error probability.

4 Preliminaries

4.1 Binary entropy function

All the logarithms in this paper are to the base 2. The binary entropy function is defined as
h(x) = x log 1

x + (1 − x) log 1
1−x for x ∈ [0, 1], where 0 log 0 is taken to be 0. We will use a simple

fact that h(x) ≤ 2x log 1
x for x ∈ [0, 1/2) several times in the proofs. The following proposition

follows from the facts that h(x) is concave, increasing for x ∈ [0, 1/2), and symmetric around 1/2,
i.e. h(x) = h(1− x) for x ∈ [0, 1].
Proposition 4.1. For any x, y ∈ [0, 1], |h(x)− h(y)| ≤ h(|x− y|).

4.2 Channel degradation

Definition 4.2. Let W : {0, 1} → Y and W̃ : {0, 1} → Ỹ be two BMS channels. We say that W̃
is degraded with respect to W , or, correspondingly, W is upgraded with respect to W̃ , denoted as
W̃ �W , if there exists a discrete memoryless channel W1 : Y → Ỹ such that

W̃ (ỹ |x) =
∑
y∈Y

W (y |x)W1(ỹ | y) ∀ x ∈ {0, 1}, ỹ ∈ Ỹ.

Note that this is equivalent to saying that W̃ (x) and W1(W (x)) are identically distributed for
any x ∈ {0, 1}. In other words, one can simulate the usage of W̃ by first using the channel W and
then applying some other channel W1 to the output of W to get a final output.

We will use some useful facts from [TV13, Lemma 3] and [YB15, Lemma IV.1]
Proposition 4.3. Let W and W̃ be two BMS channels, such that W̃ �W . Then H(W̃) ≥ H(W).
Proposition 4.4. Let W and W̃ be BMS channels, such that W̃ � W , and K ∈ {0, 1}`×` be
any invertible matrix. Denote by Wi, W̃i the Arıkan’s bit-channels of W and W̃ with respect to the
kernel K for any i ∈ [`]. Then for any i ∈ [`], we have W̃i �Wi, and consequently H(W̃i) ≥ H(Wi).

5 Give me a channel, I’ll give you a kernel

In this section we show that for any given binary-input memoryless symmetric (BMS) channel W
we can find a kernel K of size `× `, such that the Arıkan’s bit-channels of W with respect to this

12

kernel will be highly polarized. By this we mean that the multiplicative decrease λα defined in (5)
will be sufficiently close to `−1/2. The algorithm (Algorithm A) to find such a kernel is as follows:
if the channel is already almost noiseless or too noisy (entropy is very close to 0 or 1), we take
this kernel to be a tensor power of original Arıkan’s kernel for polar codes, A2 = (1 0

1 1). Otherwise,
the algorithm will just try out all the possible invertible kernels in {0, 1}`×`, until a ”good” kernel
is found, which means that conditions (11) should be satisfied. Before proving that Algorithm A
achieves our goals of bringing λα close to `−1/2, we discuss several details about it.

5.1 Local kernel construction

Algorithm A: Kernel search
Input: BMS channel W̃ with output size ≤ Q, error parameter ∆, and number `
Output: invertible kernel K ∈ {0, 1}`×`

1 if H(W̃) < `−4 or H(W̃) > 1− `−4 + ∆ then
2 return K = A⊗ log `

2
3 else
4 for K ∈ {0, 1}`×`, if K is invertible do
5 Compute Arıkan’s bit-channels W̃i(K) of W̃ with respect to the kernel K, as in (1)
6 if

H(W̃i(K)) ≤ `− log `/5 for i ≥ ` ·H(W̃) + `1/2 log3 `

H(W̃i(K)) ≥ 1− `− log `/20 for i ≤ ` ·H(W̃)− 14`1/2 log3 `
(11)

then
7 return K
8 end
9 end

10 end

As briefly discussed at the end of Section 2.7, we are unable to efficiently track all the bit-
channels in the `-ary recursive tree exactly. This is because the size of the output alphabet of the
channels increase exponentially after each step deeper into the tree (this simply follows from the
definition of bit-channels (1)). Thus computing all the channels (and their entropies) cannot be
done in poly(N) time. To overcome this issue we follow the approach of [TV13], with subsequent
simplification in [GX15], of approximating the channels in the tree by degrading (see Definition 4.2)
them. Degradation is achieved via the procedure of merging the output symbols, which (a) decreases
the output alphabet size, and (b) does not change the entropy of the channel too much. This implies
(with all the details worked out in Section 9) that we can substitute all the channels in the tree of
depth t by their degraded approximations, such that all the channels has output alphabet size at
most Q (a parameter depending on N = `t to be chosen), and that if W̃ is a degraded approximation
of the channel W in the tree, than H(W) ≤ H(W̃) ≤ H(W) + ∆ for some ∆ depending on Q.
Moreover, in Theorem 5.1 which we formulate and prove shortly, we show that when we apply
the Algorithm A to a degraded approximation W̃ of W with small enough ∆, then, even though
conditions (11) only dictate a sharp transition for W̃ , the same kernel will induce a sharp transition
in polarization for W .

The second issue which such degraded approximation resolves is the running time of the Al-
gorithm A. Notice that we only going to apply it for channels with output size bounded by Q,

13

and recall that we think of ` as of a constant (though very large). First of all, trying out all the
possible kernels will then also take a constant number of iterations. Finally, within each iteration,
just calculating all the Arıkan’s bit-channels and their entropies in a straightforward way will take
poly(Q`) time, which is just poly(Q) when we treat ` as a constant. Therefore by choosing Q to be
polynomial in N , the algorithm indeed works in poly(N) time.

We now leave the full details concerning the complexity of the algorithm to be handled in
Section 9, and proceed with showing that the Algorithm A always returns a kernel which makes
λα from (5) close to `−1/2.

Theorem 5.1. Let α > 0 be a small constants. Let ` be a power of 2 such that log ` ≥ 11
α and

log `
log log `+2 ≥

3
α . Let W : {0, 1} → Y and W̃ : {0, 1} → Ỹ be two BMS channels, such that W̃ � W ,

H(W̃)−∆ ≤ H(W) ≤ H(W̃) for some 0 ≤ ∆ ≤ `− log `, and |Ỹ| ≤ Q. Then the Algorithm A on
input W̃ , ∆, and ` returns a kernel K ∈ {0, 1}`×` that satisfies

1
` · gα(H(W))

∑̀
i=1

gα (H(Wi)) ≤ `−
1
2 +5α, (12)

where W1,W2, . . . ,W` are the Arıkan’s bit-channels of W with respect to the kernel K, and the
function gα(·) is defined as gα(h) = (h(1− h))α for any h ∈ [0, 1].

Proof. As we discussed above, we consider two cases:

Suction at the ends. If H(W̃) /∈ (`−4, 1− `−4 +∆), the Algorithm A returns a standard Arıkan’s
kernel K = A⊗ log `

2 on input W̃ and ∆. For this case H(W) /∈ (`−4, 1 − `−4), and fairly standard
arguments imply that the polarization under such a kernel is much faster when the entropy is
close to 0 or 1. For completeness, we present the full proofs for this case in a deferred Section 8.
Specifically, Lemma 8.1 immediately implies the result of the theorem for this regime, as we pick
log ` ≥ 1

α .

Variance in the middle. Otherwise, if H(W̃) ∈ (`−4, 1 − `−4 + ∆), it holds H(W) ∈
(`−4 −∆, 1− `−4 + ∆), thus H(W) ∈

(
`−4/2, 1− `−4/2

)
.

We first need to argue that the algorithm will at least return some kernel. This argument
is one of the main technical contributions of this work, and we formulate it as Theorem 5.3 in
Section 5.2. The theorem essentially claims that for any W̃ an overwhelming fraction of possible
kernels K ∈ {0, 1}`×` satisfies the conditions in (11) for W̃ and K (note that we do not use any
conditions on the size of Ỹ or the entropy H(W̃) at all at this point). Clearly then, there is a
decent fraction of invertible kernels from {0, 1}`×` which also satisfy these conditions. Therefore,
the algorithm will indeed terminate and return such a good kernel. Moreover, since the theorem
claims that a random kernel from {0, 1}`×` will satisfy (11) with high probability, and it is also
known that it will be invertible with at least some constant probability. It means that instead of
iterating through all possible kernels in step 4 of the Algorithm A, we could take a random kernel
and check it, and then the number of iterations needed to find a good kernel would be very small
with high probability. However, to keep everything deterministic, we stick to the current approach.

Suppose now the algorithm returned an invertible kernel K ∈ {0, 1}`×`, which means that
relations (11) hold for W̃ and Arıkan’s bit-channels W̃1, W̃2, . . . , W̃` (we omit dependence on K
from now on). Denote also Wi = Wi(K) as an Arıkan’s bit-channels of W with respect to K. First,
since degradation is preserved after considering Arıkan’s bit-channels according to Proposition4.4,
W̃i �Wi, thusH(Wi) ≤ H(W̃i) for all i ∈ [`]. Now, similarly to the proof of Proposition 9.3, sinceK

14

is invertible, conservation of entropy implies
∑`
i=1

(
H(W̃i)−H(Wi)

)
= `

(
H(W̃)−H(W)

)
≤ `·∆,

therefore derive H(Wi) ≤ H(W̃i) ≤ H(Wi) + ` ·∆ for any i ∈ [`]. Then deduce

H(Wi) ≤ H(W̃i) ≤ `− log `/5 for i ≥ ` ·H(W̃) + `1/2 log3 `

H(Wi) ≥ H(W̃i)− ` ·∆ ≥ 1− `− log `/21 for i ≤ ` ·H(W̃)− 14 · `1/2 log3 `,
(13)

where we used that we chose ∆ ≤ `− log ` in the condition of the theorem.
Recall that H(W) ∈

(
`−4/2, 1− `−4/2

)
for variance in the middle regime, and note that this

implies gα(H(W)) ≥ gα(`−4/2) ≥ 1
2`
−4α. Using (13) and the trivial bound gα(x) ≤ 1 for all the

indices i close to ` ·H(W̃) obtain that the LHS of the desired inequality (12) is at most

1
` · gα(H(W))

(`·H(W̃)−14·`1/2 log3 `∑
i=1

gα
(
1− `− log `/21

)
+ 15`1/2 log3 `

+
∑̀

i=`·H(W̃)+`1/2 log3 `

gα
(
`− log `/5

))

< 30`−
1
2 +4α log3 `+ 2`−α log `/21+4α

< `−
1
2 +5α,

where the last inequality uses the conditions log ` ≥ 11
α

and log `
log log `+ 2 ≥

3
α

that we have on `.

Remark 5.2. In this paper, we are interested in the cases where α is very close to 0. For such α,
We can absorb the two conditions on ` in Theorem 5.1 into one condition log ` ≥ α−1.01.

5.2 Strong channel coding and converse theorems

In this section we will show that Algorithm A, which is used to prove the multiplicative decrease
of almost `−1/2 as in (12) in the settings of Theorem 5.1, indeed always returns some kernel for the
regime when the entropy of the channel is not close to 0 or 1. While the analysis of suction at the
ends regime, deferred to Section 8, is pretty standard and just relies on the fact that polarization is
getting much faster when the channel is noiseless or useless, in this section we will follow the ideas
from [FHMV17] and prove a sharp transition in the polarization behaviour, when the polarization
happens under a random and sufficiently large kernel.

The sharp transition stems from the fact that when the kernel K is large enough, with high
probability (over randomness of K) all the Arıkan’s bit-channel with respect to K, except for
approximately `1/2 of them in the middle, are guaranteed to be either very noisy or almost noiseless.
We formulate the main result of this section in the following theorem, which was used in the proof
of Theorem 5.1:

Theorem 5.3. Let W be any BMS channel, and let W1,W2, . . . ,W` be the Arıkan’s bit-channels
defined in (1) with respect to the kernel K chosen uniformly at random from {0, 1}`×`. Then for
the following inequalities all hold with probability (1− o`(1)) over the choice of K:

(a) H(Wi) ≤ `−(log `)/5 for i ≥ ` ·H(W) + `1/2 log3 `;

(b) H(Wi) ≥ 1− `−(log `)/20 for i ≤ ` ·H(W)− 14 · `1/2 log3 `.

15

Remark 5.4. One can notice that the above theorem is stated for any BMS channel W , independent
of the value of H(W).

The proof of this theorem relies on results concerning bit-decoding for random linear codes
that are interesting beyond the connection to polar codes. The following proposition shows how to
connect Arıkan’s bit-channels to this context.

Proposition 5.5. Let W be a BMS channel, K ∈ {0, 1}`×` be an invertible matrix, and i ∈ [`].
Set k = ` − i + 1, and let G be a matrix which is formed by the last k rows of K. Let U be a
random vector uniformly distributed over {0, 1}`, and V be a random vector uniformly distributed
over {0, 1}k. Then

H
(
Ui
∣∣∣W `(U ·K),U<i

)
= H

(
V1
∣∣∣W `(V ·G)

)
(14)

The proof of this proposition only uses basic properties of BMS channels and linear codes, and
is deferred to Appendix A. Notice now that the LHS of (14) is exactly the entropy H(Wi) of the i’s
Arıkan’s bit-channel of W with respect to the kernel K, by definition of this bit-channel. On the
other hand, one can think of the RHS of (14) in the following way: look at G as a generator matrix
for a linear code of blocklength ` and dimension k, which is transmitted through the channel W .
Then H

(
V1
∣∣∣W `(V ·G)

)
in some sense corresponds to how well one can decode the first bit of

the message, given the output of the channel. Since in Theorem 5.3 we are interested in random
kernels, the generator matrix G is also random, and thus we are indeed interested in understanding
bit-decoding of random linear codes.

5.2.1 The BEC case

When W is the binary erasure channel, a statement very similar to Theorem 5.3 was established
in [FHMV17]. The situation for the BEC is simpler and we now describe the intuition behind this.

Suppose we map uniformly random bits U ∈ {0, 1}` to X = UK for a random ` × ` binary
matrix K. We will observe ≈ (1 − z)` bits of X after it passes through BEC(z); call these bits
Z. For a random K, with high probability the first ≈ z` bits of U will be linearly independent
of these observed bits Z. When this happens we will have H(Wi) = 1 for i . z`. On the other
hand, Z together with the first ≈ z` bits of U will have full rank w.h.p. over the choice of K.
When this is the case, the remaining bits Ui for i & z` will be determined as linear combinations
of these bits, making the corresponding conditional entropies H(Wi) = 0. Thus except for a few
exceptional indices around i ≈ z`, the entropy H(Wi) will be really close to 0 or 1. The formal
details and quantitative aspects are non-trivial as the argument has to handle the case when z is
itself close to 0 or 1, and one has to show the number of exceptional indices to be .

√
` (which is the

optimal bound). But ultimately the proof amounts to understanding the ranks of various random
subspaces. When W is a BMS channel, the analysis is no longer linear-algebraic, and becomes
more intricate. This is the subject of the rest of this section as well as Sections 6 and 7.

5.2.2 Part (a): channel capacity theorem

Part (a) of Theorem 5.3 corresponds to transmitting through W random linear codes with rates
below the capacity of the channel. For this regime, it turns out that we can use the classical result
that random linear codes achieve the capacity of the channel with low error decoding probability.
Trivially, the bit-decoding error probability is even smaller, making the corresponding conditional
entropy also very small. Therefore, the following theorem follows from classical Shannon’s theory:

16

Theorem 5.6. Let W be any BMS channel and k ≤ `(1−H(W))− `1/2 log3 `. Let G be a random
binary matrix uniform over {0, 1}k×`. Suppose a codeword V · G is transmitted through ` copies
of the channel W , where V is uniformly random over {0, 1}k, and let Y be the output vector, i.e.
Y = W `(V ·G). Then with high probability over the choice of G it holds H

(
V1
∣∣ Y) ≤ `−(log `)/5.

Proof. The described communication is just a transmission of a random linear code C = {vG, v ∈
{0, 1}k} through W `, where the rate of the code is R = k

` ≤ I(W)− `−1/2 log3 `, so it is separated
from the capacity of the channel. It is a well-studied fact that random (linear) codes achieve capacity
for BMS, and moreover a tight error exponent was described by Gallager in [Gal65] and analyzed
further in [BF02], [For05], [DZF16]. Specifically, one can show Pe ≤ exp(−`Er(R,W)), where Pe
is the probability of decoding error, averaged over the ensemble of all linear codes of rate R, and
Er(R,W) is the so-called random coding exponent. It is proven in [iFLM11, Theorem 2.3] that for
any BMS channel W , one has Er(R,W) ≥ EBSC

r (R, I(W)) where the latter is the error exponent
for the BSC channel with the same capacity I(W) as W . But the random scaling exponent for
BSC channels for the regime when the rate is close to the capacity of the channel is given by the
so-called sphere-packing exponent EBSC

r (R, I) = Esp(R, I) which is easily shown to be ”almost”
quadratic in (I − R). Specifically, one can show Esp(R, I) ≥ log4 `

2` when R ≤ I − `−1/2 log3 `,
and therefore Pe ≤ exp(−`Er(R,W)) ≤ exp(−`Esp(R, I(W))) ≤ exp(− log4 `/2). Then Markov’s
inequality implies that if we take a random linear code (i.e. choose a random binary matrix G),
then with probability at least 1− `−2 the decoding error is going to be at most `2exp(− log4 `/2) ≤
exp(− log4 `/4) ≤ `− log `/4. Consider such a good linear code (matrix G), and then V can be
decoded from Y with high probability, thus, clearly, V1 can be recovered from Y with at least the
same probability. Then Fano’s inequality gives us:

H(V1 |Y) ≤ h2(`− log `/4) ≤ `− log `/5.

Thus we indeed obtain that the above holds with high probability (at least 1− `−2, though this is
very loose) over the random choice of G.

5.2.3 Part (b): strong converse for bit-decoding under noisy channel coding

On the other hand, part (b) of Theorem 5.3 concerns bit-decoding of linear codes with rates above
the capacity of the channel. We prove that with high probability, for a random linear code with rate
slightly above capacity of a BMS channel, any single bit of the input message is highly unpredictable
based on the outputs of the channel on the transmitted codeword. Formally, we have the following
theorem.

Theorem 5.7. Let W be any BMS channel, ` and k be any integers that satisfy
` ≥ k ≥ `(1−H(W)) + 14`1/2 log3 `. Let G be a random binary matrix uniform over {0, 1}k×`.
Suppose a message V ·G is transmitted through ` copies of the channel W , where V is uniformly
random over {0, 1}k, and let Y be the output vector, i.e. Y = W `(V ·G). Then, with probability
at least 1− `− log `/20 over the choice of G it holds H

(
V1
∣∣ Y) ≥ 1− `− log `/20.

Since the theorem is of independent interest and of a fundamental nature, we devote a separate
Section 7 to present a proof for it.

The above statements make the proof of Theorem 5.3 immediate:

17

Proof of Theorem 5.3. Denote k = `−i+1, then by Proposition 5.5 H(Wi) = H
(
V1
∣∣∣W `(V ·Gk)

)
,

where V ∼ {0, 1}k and Gk is formed by the last k rows of K. Note that since K is uniform over
{0, 1}`×`, this makes Gk uniform over {0, 1}k×` for any k. Then:

(a) For any i ≥ ` · H(W) + `1/2 log3 `, we have k ≤ `(1 − H(W)) − `1/2 log3 `, and therefore
Theorem 5.6 applies, giving H(Wi) ≤ `−(log `)/5 with probability at least 1− `−2 over K.

(b) Analogically, if i ≤ ` · H(W) − 14 · `1/2 log3 `, then k ≥ `(1 − H(W)) + 14`1/2 log3 `, and
Theorem 5.7 gives H(Wi) ≥ 1− `−(log `)/20 with probability at least 1− `−(log `/20) over K.

It only remains to take the union bound over all indices i as in (a) and (b), which implies that all of
the bounds on the entropies will hold simultaneously with probability at least 1− ` · `−2 ≥ 1− `−1

over the random kernel K.

6 Strong converse for BSCp

We present a proof of Theorem 5.7 in the next two sections. It is divided into three parts: first, we
prove it for a special case of W being a BSC channel in this section. The analysis for this case is
simpler (but already novel), and it provides the roadmap for the argument for the case of general
BMS channel. Next, in Section 7.1 we prove Theorem 5.7 for the case when the output alphabet
size of W is bounded by 2

√
`, which is the main technical challenge in the paper. The proof will

mimic the approach for the BSC case to some extent. Finally, in Section 7.2, we show how the
case of general BMS channel can be reduced to the case of the channel with bounded alphabet via
”upgraded binning” to merge output symbols.

Throughout this section consider the channel W to be BSC with the crossover probability p ≤ 1
2 .

Denote H = H(W) = h(p), where h(·) is the binary entropy function. For the BSC case we will
actually only require k ≥ `(1−H) + 8

√
` log ` in the condition of the Theorem 5.7. Thus we are in

fact proving Theorem 3.1 here.

Proof of Theorem 3.1. We will follow the plan described in Section 3. As we discussed there, we
prove that H(V1 |Y) is very close to 1 with high probability over G by showing that its expectation
over G is already very close to 1 and then using Markov inequality. So we want to prove a lower
bound on

E
g∼G

[
H(g)(V1|Y)

]
=
∑
g

P(G = g)H(g)(V1|Y),

where H(g)(V1|Y) is the conditional entropy for the fixed matrix g. Similarly, in the remaining of
this section, P(g)(·) denotes probabilities of certain events for a fixed matrix g. By

∑
g we denote

the summation over all binary matrices from {0, 1}k×`.

Restrict to zero-input. We rewrite

E
g∼G

[
H(g)(V1|Y)

]
=
∑
g

P(G = g)

∑
y∈Y`

P(g)(Y = y)H(g)(V1|Y = y)


=
∑
y∈Y`

∑
g

P(g)(Y = y) · P(G = g)H(g)(V1|Y = y).

Our first step is to prove that in the above summation we can change P(g)(Y = y) to
P(g)(Y = y |V = 0), where 0 is the all-zero vector. This observation is crucial for our arguments,

18

since it allows us to only consider the outputs y which are ”typical” for the all-zero codeword when
approximating E

g∼G

[
H(g)(V1|Y)

]
. Precisely, we prove

Lemma 6.1. Let W be a BMS channel, ` and k be integers such that k ≤ `. Let G be a random
binary matrix uniform over {0, 1}k×`. Suppose a message V ·G is transmitted through ` copies of
W , where V is uniformly random over {0, 1}k, and let Y be the output vector Y = W `(V · G).
Then

E
g∼G

[
H(g)(V1|Y)

]
=
∑
y∈Y`

∑
g

P(g)(Y = y |V = 0) · P(G = g)H(g)(V1|Y = y). (15)

Note that the above lemma is formulated for any BMS channel, and we will also use it for the
proof of the general case in Section 7. The proof of this lemma uses the symmetry of linear codes
with respect to shifting by a codeword and additive structure of BSC, together with the fact tha
BMS channel can be represented as a convex combination of several BSC subchannels. We defer
the proof to Appendix A.

Note that P(g)(Y = y |V = 0) does not in fact depend on the matrix g, since 0 · g = 0, and so
randomness here only comes from the usage of the channel W . Specifically, P(g)(Y = y |V = 0) =
pwt(y)(1− p)`−wt(y), where we denote by wt(y) the Hamming weight of y . Then in (15) we obtain

E
g∼G

[
H(g)(V1|Y)

]
=
∑
y∈Y`

pwt(y)(1− p)`−wt(y) E
g∼G

[
H(g)(V1|Y = y)

]
.

Define a typical set. The above expression allows us to only consider ”typical” outputs y for
the all-zero input while approximating Eg∼G

[
H(g)(V1|Y)

]
. For the BSC case, we consider y to be

typical when |wt(y)− `p| ≤ 2
√
` log `. Then we can write:

E
g∼G

[
H(g)(V1|Y)

]
≥

∑
|wt(y)−`p|≤2

√
` log `

pwt(y)(1− p)`−wt(y) E
g∼G

[
H(g)(V1|Y = y)

]
. (16)

Fix a typical output. Let us fix any typical y ∈ Y` such that |wt(y) − `p| ≤ 2
√
` log `, and

show that Eg∼G[H(g)(V1|Y = y)] is very close to 1. To do this, we first notice that

H(g)(V1|Y = y) = h

(
P(g)(V1 = 0,Y = y)

P(g)(Y = y)

)
. (17)

Denote Ṽ = V [2:k] to be bits 2 to k of vector V , and by g̃ = g[2 : k] the matrix g without its first
row. Next we define the shifted weight distributions of the codebooks generated by g and g̃:

Bg(d,y) := |{v ∈ {0, 1}k \ 0 : wt(vg + y) = d}|,
B̃g(d,y) := |{ṽ ∈ {0, 1}k−1 \ 0 : wt(ṽ g̃ + y) = d}|.

Therefore,

P(g)(V1 = 0,Y = y)
P(g)(Y = y)

=
∑

ũ P
(g)(Y = y

∣∣V1 = 0, Ṽ = ũ)∑
u P(g)(Y = y

∣∣V = u)

= pwt(y)(1− p)`−wt(y) +
∑`
d=0 B̃g(d,y)pd(1− p)`−d

pwt(y)(1− p)`−wt(y) +
∑`
d=0Bg(d,y)pd(1− p)`−d

. (18)

19

We will prove a concentration of the above expression around 1/2, which will then imply that
H(g)(V1|Y = y) is close to 1 with high probability by (17). To do this, we will prove concentra-
tions around means for both numerator and denominator of the above ratio. Since the following
arguments work in exactly the same way, let us only consider the denominator for now.

By definition,
Bg(d,y) =

∑
v 6=0

1[wt(vg + y) = d]. (19)

The expectation and variance of each summand is

Var
g∼G

1
[
wt(vg + y) = d

]
≤ E

g∼G
1
[
wt(vg + y) = d

]
=
(
`

d

)
2−` ∀v ∈ {0, 1}k \ 0.

Clearly, the summands in (19) are pairwise independent. Therefore,

Var
g∼G

[
Bg(d,y)

]
≤ E

g∼G

[
Bg(d,y)

]
= (2k − 1)

(
`

d

)
2−`, (20)

and then

E
g∼G

[∑̀
d=0

Bg(d,y)pd(1− p)`−d
]

= (2k − 1)2−`
(∑̀
d=0

(
`

d

)
pd(1− p)`−d

)
= (2k − 1)2−`.

Let us now show that
∑`
d=0Bg(d,y)pd(1 − p)`−d is tightly concentrated around its mean for

g ∼ G. To do this, we split the range of d into two parts: when |d − `p| > 6
√
` log `, and when

|d− `p| ≤ 6
√
` log `:

∑̀
d=0

Bg(d,y)pd(1− p)`−d =
∑

|d−`p|>6
√
` log `

Bg(d,y)pd(1− p)`−d +
∑

|d−`p|≤6
√
` log `

Bg(d,y)pd(1− p)`−d.

Negligible part. Denote Zg(y) =
∑

|d−`p|>6
√
` log `

Bg(d,y)pd(1− p)`−d, and notice that

E
g∼G

[Zg(y)] = (2k − 1)2−`
∑

|d−`p|>6
√
` log `

(
`

d

)
pd(1− p)`−d ≤ (2k − 1)2−` · exp(−12 log2 `)

≤ 2(2k − 1)2−` · `−12 log `,

where the inequality is obtained via the Chernoff bound for binomial random variable. Then
Markov’s inequality gives Pg∼G

[
Z ≥ E

g∼G
[Zg(y)]`2 log `] ≤ `−2 log `, and so

P
[
Zg(y) < 2(2k − 1)2−``−10` log `] ≥ 1− `−2 log `.

Define the set
G1 := {g ∈ {0, 1}k×` : Zg(y) < 2(2k − 1)2−``−10` log `}, (21)

and then P
g∼G

[g ∈ G1] ≥ 1− `−2 log `.

20

Substantial part. Now we deal with the part when |d− `p| ≤ 6
√
` log `. For now, let us fix any

d in this interval, and use Chebyshev’s inequality together with (20):

P
g∼G

[∣∣∣Bg(d,y)− E[Bg(d,y)]
∣∣∣ ≥ `−2 log ` E[Bg(d,y)]

]
≤ Var[Bg(d,y)]
`−4 log ` E2[Bg(d,y)]

≤ `4 log `

E
g∼G

[Bg(d,y)] ≤ `
4 log ` 2`−k+1(`

d

) .
(22)

We use the following bound on the binomial coefficients

Fact 6.2 ([MS77], Chapter 10, Lemma 7). For any integer 0 ≤ d ≤ `,

1√
2`

2`h(d/`) ≤
(
`

d

)
≤ 2`h(d/`) (23)

Since we fixed |d− `p| ≤ 6
√
` log `, Proposition 4.1 implies∣∣∣∣h(p)− h

(
d

`

)∣∣∣∣ ≤ h(6`−1/2 log `) ≤ 12`−1/2 log ` · log `1/2

6 log ` ≤ 6`−1/2 log2 `.

Recalling that we consider the above-capacity regime with k ≥ `(1− h(p)) + 8
√
` log2 `, we derive

from (23) and above

2`−k+1(`
d

) ≤ ` 2`[h(p)−h(d`)−8`−1/2 log2 `] ≤ ` 2−2`1/2 log2 `.

Therefore, we get in (22):

P
g∼G

[∣∣∣Bg(d,y)− E[Bg(d,y)]
∣∣∣ ≥ `−2 log ` E[Bg(d,y)]

]
≤ `4 log `+1 2−2`1/2 log2 ` ≤ `−

√
`−1. (24)

Finally, denote

G2 :=
{
g ∈ {0, 1}k×` :

∣∣∣Bg(d,y)−E[Bg(d,y)]
∣∣∣ ≤ `−2 log ` E[Bg(d,y)] for all |d−`p| ≤ 6

√
` log `

}
.

(25)
Then by a simple union bound applied to (24) for all d such that |d− `p| ≤ 6

√
` log ` we obtain

P
g∼G

[g ∈ G2] ≥ 1− `−
√
`.

We are now ready to combine these bounds to get the needed concentration.

Lemma 6.3. With probability at least 1− 2`−2 log ` over the choice of g ∼ G, it holds

(2k − 1)2−`(1− 2`−2 log `) ≤
∑̀
d=0

Bg(d,y)pd(1− p)`−d ≤ (2k − 1)2−`(1 + 2`−2 log `). (26)

21

Proof. Indeed, by union bound Pg∼G[g ∈ G1 ∩ G2] ≥ 1− l−2 log ` − `
√
` ≥ 1− 2`−2 log `. But for any

g ∈ G1 ∩ G2 we have from (25)

∑̀
d=0

Bg(d,y)pd(1− p)`−d ≥
∑

|d−`p|≤6
√
` log `

Bg(d,y)pd(1− p)`−d

≥(2k − 1)2−`(1− `−2 log `)
∑

|d−`p|≤6
√
` log `

(
`

d

)
pd(1− p)`−d

≥(2k − 1)2−`(1− `−2 log `)(1− 2`−12 log `)
≥(2k − 1)2−`(1− 2`−2 log `).

We can also upper bound using (25) and (21)

∑̀
d=0

Bg(d,y)pd(1− p)`−d

=
∑

|d−`p|≤6
√
` log `

Bg(d,y)pd(1− p)`−d +
∑

|d−`p|>6
√
` log `

Bg(d,y)pd(1− p)`−d

≤(2k − 1)2−`(1 + `−2 log `)
∑

|d−`p|≤6
√
` log `

(
`

d

)
pd(1− p)`−d + Zg(y)

≤(2k − 1)2−`(1 + `−2 log `) + 2(2k − 1)2−``−10 log `

≤(2k − 1)2−`(1 + 2`−2 log `).

We similarly obtain the concentration for the sum in the numerator of (18): with probability
at least 1− 2`−2 log ` over the choice of g, it holds

(2k−1 − 1)2−`(1− 2`−2 log `) ≤
∑̀
d=0

B̃g(d,y)pd(1− p)`−d ≤ (2k−1 − 1)2−`(1 + 2`−2 log `). (27)

Next, let us use the fact the we took a typical output y with |wt(y)− `p| ≤ 2
√
` log ` to show

that the terms pwt(y)(1− p)`−wt(y) are negligible in both numerator and denominator of (18). We
have

pwt(y)(1− p)`−wt(y) =
(1− p

p

)`p−wt(y)
· p`p(1− p)`−`p = 2(`p−wt(y))·log

(1−p
p

)
· 2−`h(p). (28)

Simple case analysis gives us:

(a) If p < 1√
`
, then (`p− wt(y)) · log

(
1−p
p

)
≤ `p log 1

p < ` 1√
`

log
√
` <
√
` log2 `;

(b) In case p ≥ 1√
`
, obtain (`p− wt(y)) · log

(
1−p
p

)
≤ 2
√
` log ` · log 1

p ≤
√
` log2 `.

Using the above in (28) we derive for k ≥ `(1− h(p)) + 8
√
` log2 `

pwt(y)(1− p)`−wt(y) ≤ 2
√
` log2 `−`h(p) ≤ 22

√
` log2 `−`h(p)−2 log2 `−2 ≤ `−2 log ` (2k−1 − 1)2−`.

22

Combining this with (26) and (27) and using a union bound we derive that with probability at
least 1− 4`−2 log ` it holds∣∣∣∣∣

(
pwt(y)(1− p)`−wt(y) +

∑̀
d=0

Bg(d,y)pd(1− p)`−d
)
− (2k − 1)2−`

∣∣∣∣∣ ≤ 3`−2 log ` · (2k − 1)2−`,

∣∣∣∣∣
(
pwt(y)(1− p)`−wt(y) +

∑̀
d=0

B̃g(d,y)pd(1− p)`−d
)
− (2k−1 − 1)2−`

∣∣∣∣∣ ≤ 3`−2 log ` · (2k−1 − 1)2−`.

Therefore, with probability at least 1− 4`−2 log ` the expression in (18) is bounded as

(1− 3`−2 log `)(2k−1 − 1)2−`

(1 + 3`−2 log `)(2k − 1)2−` ≤
P(g)(V1 = 0,Y = y)

P(g)(Y = y)
≤ (1 + 3`−2 log `)(2k−1 − 1)2−`

(1− 3`−2 log `)(2k − 1)2−` .

We can finally derive:

(1− 3`−2 log `)(2k−1 − 1)
(1 + 3`−2 log `)(2k − 1) ≥ (1− 6`−2 log `)

(1
2 − 2−k

)
≥ (1− 6`−2 log `)

(1
2 − `

−8
√
` log `

)
≥ 1

2 − `
− log `,

(1 + 3`−2 log `)(2k−1 − 1)
(1− 3`−2 log `)(2k − 1) ≤ (1 + 9`−2 log `)1

2 ≤
1
2 + `− log `.

Therefore, with probability at least 1− 4`−2 log ` over g ∼ G it holds∣∣∣∣∣P(g)(V1 = 0,Y = y)
P(g)(Y = y)

− 1
2

∣∣∣∣∣ ≤ `− log `.

Since h(1/2 + x) ≥ 1− 4x2 for any x ∈ (−1/2, 1/2), we then derive:

E
g∼G

[
H(g)(V1|Y = y)

]
= E

g∼G

[
h

(
P(g)(V1 = 0,Y = y)

P(g)(Y = y)

)]
≥ (1−4`−2 log `)(1−4`−2 log `) ≥ 1−8`−2 log `.

Concentration of entropy. We are now ready to plug this into (16):

E
g∼G

[
H(g)(V1|Y)

]
≥ (1− 8`−2 log `)

∑
|wt(y)−`p|≤2

√
` log `

pwt(y)(1− p)`−wt(y)

= (1− 8`−2 log `)
∑

|d−`p|≤2
√
` log `

(
`

d

)
pd(1− p)`−d

≥ (1− 8`−2 log `)(1− 2`−2 log `)
≥ 1− 10`−2 log `. (29)

Finally, using the fact that H(g)(V1|Y) ≤ 1, Markov’s inequality, and (29), we get

P
g∼G

[
H(g)(V1|Y) ≤ 1−`− log `] = P

g∼G

[
1−H(g)(V1|Y) ≥ `− log `] ≤ E

g∼G

[
1−H(g)(V1|Y)

]
`− log ` ≤ 10`− log `.

Thus we conclude that with probability at least 1−10`− log ` over the choice of the kernel G it holds
that H(V1 |Y) ≥ 1− `− log ` when k ≥ `(1− h(p)) + 8

√
` log2 ` and the underlying channel is BSC.

This completes the proof of Theorem 3.1, which is a version of Theorem 5.7 for the BSC case.

23

7 Strong converse for BMS channel

To make this section completely self-contained, we restate the theorem here:

Theorem 5.7. Let W be any BMS channel, ` and k be any integers that satisfy
` ≥ k ≥ `(1−H(W)) + 14`1/2 log3 `. Let G be a random binary matrix uniform over {0, 1}k×`.
Suppose a message V ·G is transmitted through ` copies of the channel W , where V is uniformly
random over {0, 1}k, and let Y be the output vector, i.e. Y = W `(V ·G). Then, with probability
at least 1− `− log `/20 over the choice of G it holds H

(
V1
∣∣ Y) ≥ 1− `− log `/20.

7.1 Bounded alphabet size

This section is devoted to proving Theorem 5.7 for the case when W : {0, 1} → Y is a BMS channel
which has a bounded output alphabet size, specifically we consider |Y| ≤ 2

√
`. We will use the fact

that any BMS can be viewed as a convex combination of BSCs (see for example [LH06, Kor09]),
and generalize the ideas of the previous section. Namely, think of the channel W as follows: it has
m possible underlying BSC subchannels W (1),W (2), . . . ,W (m). On any input, W randomly chooses
one of the subchannels it is going to use with probabilities q1, q2, . . . , qm respetively. The subchannel
W (j) has crossover probability pj , and without loss of generality 0 ≤ p1 ≤ p2 ≤ · · · ≤ pm ≤ 1

2 . The
subchannel W (j) has two possible output symbols z(0)

j or z(1)
j , corresponding to 0 and 1, respectively

(i.e. 0 goes to z(0)
j with probability 1 − pj , or to z(1)

j with probability pj under W (j)). Then the
whole output alphabet is Y = {z(0)

1 , z
(1)
1 , z

(0)
2 , z

(1)
2 , . . . , z

(0)
m , z

(1)
m }, |Y| = 2m ≤ 2

√
`.

Remark 7.1. Above we ignored the case when some of the subchannels have only one output (i.e.
BEC subchannels), see [TV13, Lemma 4] for a proof that we can do this without loss of generality.

Notations and settings. In this section the expectation is only going to be taken over the kernel
g ∼ G, so we omit this in some places. As in the BSC case, by P(g)[·] and H(g)(·) we denote the
probability and entropy only over the randomness of the channel and the message, for a fixed kernel
g.

For any possible output y ∈ Y` we denote by di the number of symbols from {z(0)
i , z

(1)
i } it has

(i.e. the number of uses of the W (i) subchannel), so
∑m
i=1 di = `. Let also ti be the number of

symbols z(1)
i in y . Then

P[Y = y |V = 0] =
m∏
i=1

qdii p
ti
i (1− pi)di−ti . (30)

For this case of bounded output alphabet size, we will consider the above-capacity regime when
k ≥ `(1−H(W)) + 13`1/2 log3 ` (note that this is made intentionally weaker than the condition in
Theorem 5.7).

We will follow the same blueprint of the proof for BSC from Section 3, however all the technical-
ities along the way are going to be more challenging. In particular, while we were dealing with one
binomial distribution in Section 6, here we will face a multinomial distribution of (d1, d2, . . . , dm)
as a choice of which subchannels to use, as well as binomial distributions ti ∼ Binom(di, pi) which
correspond to ”flips” within one subchannel.

24

Proof of Theorem 5.7. As in the BSC case, we are going to lower bound the expectation of
H(g)(V1|Y) and use Markov’s inequality afterwards.

Restrict to zero-input. We use Lemma 6.1 to write

E
g∼G

[
H(g)(V1|Y)

]
=
∑
y∈Y`

P[Y = y |V = 0] E
g∼G

[
H(g)(V1|Y = y)

]
. (31)

Notice that there is no dependence of P[Y = y |V = 0] on the kernel g, since the output for the
zero-input depends only on the randomness of the channel.

Typical output set

As for the binary case, we would like to consider the set of ”typical” outputs (for input 0) from Y`.
We define y ∈ Y` to be typical if

m∑
i=1

(` · qi − di)h(pi) ≤ 2
√
` log `, (32)

m∑
i=1

(pidi − ti) log
(1− pi

pi

)
≤ 3
√
` log2 `. (33)

By typicality of this set we mean the following

Lemma 7.2.
∑

y typical
P[Y = y |V = 0] ≥ 1− `− log `. In other words, on input 0, the probability to

get the output string which is not typical is at most `− log `.

We defer the proof of this lemma until Section 7.1.3, after we see why we are actually interested
in these conditions on y .

7.1.1 Fix a typical output

For this part, let us fix one y ∈ Y` which is typical and prove that Eg
[
H(g)(V1|Y)

]
is very close

to 1. We have

H(g)(V1|Y) = h

(
P(g) [V1 = 0,Y = y

]
P(g) [Y = y

])
. (34)

Similarly to the BSC case, we will prove that both the denominator and numerator of the fraction
inside the entropy function above are tightly concentrated around their means. The arguments for
the denominator and the numerator are almost exactly the same, so we only consider denominator
for now.

Concentration for P(g) [Y = y
]

Define now the shifted weight distributions for the codebook g with respect tom different underlying
BSC channels. First, for any x ∈ {0, 1}` and i = 1, 2, . . . ,m, define

disti(x,y) = |{positions j such that (xj = 0,yj = z
(1)
i) or (xj = 1,yj = z

(0)
i)}|.

That is, if you send x through W ` and receive y , then disti(x,y) is just the number of coordinates
where the subchannel i was chosen, and the bit was flipped.

25

In our settings, we now need to think of ”distance” between some binary vector x ∈ {0, 1}` and
y as of an integer vector s = (s1, s2, . . . , sm) , where 0 ≤ si ≤ di for i ∈ [m], where si = disti(x,y)
is just the number of flips that occurred in the usage of ith subchannel when going from x to y . In
other words, si is just the Hamming distance between the parts of x and y which correspond to
coordinates j where yj is z(0)

i or z(1)
i (coming from the subchannel W (i)).

Now we can formally define shifted weight distributions for our fixed typical y . For an integer
vector s = (s1, s2, . . . , sm) , where 0 ≤ si ≤ di define

Bg(s,y) =
∣∣∣v ∈ {0, 1}k \ 0 : disti(v · g,y) = si for i = 1, 2, . . . ,m

∣∣∣.
We can express P(g)[Y = y] in terms of Bg(s,y) as follows:

2k · P(g)[Y = y] = P[Y = y |v = 0] +
d1,d2,...,dm∑
s1,s2,...,sm=0

Bg(s,y)
m∏
i=1

qdii p
si
i (1− pi)di−si , (35)

because
∏m
i=1 q

di
i p

si
i (1−pi)di−si is exactly the probability to get output y if a v is sent that satisfies

disti(v · g,y) = si for i = 1, 2, . . . ,m.
We have:

Bg(s,y) =
∑
v 6=0

1
[
disti(v · g,y) = si, ∀i = 1, 2, . . . ,m

]
. (36)

For a fixed v but uniformly random binary matrix g, the vector v · g is just a uniformly random
vector from {0, 1}`. Now, the number of vectors x in {0, 1}` such that disti(x,y) = si ∀i =
1, 2, . . . ,m is

∏m
i=1

(di
si

)
, since for any i = 1, 2, . . . ,m, we need to choose which of the si coordinates

amongst the di uses of the subchannel W (i), got flipped. So

P
g∼G

[
disti(v · g,y) = si, ∀i = 1, 2, . . . ,m

]
= 2−`

m∏
i=1

(
di
si

)
.

Then for the expectation of the shifted weight distributions we obtain

E
g∼G

[Bg(s,y)] =
∑
v 6=0

P
g∼G

[
disti(v · g,y) = si, ∀i = 1, 2, . . . ,m

]
= 2k − 1

2`
m∏
i=1

(
di
si

)
. (37)

Then for the expectation of the summation in the RHS of (35) we have:

E := E
g∼G

 d1,d2,...,dm∑
s1,s2,...,sm=0

Bg(s,y)
m∏
i=1

qdii p
si
i (1− pi)di−si


=

m∏
i=1

qdii

d1,d2,...,dm∑
s1,s2,...,sm=0

(
E
g∼G

[
Bg(s,y)

]
psii (1− pi)di−si

)

=2k − 1
2`

m∏
i=1

qdii ·
d1,d2,...,dm∑
s1,s2,...,sm=0

m∏
i=1

(
di
si

)
psii (1− pi)di−si

=2k − 1
2`

m∏
i=1

qdii ·
m∏
i=1


di∑
si=0

(
di
si

)
psii (1− pi)di−si︸ ︷︷ ︸

=1

 = 2k − 1
2`

m∏
i=1

qdii . (38)

26

Next, by (36) we can see that Bg(s,y) is a sum of pairwise independent indicator random variables,
since v1 · g and v2 · g are independent for distinct and non-zero v1,v2. Therefore

Var
g∼G

[Bg(s,y)] ≤ E
g∼G

[Bg(s,y)]. (39)

Splitting the summation in (35)

We will split the summation in (35) into two parts: for the first part, we will show that the
expectation of each term is very large, and then use Chebyshev’s inequality to argue that each
term is concentrated around its expectation. For the second part, its expectation is going to be
very small, and simple Markov inequality will imply that this part also does not deviate from its
expectation too much with high probability (over the random kernel g ∼ G). Putting these two
arguments together, we will obtain that the sum in the RHS of (35) is concentrated around its
mean.

To proceed, define a distribution Ω = Binom(d1, p1)×Binom(d2, p2)×· · ·×Binom(dm, pm), and
consider a random vector χ ∼ Ω. In other words, χ has m independent coordinates χi, i = 1, . . . ,m,
where χi is a binomial random variable with parameters di and pi. Note that by definition then
for any vector s = (s1, s2, . . . , sm) , where 0 ≤ si ≤ di and si is integer for any i, we have

P
χ
[χ = s] =

m∏
i=1

P
χ
[χi = si] =

m∏
i=1

(
di
si

)
psii (1− pi)di−si .

Let now T be some subset of S = [0 : d1]×[0 : d2]×· · ·×[0 : dm], where [0 : d] = {0, 1, 2, . . . , (d−
1), d} for integer d. Let also N be S \ T . Then the summation in the RHS of (35) we can write as

∑
s∈S

Bg(s,y)
m∏
i=1

qdii p
si
i (1−pi)di−si =

∑
s∈T

Bg(s,y)
m∏
i=1

qdii p
si
i (1−pi)di−si +

∑
s∈N

Bg(s,y)
m∏
i=1

qdii p
si
i (1−pi)di−si .

(40)
In the next section we describe how to choose T .

7.1.1.(i) Substantial part

Exactly as in the binary case, using (39) and Chebyshev’s inequality, we have for any s ∈ S

P
g∼G

[∣∣∣Bg(s,y)− E[Bg(s,y)]
∣∣∣ ≥ `−2 log ` E[Bg(s,y)]

]
≤ Var[Bg(s,y)]
`−4 log ` E2[Bg(s,y)]

≤ `4 log `

Eg∼G[Bg(s,y)] ≤ `
4 log ` 2`−k+1∏m

i=1
(di
si

) . (41)

We need the above to be upper bounded by `−2
√
` to be able to use union bound for all

s ∈ T ⊂ S, since |S| ≤ `O(
√
`). Recall that we have k ≥ `(1−H(W)) + 13`1/2 log3 `, and then using

a lower bound for binomial coefficients from Fact 6.2 we obtain for the RHS of (41)

`4 log ` 2`−k+1∏m
i=1

(di
si

) ≤ `4 log `
(
m∏
i=1

√
2di

)
2
`H(W)−

∑m

i=1 dih

(
si
di

)
−13`1/2 log3 `

. (42)

27

We want to show that the term 2−Ω(`1/2 log3 `) is the dominant one. First, it is easy to see that
`4 log ` = 24 log2 ` ≤ 2`1/2 log3 `. To deal with the factor

∏m
i=1
√

2di, recall that
∑m
i=1 di = ` and

m ≤
√
` in this section, then AM-GM inequality gives us

m∏
i=1

√
2di ≤ 2m/2 ·

√(∑m
i=1 di
m

)m
=
(2`
m

)m/2
≤ (2
√
`)
√
`/2 ≤ 2`1/2 log3 `, (43)

where we used that (a/x)x is increasing while x ≤ a/e. For the last factor of (42) we formulate a
lemma.

Lemma 7.3. There exists a set T ⊆ S = [0 : d1] × [0 : d2] × · · · × [0 : dm], such that
P

χ∼Ω
[χ ∈ T] ≥ 1− `− log `/4, and for any s ∈ T it holds that

`H(W)−
m∑
i=1

dih

(
si
di

)
≤ 11 `1/2 log3 `.

(Ω = Binom(d1, p1)× Binom(d2, p2)× · · · × Binom(dm, pm) above)

Proof. Rearrange the above summation as follows:

`H(W)−
m∑
i=1

dih

(
si
di

)
=

m∑
i=1

(
`qih(pi)− dih

(
si
di

))

=
m∑
i=1

(
`qi − di

)
h(pi) +

m∑
i=1

di

(
h(pi)− h

(
si
di

))
.

Now recall that we took typical y for now, so by inequality (32) from the definition of the
typicality of y we already have that the first part of the above sum is bounded by `1/2 log3 `.

To deal with the second part, which is
∑m
i=1 di

(
h(pi)− h

(
si
di

))
, we use a separate Lemma 7.12,

since the proof will be almost exactly similar for another concentration inequality we will need
later. Lemma 7.12 claims that

∑m
i=1 di

(
h(pi)− h

(
χi
di

))
≤ 10`1/2 log3 ` with probability at least

1− `− log `/4 over χ ∼ Ω. Then the result of the current lemma follows by taking T to be the subset
of S where this inequality holds.

Fix now a set T ⊆ S as in Lemma 7.3. Then using the arguments above we conclude that the
RHS in (42), and therefore (41), is bounded above by 2−2`1/2 log3 ` for any s ∈ T . Thus we can

apply union bound over s ∈ T for (41), since |T | ≤ |S| =
∏m
i=1(di + 1) ≤

(
2
√
`
)√`
≤ 2`1/2 log3 `,

similarly to (43). Therefore, we derive

Corollary 7.4. With probability at least 1 − 2−`1/2 log3 ` (over the random kernel g ∼ G) it holds
simultaneously for all s ∈ T that∣∣∣Bg(s,y)− E[Bg(s,y)]

∣∣∣ ≤ `−2 log ` E[Bg(s,y)].

Moreover, the set N = S \ T satisfies Pχ∼Ω[χ ∈ N] ≤ `− log `/4, which we will use next section
to bound the second part of (40).

28

7.1.1.(ii) Negligible part

Denote for convenience Zg(y) =
∑
s∈N Bg(s,y)

∏m
i=1 q

di
i p

si
i (1 − pi)di−si , the second part of the

RHS of (40). Recall the value of Eg∼G[Bg(s,Y)] from (37) and notation of E in (38). Then for the
expectation of Zg(y) derive

E
g∼G

[Zg(y)] =
m∏
i=1

qdii
∑
s∈N

(
E
g∼G

[
Bg(s,y)

]
psii (1− pi)di−si

)

= 2k − 1
2`

m∏
i=1

qdii ·
∑
s∈N

m∏
i=1

(
di
si

)
psii (1− pi)di−si

= E · P
χ∼Ω

[
χ ∈ N

]
≤ E · `− log `/4.

Thus Markov’s inequality implies

Corollary 7.5. With probability at least 1− `− log `/8 (over the random kernel g ∼ G) it holds

Zg(y) ≤ `log `/8 E[Zg(y)] ≤ E · `− log `/8.

7.1.1.(iii) Putting it together

Combining the Corollaries 7.4 and 7.5 together and using union bound, we derive

Corollary 7.6. With probability at least 1 − `− log `/8 − 2−`1/2 log3 ` ≥ 1 − 2`− log `/8 over the ran-
domness of the kernel g ∼ G it simultaneously holds∣∣∣Bg(s,y)− E[Bg(s,y)]

∣∣∣ ≤ `−2 log ` E[Bg(s,y)], for all s ∈ T ,∑
s∈N

Bg(s,y)
m∏
i=1

qdii p
si
i (1− pi)di−si ≤ E · `− log `/8.

(44)

We are finally ready to formulate the concentration result we need. The following lemma is as
analogue of Lemma 6.3 from the BSC case:

Lemma 7.7. With probability at least 1− 2`− log `/8 over the choice of g ∼ G it holds∣∣∣∣∣∑
s∈S

Bg(s,y)
m∏
i=1

qdii p
si
i (1− pi)di−si − E

∣∣∣∣∣ ≤ 2`− log `/8 · E.

Proof. Let us consider a kernel g such that the conditions (44) hold, which happens with probability

29

at least 1− 2`− log `/8 according to Corollary 7.6. Then∑
s∈S

Bg(s,y)
m∏
i=1

qdii p
si
i (1− pi)di−si ≥

∑
s∈T

Bg(s,y)
m∏
i=1

qdii p
si
i (1− pi)di−si

≥
∑
s∈T

(
1− `−2 log `

)
E[Bg(s,y)]

m∏
i=1

qdii p
si
i (1− pi)di−si

=
(
1− `−2 log `

) 2k − 1
2`

m∏
i=1

qdii ·
∑
s∈T

m∏
i=1

(
di
si

)
psii (1− pi)di−si

=
(
1− `−2 log `

)
· E · P

χ∼Ω

[
χ ∈ T

]
≥
(
1− `−2 log `

) (
1− `− log `/8

)
E

≥
(
1− 2`− log `/8

)
E.

For the other direction, we derive for such g∑
s∈S

Bg(s,y)
m∏
i=1

qdii p
si
i (1− pi)di−si =

(∑
s∈T

+
∑
s∈N

)
Bg(s,y)

m∏
i=1

qdii p
si
i (1− pi)di−si

(44)
≤
∑
s∈T

(
1 + `−2 log `

)
E[Bg(s,y)]

m∏
i=1

qdii p
si
i (1− pi)di−si + E · `− log `/8

≤
(
1 + `−2 log `

)∑
s∈S

E[Bg(s,y)]
m∏
i=1

qdii p
si
i (1− pi)di−si + E · `− log `/8

=
(
1 + `−2 log ` + `− log `/8

)
E

≤
(
1 + 2`− log `/8

)
E.

7.1.2 Concentration of entropy

We can now get a tight concentration for P(g)[Y = y] using the relation (35). We already showed
that the sum in RHS of (35) is tightly concentrated around its expectation, so it only remains to
show that P[Y = y |v = 0] is tiny comparable to E. Here we will use that we picked y to be
”typical” from the start so that (32) and (33) hold, and that k ≥ `(1 −H(W)) + 13`1/2 log3 ` for
the above-capacity regime. Recall (30), as well the the conditions (32) and (33) on y being typical.
We derive

P[Y = y |V = 0] =
m∏
i=1

qdii p
ti
i (1− pi)di−ti =

m∏
i=1

[
qdii · p

dipi
i (1− pi)di(1−pi) ·

(1− pi
pi

)dipi−ti]

=
m∏
i=1

qdii ·
m∏
i=1

2−dih(pi) ·
m∏
i=1

2
(dipi−ti) log

(
1−pi
pi

)

=
m∏
i=1

qdii · 2
∑m

i=1(−`qih(pi)+(`qi−di)h(pi)) · 2
∑m

i=1(dipi−ti) log
(

1−pi
pi

)
(32),(33)
≤

m∏
i=1

qdii · 2
−`H(W)+2`1/2 log `+3`1/2 log2 ` ≤

m∏
i=1

qdii ·
2k − 1

2` · `− log ` = E · `− log `.

Now, combining this with Lemma 7.7, we obtain a concentration for (35):

30

Corollary 7.8. With probability at least 1− 2`− log `/8 over the choice of kernel g ∼ G and for any
typical y ∣∣∣2k · P(g)[Y = y]− E

∣∣∣ ≤ 3`− log `/8 · E,

where E = 2k − 1
2`

m∏
i=1

qdii .

Next, completely analogously we derive the concentration for P(g)[Y = y |V1 = 0], which is the
numerator inside the entropy in (34). The only thing that changes is that we will have dimension
k − 1 instead of k for this case. We can state

Corollary 7.8′. With probability at least 1− 2`− log `/8 over the choice of kernel g ∼ G and for any
typical y ∣∣∣2k · P(g)[V1 = 0,Y = y]− Ẽ

∣∣∣ ≤ 3`− log `/8 · Ẽ,

where Ẽ = 2k−1 − 1
2`

m∏
i=1

qdii .

Combining these two together and skipping the simple math, completely analogical to that of
the BSC case, we derive

Corollary 7.9. With probability at least 1− 4`− log `/8 over the choice of kernel g ∼ G and for any
typical y ∣∣∣∣∣P(g)[V1 = 0,Y = y]

P(g)[Y = y]
− 1

2

∣∣∣∣∣ ≤ `− log `/9

Since h(1/2 + x) ≥ 1− 4x2 for any x ∈ (−1/2, 1/2), we then derive for a typical y :

E
g

[
H(g)(V1|Y = y)

]
= E

g

[
h

(
P(g)[V1 = 0,Y = y]

P(g)[Y = y]

)]
≥ (1− 4`− log `/8) · (1− 4`− log `/9)

≥ 1− 8`− log `/9.

Then in (31) we have

E
g

[
H(g)(V1|Y)

]
=
∑
y∈Y`

P[Y = y |V = 0]E
g

[
H(g)(V1|Y = y)

]
≥

∑
y typical

P[Y = y |V = 0]E
g

[
H(g)(V1|Y = y)

]
≥ (1− `− log `) · (1− 8`− log `/9).
≥ 1− 9`− log `/9 ≥ 1− `− log `/10,

(45)

where we used that the probability to get a typical output on a zero input is at least 1− `− log ` by
Lemma 7.2.

Finally, using the fact that H(g)(V1|Y) ≤ 1, Markov’s inequality, and (45), we get

P
g∼G

[
H(g)(V1|Y) ≤ 1− `−

log `
20
]

= P
[
1−H(g)(V1|Y) ≥ `−

log `
20
]
≤

E
[
1−H(g)(V1|Y)

]
`− log `/20 ≤ `− log `/20.

This completes the proof of Theorem 5.7 for the case of BMS channel with bounded output alphabet
size, asuming the typicality Lemma 7.2 and concentration Lemma 7.12 which we used in Lemma 7.3.
We now turn to proving these.

31

7.1.3 Proof that the typical set is indeed typical

Proof of Lemma 7.2. We start with proving that (32) is satisfied with high probability (over the
randomness of the channel). Notice that (d1, d2, . . . , dm) are multinomially distributed by con-
struction, since for every of ` bits transitioned, we choose independently the subchannel W (i) to
use with probability qi, for i = 1, 2, . . . ,m, and di represents the number of times the channel
W (i) was chosen. So indeed (d1, d2, . . . , dm) ∼ Mult(`, q1, q2, . . . , qm). The crucial property of
multinomial random variables we are going to use is negative association ([JDP83], [DR96]). The
(simplified version of the) fact we are going to use about negatively associated random variables
can be formulated as follows:

Lemma 7.10 ([JDP83], Property P2). Let X1, X2, . . . , Xm be negatively associated random vari-
ables. Then, for every set of m positive monotone non-decreasing functions f1, . . . , fm it holds

E
[
m∏
i=1

fi(Xi)
]
≤

m∏
i=1

E[fi(Xi)].

We also use the fact that since (d1, d2, . . . , dm) are negatively associated, then applying de-
creasing functions gi(x) = `qi − x coordinate-wise to these random variables, we will also obtain
negatively associated random variables ([DR96], Proposition 7). In other words, we argue that
(`q1 − d1, `q2 − d2, . . . , `qm − dm) are also negatively associated, thus we can apply Lemma 7.10 to
these random variables.

Let us now denote for convenience αi = h(pi) for i = 1, 2, . . . ,m, and so we have 0 ≤ αi ≤ 1.
Let also X =

∑m
i=1(` · qi − di)αi, and we now can start with simple exponentiation and Markov’s

inequality: for any a and any t > 0

P[X ≥ a] = P[etX ≥ eta] ≤ e−ta E
[
etX

]
= e−ta E

[
m∏
i=1

et·αi(`qi−di)
]
≤ e−ta

m∏
i=1

E
[
et·αi(`qi−di)

]
, (46)

where in the last inequality we applied Lemma 7.10 for negatively associated random vari-
ables (`q1 − d1, `q2 − d2, . . . , `qm − dm), as discussed above, and positive non-decreasing functions
fi(x) = et·αi·x, since αi, t ≥ 0.

Next, consider the following claim, which follows from standard Chernoff-type arguments:

Claim 7.11. Let Z ∼ Binom(n, p), and b > 0. Then E[e−b·Z] ≤ enp·(e−b−1).

Proof. We can write Z =
n∑
j=1

Zj , where Zj ∼ Bern(p) are independent Bernoulli random variables.

Then

E
[
e−b·Z

]
= E

 n∏
j=1

e−b·Zj

 =
n∏
j=1

E
[
e−b·Zj

]
=
(
(1− p) + p · e−b

)n
≤ enp(e−b−1), (47)

where the only inequality uses the fact that 1 + x ≤ ex for any x.

Turning back to (46), we are going to bound the terms E
[
et·αi(`qi−di)

]
individually. It is clear

that the marginal distribution of di is just Binom(`, qi), so we are able to use Claim 7.11 for it. We
derive:

E
[
et·αi(`qi−di)

]
= etαi`qi · E

[
e−tαi·di

] (47)
≤ et·αi`qi · e`qi(e−tαi−1) = e`qi(tαi+e−tαi−1) ≤ e`qi(t+e−t−1),

(48)

32

where the last inequality uses that x + e−x is increasing for x ≥ 0 together with 0 ≤ tαi ≤ t, as
t > 0 and 0 ≤ αi ≤ 1. Plugging the above into (46) and using

∑m
i=1 qi = 1, we obtain

P[X ≥ a] ≤ e−ta
m∏
i=1

e`qi(t+e−t−1) = e−ta · e`(t+e−t−1) ≤ e−ta+` t
2
2 , (49)

where we used x + e−x − 1 ≤ x2

2 for any x ≥ 0. Finally, by taking a = 2
√
` log `, setting t = a/`,

and recalling what we denoted by X and αi above, we immediately deduce

P
[
m∑
i=1

(` · qi − di)h(pi) ≥ 2
√
` log `

]
≤ e−

a2
2` = e−2 log2 ` ≤ `−2 log `.

This means that the first typicality requirement (32) holds with very high probability (over the
randomness of the channel).

Let us now prove that the second typicality condition (33) holds with high probability. For
that, we condition on the values of d1, d2, . . . , dm. We will see that (33) holds with high probability
for all values of d1, d2, . . . , dm, and then it is clear that is will imply that it also holds with high
probability overall.

So, fix the values of d1, d2, . . . , dm. Denote a random variable Y =
∑m
i=1(pidi − ti) log

(
1−pi
pi

)
,

and then our goal it to show that Y is bounded above by O(
√
` log2 `) with high probability (over the

randomness of ti’s). Given the conditioning on d1, d2, . . . , dm, it is clear that ti ∼ Binom(di, pi) for
all i = 1, 2, . . . ,m, and they are all independent (recall that di corresponds to the number of times
subchannel W (i) is chosen, while ti corresponds to the number of ”flips” within this subchannel).

We split the summation in Y into two parts: let T1 = {i : pi ≤ 1
`} and T2 = [m] \ T1. Then for

any realization of ti’s, we have
∑
i∈T1

(pidi − ti) log
(

1−pi
pi

)
≤
∑
i∈T1

pidi log
(

1
pi

)
≤
∑
i∈T1

di log `
` ≤ log `.

Denote the second part of the summation as Y2 =
∑
i∈T2(pidi − ti) log

(
1−pi
pi

)
. Notice that

log
(

1−pi
pi

)
≤ log

(
1
pi

)
≤ log ` for i ∈ T2. Denote then γi = log

(
1−pi
pi

)
/ log `, and so 0 ≤ γi ≤ 1 for

i ∈ T2. Finally, let Ỹ2 = Y2/ log ` =
∑
i∈T2(pidi − ti) · γi.

We now prove the concentration on Ỹ2 in exactly the same way we did for X above. Claim 7.11
applied for ti ∼ Binom(di, pi) and t · γi > 0 for any t > 0 gives E

[
e−tγi·ti

]
≤ edipi(e

−tγi−1), and so
similarly to (46)-(49) derive

P
[
Ỹ2 >a

]
≤ e−ta ·

∏
i∈T2

epidi(tγi+e−tγi−1) ≤ e−ta ·
∏
i∈T2

epidi(t+e−t−1) ≤ e−ta+
∑

i∈T2
pidi·t2/2 ≤ e−ta+`t2/2

for any t > 0, where we used 0 ≤ γi ≤ 1 for i ∈ T2, pi < 1, and
∑
i∈T2 di ≤ `. Therefore, by taking

again a = 2
√
` log ` and t = a/`, obtain

P
[
Y2 ≥ 2

√
` log2 `

]
= P

[
Ỹ2 ≥ 2

√
` log `

]
≤ `−2 log `.

Since Y ≤ log ` + Y2, we conclude that Y ≤ 3
√
` log2 ` with probability at least `−2 log ` over the

randomness of the channel.

Since both (32) and (33) hold with probability at least 1− `−2 log `, the union bound imply that
these two conditions hold simultaneously with probability at least 1− 2`−2 log ` ≥ 1− `− log `.

33

7.1.4 Concentration Lemma

Lemma 7.12. Let χ ∼ Ω = Binom(d1, p1)× Binom(d2, p2)× · · · × Binom(dm, pm), where di’s are
positive integers for i ∈ [m], pi ≤ 1/2,

∑m
i=1 di = `, and m ≤

√
`. Then the following holds with

probability at least 1− `−(log `)/4:
m∑
i=1

di

(
h(pi)− h

(
χi
di

))
≤ 10`1/2 log3 `.

Proof. First, we split the interval [1 : m] into two parts. In the first part the value of di · pi is going
to be small, and the sum of dih(pi) will also be small. For the second part, when di · pi is large
enough, we will be able to apply some concentration arguments. Denote:

F1 :=
{
i : pi ≤

4 log2 `

di

}
,

F2 := {1, 2, . . . ,m} \ F1.

Then
m∑
i=1

di

(
h(pi)− h

(
χi
di

))
≤
∑
i∈F1

dih(pi) +
∑
i∈F2

di

(
h(pi)− h

(
χi
di

))
. (50)

Let us deal with the summation over F1 first. Split this set even further: F (1)
1 = {i ∈ F1 : di ≥

8 log2 `}, and F (2)
1 = F1 \ F (1)

1 . Then for any i ∈ F (1)
1 deduce that pi ≤ 1/2, thus h(pi) ≤ 2pi log 1

pi
.

For any i ∈ F (2)
1 we just use h(pi) ≤ 1. Combining these, obtain

∑
i∈F1

dih(pi) ≤
∑
i∈F (1)

1

2dipi log 1
pi

+
∑
i∈F (2)

1

di ≤
∑
i∈F (1)

1

8 log2 ` · log
(

di

4 log2 `

)
+
∣∣∣F (2)

1

∣∣∣ · 8 log2 `

≤
∣∣∣F (1)

1

∣∣∣ · 8 log3 `+
∣∣∣F (2)

1

∣∣∣ · 8 log2 ` ≤ 8`1/2 log3 `. (51)

Therefore, the first part of the RHS of (50) is always bounded by 8`1/2 log3 `. We will now deal
with the remaining summations over i ∈ F2.

For any i ∈ F2, we know that dipi ≥ 4 log2 `. Now, for χ ∼ Ω we have by the multiplicative
Chernoff bound

P
[
|χi − dipi| ≥

√
dipi log `

]
≤ 2e− log2 `/3 ≤ `− log `/3 if log ` ≤

√
dipi, (52)

where the last inequality holds because the log in the exponent is to base 2. The condition log ` ≤√
dipi is needed for the multiplicative Chernoff bound to hold.

Then, by union bound, we derive

P
χ∼Ω

[
|χi − dipi| ≥

√
dipi log ` for some i ∈ F2

]
≤ |F2| · `− log `/3 ≤ `− log `/3+1/2. (53)

Define the sets T (i)
1 for all i = 1, 2, . . . ,m as follows:

T (i)
1 :=

{
si ∈ [0 : di] : |si − dipi| ≤

√
dipi log `

}
, for i ∈ F2;

T (i)
1 := [0 : di], for i /∈ F2.

(54)

34

and let
θi := P[χi ∈ T (i)

1]. (55)

Then by (52) we have
θi ≥ 1− `− log `/3, for i ∈ F2;
θi = 1, for i /∈ F2.

Finally, define

θ :=
m∏
i=1

θi =
∏
i∈F2

θi =
∏
i∈F2

P[χi ∈ T (i)
1] = P

χ∼Ω
[χi ∈ T (i)

1 for all i ∈ F2] ≥ 1− `− log `/3+1/2,

where the last inequality is a direct implication of (53).
We will now define a set of new probability distributions Di for all i = 1, 2, . . . ,m, as binomial

distributions Binom(di, pi) restricted to intervals T (i)
1 . Formally, let us write

P
ηi∼Di

[
ηi = x

]
=

0, if x /∈ T (i)
1 ;

Pχi∼Binom(di,pi)
[
χi = x

]
· θ−1
i , if x ∈ T (i)

1 .
(56)

(So to get Di we just took a distribution Binom(di, pi), truncated it so it does not have any mass
outside of T (i)

1 , and rescaled appropriately.)
Next, define a product distribution D :=×m

i=1Di on the set T1 :=×m
i=1 T

(i)
1 . Notice now that

it is trivial that for any subset R ⊆ T1 it holds

P
χ∼Ω

[χ ∈ R] = P
η∼D

[η ∈ R] · θ. (57)

Since θ is really close to 1, it follows that we can basically transition to considering D instead of Ω.

Recall that our goal was to show that
∑
i∈F2 di

(
h(pi)− h

(
χi
di

))
(the second part from (50)) is

bounded above by O(`1/2 log3 `) with high probability, when χ ∼ Ω. Instead now let us show that
this summation is small with high probability when χ ∼ D, and then use the arguments above to
see that there is not much of a difference when χ ∼ Ω.

Claim 7.13. Let i ∈ F2 and χi ∼ Di. Then∣∣∣∣di (h(pi)− h
(
χi
di

))∣∣∣∣ ≤ √dipi log2 `, . (58)

Proof. First,
∣∣∣χidi − pi∣∣∣ ≤ √pi

di
log ` for χi ∼ Di by definition of the distribution Di. Now, for i ∈ F2,

pi ≥ 4 log2 `
di

and then pi
2 ≥

√
pi
di

log `, therefore χi
di
≥ pi

2 . Then, using the concavity of the binary
entropy function, we obtain:∣∣∣∣h(χidi

)
− h(pi)

∣∣∣∣ ≤ ∣∣∣∣χidi − pi
∣∣∣∣ ·max

{
dh

dx
(pi),

dh

dx

(
χi
di

)}
≤
√
pi
di

log ` · dh
dx

(
pi
2

)
=
√
pi
di

log ` · log 1− pi/2
pi/2

≤
√
pi
di

log ` · log 2
pi
≤
√
pi
di

log ` · log
(

di

2 log2 `

)
≤
√
pi
di

log2 `,

and therefore (58) follows.

35

Let χ ∼ D here and further. Define for convenience new random variables Xi =
di
(
h(pi)− h

(
χi
di

))
for all i ∈ F2, and let also X =

∑
i∈F2 Xi =

∑
i∈F2 di

(
h(pi)− h

(
χi
di

))
.

Claim 7.14. With probability at least 1− `− log ` it holds that

X − E[X] ≤ `1/2 log3 `

Proof. Obviously all the Xi’s are independent, and also Xi ∈
[
−
√
dipi log2 `,

√
dipi log2 `

]
by Claim

7.13. Then we can apply Hoeffding’s inequality for the sum of independent random variables which
are bounded by some intervals, and obtain

P
χ∼D

[
X − E[X] ≥ `1/2 log3 `

]
≤ exp

(
− 2` log6 `∑

i∈F2(2
√
dipi log2 `)2

)
≤ e− log2 ` ≤ `− log `,

where we used in the last step that
∑m
i=1 di = `, pi ≤ 1/2, and di ≤ `.

So by now we proved that X =
∑
i∈F2 di

(
h(pi)− h

(
χi
di

))
does not deviate much from its

expectation. What we are left to show now is that E[X] is not very large by itself.
The following two claims show that the first moment and mean absolute deviation of the distri-

bution Di are close to those of Ωi. This easily follows from the definition (56) of Di, and the proofs
are deferred to Appendix B

Claim 7.15. Let i ∈ F2. Then
∣∣∣∣ E
χi∼Di

[
χi
di

]
− pi

∣∣∣∣ ≤ 1
di

.

Claim 7.16. Let χi ∼ Di and ηi ∼ Ωi for i ∈ F2. Then E
∣∣∣χi − E[χi]

∣∣∣ ≤ E
∣∣∣ηi − E [ηi]

∣∣∣+ 1.

These observations allow us we prove the following

Claim 7.17. Let i ∈ F2, and χi ∼ Di. Then h
(
E
[
χi
di

])
− E

[
h
(
χi
di

)]
≤ 5 log `

di
.

Proof. Unfortunately, Jensen’s inequality works in the opposite direction for us here. However, we
use some form of converse Jensen’s from [Dra11], which says the following:

Lemma 7.18 (Converse Jensen’s inequality, [Dra11], Corollary 1.8). Let f be a concave differ-
entiable function on an interval [a, b], and let Z be a (discrete) random variable, taking values in
[a, b]. Then

0 ≤ f(E[Z])− E[f(Z)] ≤ 1
2
(
f ′(a)− f ′(b)

)
· E |Z − E[Z]| .

We apply it here for the concave binary entropy function h, and random variable Z = χi
di

for
χi ∼ Di, which takes values in [a, b] :=

[
pi −

√
pi
di

log `, pi +
√

pi
di

log `
]
. Recall also that for i ∈ F2,

pi ≥ 4 log2 `
di

and then pi
2 ≥

√
pi
di

log `, therefore a = pi −
√

pi
di

log ` ≥ pi
2 . Using the mean value

theorem, for some c ∈ [a, b] we have

h′(a)− h′(b) = (b− a) · (−h′′(c)) ≤ 2
√
pi
di

log ` · (−h′′(c)).

36

But (−h′′(c)) = 1
c(1−c) ln 2 ≤

2
c ≤

2
a ≤

4
pi

, thus

h′(a)− h′(b) ≤ 8 log `√
dipi

.

Finally, Claim 7.16 gives E |Z − E[Z]| ≤ E
∣∣∣Z2
di
− E

[
Z2
di

]∣∣∣+ 1
di

for Z2 ∼ Binom(di, pi), and so

E |Z − E[Z]| ≤ 1
di

E |Z2 − E[Z2]|+ 1
di
≤ 1
di

√
E[(Z2 − E[Z2])2]+ 1

di
=
√
pi(1− pi)

di
+ 1
di
≤
√
pi
di

+ 1
di
.

Putting all this together, Lemma 7.18 gives us

0 ≤ h
(
E
[
χi
di

])
− E

[
h

(
χi
di

)]
≤ 1

2 ·
8 log `√
dipi

·
(√

pi
di

+ 1
di

)
= 4 log `

di
+ 4 log `
di
√
dipi

≤ 5 log `
di

,

where the last step uses
√
pidi ≥ 2 log ` for i ∈ F2.

We can now use the above claims and Proposition 4.1 to bound the expectation of X:

E[X] =
∑
i∈F2

di

(
h(pi)− E

[
h

(
χi
di

)])
≤
∑
i∈F2

di

(
h(pi)− h

(
E
[
χi
di

])
+ 5 log `

di

)

≤
∑
i∈F2

di

(
h

(1
di

)
+ 5 log `

di

)
≤ 7`1/2 log ` ≤ `1/2 log3 `.

(59)

So we showed in Claim 7.14 that X does not exceed its expectations by more than `1/2 log3 `
with high probability (over χ ∼ D), and also that E[X] is bounded by `1/2 log3 ` in (59),
and therefore X does not exceed 2`1/2 log3 ` with high probability. Specifically, it means that
there exists T ⊆ T1, such that Pχ∼D[χ ∈ T] ≥ 1 − `− log `, and that for any s ∈ T it holds∑
i∈F2 di

(
h(pi)− h

(
si
di

))
≤ 2`1/2 log3 `. Taking into consideration that (51) always holds, we con-

clude that
∑m
i=1 di

(
h(pi)− h

(
si
di

))
≤ 10`1/2 log3 ` for any s ∈ T . Finally, by (57) we also have

P
χ∼Ω

[χ ∈ T] = P
χ∼D

[χ ∈ T] · θ ≥
(
1− `− log `

) (
1− `− log `/3+1/2

)
≥ 1− `− log `/4,

where we used log ` ≥ 8.

7.2 Arbitrary alphabet size

In this section we finish the proof of Theorem 5.7 for the general BMS channel using the results
from the previous section.

For BMS channels with large output alphabet size we will use binning of the output, however
we will do it in a way that upgrades the channel, rather then degrades it (recall Definition 4.2).
Specifically, we will employ the following statement:

Proposition 7.19. Let W be any BMS channel. Then there exists another BMS channel W̃ with
the following properties:

(i) Output alphabet size of W̃ is at most 2
√
`;

(ii) W̃ is upgraded with respect to W , i.e. W � W̃ ;

37

(iii) H(W̃) ≥ H(W)− log `
`1/2

.

Before proving this proposition, we first show how we can finish a proof of Theorem 5.7 using
it. So, consider any BMS channel W with output alphabet size larger than 2

√
`, and consider the

channel W̃ which satisfies properties (i)-(iii) from Proposition 7.19 with respect to W . First of
all, notice that k ≥ `(1 − H(W)) + 14`1/2 log3 ` ≥ `

(
1−H(W̃)− log `

`1/2

)
+ 14`1/2 log3 `, and thus

k ≥ `(1−H(W̃)) + 13`1/2 log3 `. Taking the property (i) into consideration, it follows that the
channel W̃ satisfies all the conditions for the arguments in the Section 7.1 to be applied, i.e. the
statement of Theorem 5.7 holds for W̃ . Therefore, we can argue that with probability at least
1− `− log `/20 over a random kernel G it holds H(V1 | Ỹ) ≥ 1− `− log `/20, where Ỹ = W̃ `(V ·G) is
the output vector if one would use the channel W̃ instead of W , for V ∼ {0, 1}k.

Now, let W1 be the channel which ”proves” that W̃ is upgraded with respect to W , i.e.
W1

(
W̃ (x)

)
and W (x) are identically distributed for any x ∈ {0, 1}. Trivially then, W `

1

(
W̃ `(X)

)
and W `(X) are identically distributed for any random variable X supported on {0, 1}`.

Next, observe that the following forms a Markov chain

V1 → V → V ·G→ W̃ `(VG)→W `
1

(
W̃ `(VG)

)
,

where V is distributed uniformly over {0, 1}k. But then the data-processing inequality gives

I
(
V1 ; W `

1

(
W̃ `(VG)

))
≤ I

(
V1 ; W̃ `(VG)

)
.

However, as we discussed above, W `
1

(
W̃ `(VG)

)
and W `(VG) are identically distributed, and so

I(V1 ; Y) = I
(
V1 ; W `(VG)

)
= I

(
V1 ; W `

1

(
W̃ `(VG)

))
≤ I

(
V1 ; W̃ `(VG)

)
= I(V1 ; Ỹ).

Therefore using H(X|Y) = H(X)− I(X;Y) we derive that

H(V1 |Y) ≥ H(V1 | Ỹ) ≥ 1− `− log `/20

with probability at least 1− `− log `/20. This concludes the proof of Theorem 5.7.

Proof of Proposition 7.19. We are going to describe how to construct such an upgraded chan-
nel W̃ . We again are going to look at W as a convex combination of BSCs, as we dis-
cussed in Section 7.1: let W consist of m underlying BSC subchannels W (1),W (2) . . . ,W (m),
each has probability qj to be chosen. The subchannel W (j) has crossover probability pj , and
0 ≤ p1 ≤ · · · ≤ pm ≤ 1

2 . The subchannel W (j) can output z(0)
j or z(1)

j , and the whole output
alphabet is then Y = {z(0)

1 , z
(1)
1 , z

(0)
2 , z

(1)
2 , . . . , z

(0)
m , z

(1)
m }, |Y| = 2m. It will be convenient to write

the transmission probabilities of W explicitly: for any k ∈ [m], c, x ∈ {0, 1}:

W
(
z

(c)
k

∣∣∣ x) =
{
qk · (1− pk), x = c,

qk · pk, x 6= c.
(60)

The key ideas behind the construction of W̃ are the following:

38

– decreasing a crossover probability in any BSC (sub)channel always upgrades the channel, i.e.
BSCp1 � BSCp2 for any 0 ≤ p2 ≤ p1 ≤ 1

2 ([TV13, Lemma 9]). Indeed, one can simulate a
flip of coin with bias p1 by first flipping a coin with bias p2, and then flipping the result one
more time with probability q = p1−p2

1−2p2
. In other words, BSCp1(x) and BSCq (BSCp2(x)) are

identically distributed for x ∈ {0, 1}.

– ”binning” two BSC subchannels with the same crossover probability doesn’t change the chan-
nel ([TV13, Corollary 10]).

Let us finally describe how to construct W̃ . Split the interval [0, 1/2] into
√
` parts evenly, i.e.

let θj = i−1
2
√
`

for j = 1, 2, . . . ,
√
` + 1, and consider intevals [θj , θj+1) for j = 1, 2, . . . ,

√
` (include

1/2 into the last interval). Now, to get W̃ , we first slightly decrease the crossover probabilities in
all the BSC subchannels W (1),W (2) . . . ,W (m) so that they all become one of θ1, θ2, . . . , θ√`. After
that we bin together the subchannels with the same crossover probabilities and let the resulting
channel be W̃ . Formally, we define

Tj :=
{
i ∈ [m] : pi ∈

[
θj , θj+1

)}
, j = 1, 2, . . . ,

√
`− 1,

T√` :=
{
i ∈ [m] : pi ∈

[
θ√`, θ

√
`+1
]}
.

So, Tj is going to be the set of indices of subchannels of W for which we decrease the crossover
probability to be equal to θj . Then the probability distribution over the new, binned, BSC sub-

channels W̃ (1), W̃ (2) . . . , W̃ (
√
`) in the channel W̃ is going to be (q̃1, q̃2, . . . , q̃√`), where q̃j :=

∑
i∈Tj

qi.

The subchannel W̃ (j) has crossover probability θj , and it can output one of two new symbols z̃(0)
j

or z̃(1)
j . The whole output alphabet is then Ỹ = {z̃(0)

1 , z̃
(1)
1 , z̃

(0)
2 , z̃

(1)
2 , . . . , z̃

(0)√
`
, z̃

(1)√
`
}, |Ỹ| = 2

√
`. To

be most specific, we describe W̃ : {0, 1} → Ỹ, as follows: for any j ∈ [
√
`] and any b, x ∈ {0, 1}

W̃

(
z̃

(b)
j

∣∣∣ x) =


∑
i∈Tj

qi · (1− θj), x = b,∑
i∈Tj

qi · θj , x 6= b.
(61)

Property (i) on the output alphabet size for W̃ then holds immediately. Let us verify (ii) by
showing that W̃ is indeed upgraded with respect to W .

One can imitate the usage of W using W̃ as follows: on input x ∈ {0, 1}, feed it through W̃

to get output z̃(b)
j for some b ∈ {0, 1} and j ∈ [

√
`]. We then know that the subchannel W̃ (j) was

used, which by construction corresponds to the usage of a subchannel W (i) for some i ∈ Tj . Then
we randomly choose an index k from Tj with probability of i ∈ Tj being chosen equal to qi

q̃j
. This

determines that we are going to use the subchannel W (k) while imitating the usage of W . By now
we flipped the input with probability θj (since we used the subchannel W̃ (j)), while we want it to
be flipped with probability pk ≥ θj overall, since we decided to use W (k). So the only thing we need
to do it to ”flip” b to (1− b) with probability pk−θj

1−2θj , and then output z(b)
k or z(1−b)

k correspondingly.

39

Formally, we just describe the channel W1 : Ỹ → Y which proves that W̃ is upgraded with
respect to W by all of its transmission probabilities: for all k ∈ [m], j ∈ [

√
`], b, c ∈ {0, 1} set

W1

(
zck

∣∣∣ z̃(b)
j

)
=



0, k /∈ Tj
qk∑

i∈Tj
qi
·
(

1− pk − θj
1− 2θj

)
, k ∈ Tj , b = c,

qk∑
i∈Tj

qi
·
(
pk − θj
1− 2θj

)
, k ∈ Tj , b 6= c.

(62)

It is easy to check that W1 is a valid channel, and that it holds for any k ∈ [m] and c, x ∈ {0, 1}

∑
j∈[
√
`], b∈{0,1}

W̃

(
z̃

(b)
j

∣∣∣x)W1

(
z

(c)
k

∣∣∣ z̃(b)
j

)
= W

(
z

(c)
k

∣∣∣ x) , (63)

which proves that W̃ is indeed upgraded to W . We prove the above equality in Appendix C.
It only remains to check that the property (iii) also holds, i.e. that the entropy did not decrease

too much after we upgrade the channel W to W̃ . We have

H
(
W̃
)

=
∑
j∈[
√
`]

q̃jh(θj) =
∑
j∈[
√
`]

∑
i∈Tj

qi

h(θj) =
∑
k∈[m]

qkh(θjk),

where we again denoted by jk the index from [
√
`] for which k ∈ Tjk . Therefore

H(W)−H
(
W̃
)

=
∑
k∈[m]

qk
(
h(pk)− h(θjk)

)
≤
∑
k∈[m]

qk
(
h(θjk+1)− h(θjk)

)
,

since pk ∈ [θjk , θjk+1] as k ∈ Tjk . Finally, since θj+1 − θj = 1
2
√
`
, Proposition 4.1 gives

H(W)−H
(
W̃
)
≤
∑
k∈[m]

qk
(
h(θjk+1)− h(θjk)

)
≤ h

(1
2
√
`

)
≤ 2 · 1

2
√
`

log
(
2
√
`
)
≤ log `√

`
.

8 Suction at the ends

In this section we present the proof for Theorem 5.1 in the case the standard Arıkans kernel was
chosen in Algorithm A – the so-called suction at the ends regime. Recall that, as we discussed in sec-
tion 5.1, this regime applies when the entropy of the channel W falls into the interval (`−4, 1− `−4),
and the algorithm directly takes a kernel K = A⊗ log `

2 , where A2 = (1 0
1 1) is the kernel of Arıkan’s

original polarizing transform, instead of trying out all the possible matrices. Note that multiplying
by such a kernel K is equivalent to just applying the Arıkan’s 2×2 transform recursively log ` times.
Suppose we have a BMS channel W with H(W) very close to 0 or 1. For Arıkan’s basic transform,
by working with the channel Bhattacharyya parameter Z(W) instead of the entropy H(W), it is
well known that one of the two Arıkan bit-channels has Z value gets much closer (quadratically
closer) to the boundary of the interval (0, 1) [Arı09, Kor09]. Using these ideas, we prove in this
section that basic transform decreases the average of the function gα(·) of entropy at least by a
factor of `−1/2 after log ` iterations for large enough `.

40

The basic Arıkan’s transform takes one channel W and splits it into a slightly worse channel
W− and a slightly better channel W+. Then the transform is applied recursively to W− and W+,
creating channels W−−,W−+,W+−, and W++. One can think of the process as of a complete
binary tree of depth log `, with the root node W , and any node at the level i is of form WBi for
some Bi ∈ {−,+}i, with two children WBi− and WBi+. Denote r = log `, then the channels at the
leaves {WBr}, for all Br ∈ {−,+}r are exactly the Arıkan’s subchannels of W with respect to the
kernel K = A⊗ log `

2 . We are going to prove the following result

Lemma 8.1. Let W be a BMS channel with H(W) /∈ (`−4, 1 − `−4). Denote r = log `, then for
r ≥ 1

α ∑
B∈{−,+}r

gα
(
H
(
WB

))
≤ `1/2gα (H(W)) . (64)

Clearly, the above lemma will imply the suction at the end case of Theorem 5.1, as we take
log ` ≥ 1

α .
For the analysis below, apart from the entropy of the channel, we will also use Bhattacharrya

parameter Z(W):
Z(W) =

∑
y∈Y

√
W (y | 0)W (y | 1),

together with the inequalities which connect it to the entropy:

Z(W)2 ≤ H(W) ≤ Z(W), (65)

for any BMS channel W ([Kor09, Ari10]). The reason we use this parameter is because of the
following relations, which show how the Bhattacharrya parameter changes after the basic transform
([Arı09, RU08, Kor09, HAU14]):

Z(W+) = Z(W)2, (66)

Z(W)
√

2− Z(W)2 ≤ Z(W−) ≤ 2Z(W). (67)

We will also use the conservation of conditional entropy on application of Arıkan’s transform

H(W+) +H(W−) = 2H(W). (68)

Proof of Lemma 8.1. The proof is presented in the next two sections, as it is divided into two parts:
the case when H(W) ≤ `−4 (suction at the lower end), and when H(W) ≥ 1− `−4 (suction at the
upper end).

8.1 Suction at the lower end

Suppose H(W) ≤ `−4 for this case, thus Z(W) ≤ `−2 ≤ 2−2r.
First, recursive application of (68) gives∑

B∈{−,+}r
H
(
WB

)
= 2rH(W), (69)

and since entropy is always nonnegative, this implies for any B ∈ {−,+}r

H
(
WB

)
≤ 2rH(W). (70)

41

Denote now k =
⌈
log 1

α

⌉
, and notice that log r ≥ k − 1 since r ≥ 1

α . For B ∈ {−,+}r, define
wt+(B) to be number of +’s in B. We will split the summation in (64) into two parts: the part
with wt+(B) < k, and when wt+(B) ≥ k.

First part. Out of (70) derive

∑
wt+(B)<k

gα
(
H
(
WB

))
≤

k−1∑
j=0

(
r

j

)
gα (2rH(W)) ≤ log r ·

(
r

log r

)
· 2rαH(W)α ≤ 2log2 r+rα ·H(W)α,

(71)
where we used

(r
log r

)
≤ rlog r

(log r)! ; the fact the gα is increasing on
(
0, 1

2

)
together with

2rH(W) ≤ `−3 < 1
2 , and that gα(x) ≤ xα for x ∈ (0, 1).

Second part. We are going to use the following observation, which can be proved by induction
based on (66) and (67):

Claim 8.2. Let B ∈ {−,+}r, such that number of +’s in B is equal to s. Then

Z
(
WB

)
≤
(
2r−s · Z(W)

)2s
.

This corresponds to first using equality (67) (r − s) times, and after that using bound (66) s times
while walking down the recursive binary tree of channels.

Then, using Claim 8.2 along with (65) and the fact that Z(W) ≤ `−2 ≤ 2−2r, we obtain the
following for any B ∈ {−,+}r with wt+(B) = s ≥ k:

H
(
WB

)
≤ Z

(
WB

)
≤
(
2r−s · Z(W)

)2s ≤ 2(r−s)2s · Z(W)2s−2 ·H(W)

≤ 2(r−s)2s−2t2s+4r ·H(W)
= 2−r2s−s2s+4r ·H(W)

≤ 2−r2k−k2k+4r ·H(W).
Therefore ∑

wt+(B)≥k
gα
(
H
(
WB

))
≤

∑
wt+(B)≥k

H
(
WB

)α
≤ 2r · 2α(−r2k−k2k+4r) ·H(W)α.

Observe now the following chain of inequalities
r

2 + 4rα+ 2 ≤ r ≤ r · 2kα ≤ r · 2kα+ k · 2kα,

which trivially holds for α ≤ 1
12. Therefore

r + α(−r2k − k2k + 4r) ≤ r

2 − 2,

and thus in (72) obtain ∑
wt+(B)≥k

gα
(
H
(
WB

))
≤ 2r/2−2 ·H(W)α. (72)

42

Overall bound. Combining (71) and (72) we derive∑
B∈{−,+}r

gα
(
H
(
WB

))
≤
(
2log2 r+rα + 2r/2−2

)
·H(W)α

≤ 2r/2 · H(W)α

2
≤ `1/2gα(H(W)),

where we used log2 r+ rα ≤ r
2 − 2 for large enough r, and 1

2 ≤ (1− x)α for any x ≤ 1
2 . This proves

Lemma 8.1 for the lower end case H(W) ≤ `−4.

8.2 Suction at the upper end

Now consider the case H(W) ≥ 1 − `−4. The proof is going to the quite similar to the previous
case, but we are going to track the distance from H(W) (and Z(W)) to 1 now. Specifically, denote

I(W) = 1−H(W),
S(W) = 1− Z(W),

where I(W) is actually the (symmetric) capacity of the channel, and S(W) is just a notation we
use in this proof. Notice that gα(x) = gα(1− x), therefore it suffices to prove (64) with capacities
of the channels instead of entropies in the inequality. Also notice that I(W) ≤ `−4 for the current
case of suction at the upper end.

Let us now derive the relations between I(W), S(W), as well as evolution of S(·) for W+ and
W−, similar to (65), (66), (67), and (68). Inequalities in (65) imply

S(W) = 1− Z(W) ≤ 1−H(W) = I(W),
I(W) = 1−H(W) ≤ 1− Z(W)2 ≤ 2(1− Z(W)) = 2S(W),

so let us combine this to write
S(W) ≤ I(W) ≤ 2S(W). (73)

Next, (66) and (67) give

S(W+) = 1− Z(W)2 ≤ 2(1− Z(W)) ≤ 2S(W), (74)

S(W−) ≤ 1− Z(W)
√

2− Z(W)2 ≤ 2(1− Z(W))2 = 2S(W)2, (75)

where we used 1− x
√

2− x2 ≤ 2(1− x)2 for any x ∈ (0, 1).
Finally, it easily follows from (69) that∑

B∈{−,+}r
I
(
WB

)
= 2rI(W),

and since capacity is nonnegative as well, we also obtain for any B ∈ {−,+}r

I
(
WB

)
≤ 2rI(W). (76)

We now proceed with a very similar approach to the suction at the lower end case in Section 8.1:
denote k =

⌈
log 1

α

⌉
, and notice that log r ≥ k − 1 since r ≥ 1

α . For B ∈ {−,+}r, define wt−(B)

43

to be number of −’s in B. We will split the summation in (64) (but with capacities of channels
instead of entropies) into two parts: the part with wt−(B) < k, and when wt−(B) ≥ k.

First part. Out of (76) derive, similarly to (77)

∑
wt−(B)<k

gα
(
I
(
WB

))
≤

k−1∑
j=0

(
r

j

)
gα (2rI(W)) ≤ log r ·

(
r

log r

)
· 2rαI(W)α ≤ 2log2 r+rα · I(W)α.

(77)

Second part. Similarly to Claim 8.2, one can show via induction using (74) and (75) the following

Claim 8.3. Let B ∈ {−,+}r, such that number of −’s in B is equal to s. Then

S
(
WB

)
≤ 22s−1 (2r−s · S(W)

)2s
.

This corresponds to first using equality (74) (r − s) times, and after that using bound (75) s times
while walking down the recursive binary tree of channels.

Using this claim with (73) and the fact that S(W) ≤ Z(W) ≤ `−4 ≤ 2−4r obtain for any
B ∈ {−,+}r with wt−(B) = s ≥ k

I
(
WB

)
≤ 2S

(
WB

)
≤ 22s ·

(
2r−s · S(W)

)2s ≤ 2(r−s+1)2s · S(W)2s−1 · I(W)

≤ 2(r−s+1)2s−4r2s+4r · I(W) = 2−2s(3r+s−1)+4r · I(W)

≤ 2−2k(3r+k−1)+4r · I(W) ≤ 2−r2k · I(W),
where the last inequality uses 4r ≤ 2k(2t+ k − 1), which holds trivially for k ≥ 1. Therefore∑

wt−(B)≥k
gα
(
I
(
WB

))
≤

∑
wt−(B)≥k

I
(
WB

)α
≤ 2r · 2−αr2k · I(W)α ≤ I(W)α, (78)

since α · 2k ≥ 1 by the choice of k.

Overall bound. The bounds (77) and (78) give us∑
B∈{−,+}r

gα
(
H
(
WB

))
=

∑
B∈{−,+}r

gα
(
I
(
WB

))
≤
(
2log2 r+rα + 1

)
· I(W)α ≤ `1/2gα(H(W))

for large enough r when H(W) ≥ 1− `−4. This completes the proof of Lemma 8.1.

9 Code construction, encoding and decoding procedures

Before presenting our code construction and encoding/decoding procedures, we first distinguish
the difference between the code construction and the encoding procedure. The objectives of code
construction for polar-type codes are two-fold: First, find the N × N encoding matrix; second,
find the set of noiseless bits under the successive decoder, which will carry the message bits. On
the other hand, by encoding we simply mean the procedure of obtaining the codeword X[1:N] by
multiplying the information vector U[1:N] with the encoding matrix, where we only put information
in the noiseless bits in U[1:N] and set all the frozen bits to be 0. As we will see at the end of this

44

Algorithm B: Degraded binning algorithm
Input: W : {0, 1} → Y, bound Q on the output alphabet size after binning
Output: W̃ : {0, 1} → Ỹ, where |Ỹ| ≤ Q

1 Initialize the new channel W̃ with output symbols ỹ1, ỹ2, . . . , ỹQ by setting W̃ (ỹi|x) = 0 for
all i ∈ [Q] and x ∈ {0, 1}

2 for y ∈ Y do
3 p(0|y)← W (y|0)

W (y|0)+W (y|1)
4 i← dQ · p(0|y)e
5 if i = 0 then
6 i← 1 // i = 0 if and only if p(0|y) = 0; we merge this single point into the next bin

7 end
8 W̃ (ỹi|0)← W̃ (ỹi|0) +W (y|0)
9 W̃ (ỹi|1)← W̃ (ỹi|1) +W (y|1)

10 end
11 return W̃

section, while the code construction has complexity polynomial in N , the encoding procedure only
has complexity O`(N logN).

For polar codes with a fixed invertible kernel K ∈ {0, 1}`×`, the polarization process works as
follows: We start with some BMS channel W . After applying the polar transform to W using kernel
K, we obtain ` bit-channels {Wi : i ∈ [`]} as defined in (1). Next we apply the polar transform using
kernel K to each of these ` bit-channels, and we write the polar transform of Wi as {Wij : j ∈ [`]}.
Then we apply the polar transform to each of the `2 bit channels {Wi1,i2 : i1, i2 ∈ [`]} and obtain
{Wi1,i2,i3 : i1, i2, i3 ∈ [`]}, so on and so forth. After t rounds of polar transforms, we obtain `t

bit-channels {Wi1,...,it : i1, . . . , it ∈ [`]}, and one can show that these are the bit-channels seen by
the successive decoder when decoding the corresponding polar codes constructed from kernel K.

For our purpose, we need to use polar codes with mixed kernels, and we need to search for
a “good” kernel at each step of polarization. We will also introduce new notation for the bit-
channels in order to indicate the usage of different kernels for different bit-channels. As mentioned
in Sections 2.7 and 5.1, we need to use a binning algorithm (Algorithm B) to quantize all the
bit-channels we obtain in the code construction procedure. As long as we choose the parameter Q
in Algorithm B to be a large enough polynomial of N , the quantized channel can be used as a very
good approximation of the original channel. This is made precise by [GX15, Proposition 13]: For
W and W̃ in Algorithm B, we have6

H(W) ≤ H(W̃) ≤ H(W) + 2 log Q
Q . (79)

Given a BMS channel W , our code construction works as follows:

1. Step 0: We first use Algorithm B to quantize/bin the output alphabet of W such that the
resulting (degraded) channel has at most N3 outputs, i.e., we set Q = N3 in Algorithm B.
Note that the parameter Q can be chosen as any polynomial of N . By changing the value

6Note that the binning algorithm (Algorithm 2) in [GX15] has one minor difference from the binning algorithm
(Algorithm B) in this paper: In [GX15], the binning algorithm outputs a channel with Q + 1 outputs in contrast to
Q outputs in this paper. More precisely, line 5-7 in Algorithm B of this paper is not included in the algorithm in
[GX15], but one can easily check that this minor difference does not affect the proof at all.

45

of Q, we obtain a tradeoff between the decoding error probability and the gap to capacity;
see Theorem 9.6 at the end of this section. Here we choose the special case of Q = N3 to
give a concrete example of code construction. Next we use Algorithm A in Section 5 to find
a good kernel7 for the quantized channel and denote it as K(0)

1 . Recall from Section 2.4
that a kernel is good if all but a Õ(`−1/2) fraction of the bit-channels obtained after polar
transform by this kernel have entropy `−Ω(log `)-close to either 0 or 1. The superscript (0)
in K

(0)
1 indicates that this is the kernel used in Step 0 of polarization. In this case, we use

{Wi(B,K(0)
1) : i ∈ [`]} to denote the ` bit-channels resulting from the polar transform of the

quantized version of W using kernel K(0)
1 . Here B stands for the binning operation, and the

arguments in the brackets are the operations to obtain the bit-channel Wi(B,K(0)
1) from W :

first bin the outputs of W and then perform the polar transform using kernel K(0)
1 . For each

i ∈ [`], we again use Algorithm B to quantize/bin the output alphabet of Wi(B,K(0)
1) such

that the resulting (degraded) bit-channel Wi(B,K(0)
1 , B) has at most N3 outputs.

2. Step 1: For each i1 ∈ [`], we use Algorithm A to find a good kernel for the quantized bit-
channel Wi1(B,K(0)

1 , B) and denote it as K(1)
i1

. The ` bit-channels resulting from the polar
transform of Wi1(B,K(0)

1 , B) using kernel K(1)
i1

are denoted as {Wi1,i2(B,K(0)
1 , B,K

(1)
i1

) : i2 ∈
[`]}. In this step, we will obtain `2 bit-channels {Wi1,i2(B,K(0)

1 , B,K
(1)
i1

) : i1, i2 ∈ [`]}. For
each of them, we use Algorithm B to quantize/bin its output alphabet such that the resulting
(degraded) bit-channels {Wi1,i2(B,K(0)

1 , B,K
(1)
i1
, B) : i1, i2 ∈ [`]} has at most N3 outputs.

See Fig. 2 for an illustration of this procedure for the special case of ` = 3.

3. We repeat the polar transforms and binning operations at each step of the code construction.
More precisely, at Step j we have `j bit-channels

{Wi1,i2,...,ij (B,K
(0)
1 , B,K

(1)
i1
, B, . . . ,K

(j−1)
i1,...,ij−1

, B) : i1, i2, . . . , ij ∈ [`]}.

This notation is a bit messy, so we introduce some simplified notation for the bit-channels
obtained with and without binning operations: We still use

Wi1,i2,...,ij (K
(0)
1 ,K

(1)
i1
, . . . ,K

(j−1)
i1,...,ij−1

)

to denote the bit-channel obtained without the binning operations at all, and we use

W bin
i1,i2,...,ij (K

(0)
1 ,K

(1)
i1
, . . . ,K

(j−1)
i1,...,ij−1

)

to denote the bit-channel obtained with binning operations performed at every step from Step
0 to Step j − 1, i.e.,

W bin
i1,i2,...,ij (K

(0)
1 ,K

(1)
i1
, . . . ,K

(j−1)
i1,...,ij−1

) := Wi1,i2,...,ij (B,K
(0)
1 , B,K

(1)
i1
, B, . . . ,K

(j−1)
i1,...,ij−1

, B).

Moreover, we use W bin ∗
i1,i2,...,ij

(K(0)
1 ,K

(1)
i1
, . . . ,K

(j−1)
i1,...,ij−1

) to denote the bit-channel obtained with
binning operations performed at every step except for the last step, i.e.,

W bin ∗
i1,i2,...,ij (K

(0)
1 ,K

(1)
i1
, . . . ,K

(j−1)
i1,...,ij−1

) := Wi1,i2,...,ij (B,K
(0)
1 , B,K

(1)
i1
, B, . . . , B,K

(j−1)
i1,...,ij−1

).

7We will prove in Proposition 9.3 that the error parameter ∆ in Algorithm A can be chosen as ∆ = 6` logN
N2 when

we set Q = N3.

46

Next we use Algorithm A to find a good kernel for each of them and denote the kernel as
K

(j)
i1,...,ij

. After applying polar transforms using these kernels, we obtain `j+1 bit-channels

{W bin ∗
i1,...,ij+1(K(0)

1 ,K
(1)
i1
, . . . ,K

(j)
i1,...,ij

) : i1, . . . , ij+1 ∈ [`]}.

Then we quantize/bin the output alphabets of these bit-channels using Algorithm B and
obtain the following `j+1 quantized bit-channels

{W bin
i1,...,ij+1(K(0)

1 ,K
(1)
i1
, . . . ,K

(j)
i1,...,ij

) : i1, . . . , ij+1 ∈ [`]}.

4. After step t− 1, we obtain N = `t quantized bit-channels

{W bin
i1,...,it(K

(0)
1 ,K

(1)
i1
, . . . ,K

(t−1)
i1,...,it−1

) : i1, i2, . . . , ij ∈ [`]},

and we have also obtained all the kernels in each step of polarization. More precisely, we have
`i kernels in step i, so from step 0 to step t− 1, we have 1 + `+ · · ·+ `t−1 = N−1

`−1 kernels in
total.

5. Find the set of good (noiseless) indices. More precisely, we use the shorthand notation8

Hi1,...,it(W) := H(Wi1,...,it(K
(0)
1 ,K

(1)
i1
, . . . ,K

(t−1)
i1,...,it−1

))

Hbin
i1,...,it(W) := H(W bin

i1,...,it(K
(0)
1 ,K

(1)
i1
, . . . ,K

(t−1)
i1,...,it−1

))
(80)

and define the set of good indices as

Sgood :=
{

(i1, i2, . . . , it) ∈ [`]t : Hbin
i1,...,it(W) ≤ 7` logN

N2

}
. (81)

6. Finally, we need to construct the encoding matrix from these N−1
`−1 kernels. The kernels we

obtained in step j are
{K(j)

i1,...,ij
: i1, . . . , ij ∈ [`]}.

For an integer i ∈ [`j], we write the j-digit `-ary expansion of i − 1 as (̃i1, ĩ2, . . . , ĩj), where
ĩj is the least significant digit and ĩ1 is the most significant digit, and each digit takes value
in {0, 1, . . . , ` − 1}. Let (i1, i2, . . . , ij) := (̃i1 + 1, ĩ2 + 1, . . . , ĩj + 1), and define the mapping
τj : [`j]→ [`]j as

τj(i) := (i1, i2, . . . , ij) for i ∈ [`j]. (82)

This is a one-to-one mapping between [`j] and [`]j , and we use the shorthand notation K(j)
i to

denote K(j)
τj(i) for i ∈ [`j]. For each j ∈ {0, 1, . . . , t− 1}, we define the block diagonal matrices

D
(j) with size `j+1 × `j+1 and D(j) with size N ×N as

D
(j) := Diag(K(j)

1 ,K
(j)
2 , . . . ,K

(j)
`j

), D(j) := {D(j)
, D

(j)
, . . . , D

(j)}︸ ︷︷ ︸
number of D(j) is `t−j−1

. (83)

For i ∈ [`t], we have τt(i) = (i1, . . . , it). For j ∈ [t− 1], we define the permutation π(j) on the
set [`t] as

π(j)(i) := τ−1
t (i1, . . . , it−j−1, it, it−j , it−j+1, . . . , it−1) ∀i ∈ [`t]. (84)

8We omit the reference to the kernels in the notation Hi1,...,it (W) and Hbin
i1,...,it (W).

47

W

Bin, then
find K

(0)
1

W1 W2 W3

Bin, then
find K

(1)
1

Bin, then
find K

(1)
2

Bin, then
find K

(1)
3

W1,1 W1,2 W1,3 W2,1 W2,2 W2,3 W3,1 W3,2 W3,3
...

...
...

...
...

...
...

...
...

Figure 2: Illustration of code construction for the special case of ` = 3.

By this definition, π(j) simply keeps the first t− j− 1 digits of i to be the same and performs
a cyclic shift on the last j + 1 digits. Here we give some concrete examples:

π(1)(i) = τ−1
t (i1, . . . , it−2, it, it−1),

π(2)(i) = τ−1
t (i1, . . . , it−3, it, it−2, it−1),

π(3)(i) = τ−1
t (i1, . . . , it−4, it, it−3, it−2, it−1),

π(t−1)(i) = τ−1
t (it, i1, i2, . . . , it−1).

For each j ∈ [t−1], let Q(j) be the `t×`t permutation matrix corresponding to the permutation
π(j), i.e., Q(j) is the permutation matrix such that

(U1, U2, . . . , U`t)Q(j) = (Uπ(j)(1), Uπ(j)(2), . . . , Uπ(j)(`t)). (85)

Finally, for each j ∈ [t], we define the N ×N matrix

M (j) := D(j−1)Q(j−1)D(j−2)Q(j−2) . . . D(1)Q(1)D(0). (86)

Therefore, M (j), j ∈ [t] satisfy the following recursive relation:

M (1) = D(0), M (j+1) = D(j)Q(j)M (j).

Our encoding matrix for code length N = `t is the submatrix of M (t) consisting of all the row
vectors with indices belonging to the set Sgood defined in (81); see the next paragraph for a
detailed description of the encoding procedure.

Once we obtain the matrix M (t) and the set Sgood in the code construction, the encoding
procedure is standard; it is essentially the same as the original polar codes [Arı09]. Let U[1:N] be a

48

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

W

W

W

W

W

W

W

W

W

X1

X2

X3

X4

X5

X6

X7

X8

X9

K
(0)
1

K
(0)
1

K
(0)
1

U
(1)
1

U
(1)
2

U
(1)
3

U
(1)
4

U
(1)
5

U
(1)
6

U
(1)
7

U
(1)
8

U
(1)
9

V
(1)

1

V
(1)

2

V
(1)

3

V
(1)

4

V
(1)

5

V
(1)

6

V
(1)

7

V
(1)

8

V
(1)

9

K
(1)
1

K
(1)
2

K
(1)
3

U1

U2

U3

U4

U5

U6

U7

U8

U9

Figure 3: Illustration of the encoding process X[1:N] = U[1:N]M
(t) for the special case of ` = 3 and

t = 2. Here X[1:N] and U[1:N] are row vectors. All four kernels in this figure K(0)
1 ,K

(1)
1 ,K

(1)
2 ,K

(1)
3

have size 3×3, and the outputs of each kernel is obtained by multiplying the inputs with the kernel,
e.g. V

(1)
[1:3] = U[1:3]K

(1)
1 .

V
(1)

1

V
(1)

2

V
(1)

3

K
(1)
1

U1

U2

U3

W1(K(0)
1)

W1(K(0)
1)

W1(K(0)
1)

(Y1, Y2, Y3)

(Y4, Y5, Y6)

(Y7, Y8, Y9)

Figure 4: The (stochastic) mapping from U[1:3] to Y[1:9]

V
(1)

4

V
(1)

5

V
(1)

6

K
(1)
2

U4

U5

U6

W2(K(0)
1)

W2(K(0)
1)

W2(K(0)
1)

(V (1)
1 , Y1, Y2, Y3)

(V (1)
2 , Y4, Y5, Y6)

(V (1)
3 , Y7, Y8, Y9)

Figure 5: The (stochastic) mapping from U[4:6] to (V (1)
[1:3],Y[1:9])

49

V
(1)

7

V
(1)

8

V
(1)

9

K
(1)
3

U7

U8

U9

W3(K(0)
1)

W3(K(0)
1)

W3(K(0)
1)

(V (1)
1 , V

(1)
4 , Y1, Y2, Y3)

(V (1)
2 , V

(1)
5 , Y4, Y5, Y6)

(V (1)
3 , V

(1)
6 , Y7, Y8, Y9)

Figure 6: The (stochastic) mapping from U[7:9] to (V (1)
[1:6],Y[1:9])

random vector consisting of N i.i.d. Bernoulli-1/2 random variables, and let X[1:N] = U[1:N]M
(t).

Recall that we use {Wi(M (t)) : i ∈ [`t]} to denote the `t bit-channels resulting from the polar
transform of W using kernel M (t). If we transmit the random vector X[1:N] through N independent
copies of W and denote the channel outputs as Y[1:N], then by definition, the bit-channel mapping
from Ui to (U[1:i−1],Y[1:N]) is exactly Wi(M (t)). Therefore, if we use a successive decoder to decode
the input vector U[1:N] bit by bit from all the channel outputs Y[1:N] and all the previous input
bits U[1:i−1], then Wi(M (t)) is the channel seen by the successive decoder when it decodes Ui.
Clearly, H(Wi(M (t))) ≈ 0 means that the successive decoder can decode Ui correctly with high
probability. For every i ∈ `t, we write τt(i) = (i1, i2, . . . , it). In Proposition 9.1 below, we will show
that H(Wi(M (t))) = Hi1,...,it(W). Then in Proposition 9.3, we further show that Hi1,...,it(W) ≈
Hbin
i1,...,it(W). Therefore, H(Wi(M (t))) ≈ Hbin

i1,...,it(W). By definition (81), the set Sgood contains all
the indices (i1, . . . , it) for which Hbin

i1,...,it(W) ≈ 0, so for all i such that τt(i) ∈ Sgood, we also have
H(Wi(M (t))) ≈ 0, meaning that the successive decoder can decode all the bits {Ui : τt(i) ∈ Sgood}
correctly with high probability. In the encoding procedure, we put all the information in the set of
good bits {Ui : τt(i) ∈ Sgood}, and we set all the other bits to be some pre-determined value, e.g.,
set all of them to be 0. It is clear that the generator matrix of this code is the submatrix of M (t)

consisting of all the row vectors with indices belonging to the set Sgood.

9.1 Analysis of bit-channels

We say that two channels W1 : {0, 1} → Y1 and W2 : {0, 1} → Y2 are equivalent if there is a
one-to-one mapping π between Y1 and Y2 such that W1(y1|x) = W2(π(y1)|x) for all y1 ∈ Y1 and
x ∈ {0, 1}. Denote this equivalence relation as W1 ≡W2. Then we have the following result.

Proposition 9.1. For every i ∈ `t, we write τt(i) = (i1, i2, . . . , it). Then we always have

Wi(M (t)) ≡Wi1,...,it(K
(0)
1 ,K

(1)
i1
, . . . ,K

(t−1)
i1,...,it−1

).

Before formally proving this proposition, we first use the special case of t = 2 and ` = 3 to
illustrate the main idea behind the proof. In this case, we obtained one kernel K(0)

1 in step 0
and three kernels K(1)

1 ,K
(1)
2 ,K

(1)
3 in step 1. See Fig. 3 for an illustration of the encoding process

X[1:9] = U[1:9]M
(2). In particular, we can see that

V
(1)
[1:9] = U[1:9]D

(1), U
(1)
[1:9] = V

(1)
[1:9]Q

(1), X[1:9] = U
(1)
[1:9]D

(0).

Therefore, we indeed have X[1:9] = U[1:9]D
(1)Q(1)D(0) = U[1:9]M

(2). Assume that U[1:9] consists
of 9 i.i.d. Bernoulli-1/2 random variables. Since D(1), Q(1), D(0) are all invertible matrices, the
random vectors V

(1)
[1:9],U

(1)
[1:9] and X[1:9] also consist of i.i.d. Bernoulli-1/2 random variables.

50

In order to analyze the bit-channels, we view Fig. 3 from the right side to the left side. First
observe that the following three vectors

(U (1)
1 , U

(1)
2 , U

(1)
3 , Y1, Y2, Y3), (U (1)

4 , U
(1)
5 , U

(1)
6 , Y4, Y5, Y6), (U (1)

7 , U
(1)
8 , U

(1)
9 , Y7, Y8, Y9)

are independent and identically distributed (i.i.d.).
Given a channel W1 : X → Y and a pair of random variables (X,Y) that take values in X and

Y respectively, we write
P(X → Y) ≡W1

if P(Y = y|X = x) = W (y|x) for all x ∈ X and y ∈ Y, where P(X → Y) means the channel that
takes X as input and gives Y as output. By this definition, we have

P(U (1)
1 → Y[1:3]) ≡ P(U (1)

4 → Y[4:6]) ≡ P(U (1)
7 → Y[7:9]) ≡W1(K(0)

1).

Since V (1)
1 = U

(1)
1 , V

(1)
2 = U

(1)
4 , V

(1)
3 = U

(1)
7 , we also have

P(V (1)
1 → Y[1:3]) ≡ P(V (1)

2 → Y[4:6]) ≡ P(V (1)
3 → Y[7:9]) ≡W1(K(0)

1).

Moreover, the following three vectors

(V (1)
1 ,Y[1:3]), (V (1)

2 ,Y[4:6]), (V (1)
3 ,Y[7:9])

are independent. Therefore, the (stochastic) mapping from U[1:3] to Y[1:9] in Fig. 3 can be represented
in a more compact form in Fig. 4. From Fig. 4, we can see that

W1(M (2)) ≡ P(U1 → Y[1:9]) ≡W1,1(K(0)
1 ,K

(1)
1),

W2(M (2)) ≡ P(U2 → (U1,Y[1:9])) ≡W1,2(K(0)
1 ,K

(1)
1),

W3(M (2)) ≡ P(U3 → (U1, U2,Y[1:9])) ≡W1,3(K(0)
1 ,K

(1)
1).

Next we investigate W4(M (2)),W5(M (2)),W6(M (2)). Observe that

P(U (1)
2 → (U (1)

1 ,Y[1:3])) ≡ P(U (1)
5 → (U (1)

4 ,Y[4:6])) ≡ P(U (1)
8 → (U (1)

7 ,Y[7:9])) ≡W2(K(0)
1).

Therefore,

P(V (1)
4 → (V (1)

1 ,Y[1:3])) ≡ P(V (1)
5 → (V (1)

2 ,Y[4:6])) ≡ P(V (1)
6 → (V (1)

3 ,Y[7:9])) ≡W2(K(0)
1).

Moreover, since

(V (1)
1 , V

(1)
4 ,Y[1:3]), (V (1)

2 , V
(1)

5 ,Y[4:6]), (V (1)
3 , V

(1)
6 ,Y[7:9])

are independent, the (stochastic) mapping from U[4:6] to (V (1)
[1:3],Y[1:9]) in Fig. 3 can be represented

in a more compact form in Fig. 5. Notice that there is a bijection between U[1:3] and V
(1)
[1:3]. Thus

we can conclude from Fig. 5 that

W4(M (2)) ≡ P(U4 → (U[1:3],Y[1:9])) ≡ P(U4 → (V (1)
[1:3],Y[1:9])) ≡W2,1(K(0)

1 ,K
(1)
2),

W5(M (2)) ≡ P(U5 → (U[1:4],Y[1:9])) ≡ P(U5 → (U4,V
(1)
[1:3],Y[1:9])) ≡W2,2(K(0)

1 ,K
(1)
2),

W6(M (2)) ≡ P(U6 → (U[1:5],Y[1:9])) ≡ P(U6 → (U4, U5,V
(1)
[1:3],Y[1:9])) ≡W2,3(K(0)

1 ,K
(1)
2).

51

Finally, we can use the same method to show that

P(V (1)
7 → (V (1)

1 , V
(1)

4 ,Y[1:3])) ≡ P(V (1)
8 → (V (1)

2 , V
(1)

5 ,Y[4:6]))

≡P(V (1)
9 → (V (1)

3 , V
(1)

6 ,Y[7:9])) ≡W3(K(0)
1).

Therefore, the (stochastic) mapping from U[7:9] to (V (1)
[1:6],Y[1:9]) in Fig. 3 can be represented in a

more compact form in Fig. 6. Notice that there is a bijection between U[1:6] and V
(1)
[1:6]. Thus we

can conclude from Fig. 6 that

W7(M (2)) ≡ P(U7 → (U[1:6],Y[1:9])) ≡ P(U7 → (V (1)
[1:6],Y[1:9])) ≡W3,1(K(0)

1 ,K
(1)
3),

W8(M (2)) ≡ P(U8 → (U[1:7],Y[1:9])) ≡ P(U8 → (U7,V
(1)
[1:6],Y[1:9])) ≡W3,2(K(0)

1 ,K
(1)
3),

W9(M (2)) ≡ P(U9 → (U[1:8],Y[1:9])) ≡ P(U9 → (U7, U8,V
(1)
[1:6],Y[1:9])) ≡W3,3(K(0)

1 ,K
(1)
3).

Now we have proved Proposition 9.1 for the special case of ` = 3 and t = 2. The proof for the
general case follows the same idea, and we defer it to Appendix D.

9.2 Complexity of code construction, encoding and decoding

Proposition 9.2. The code construction has NO`(1) complexity. Both the encoding and successive
decoding procedures have O`(N logN) complexity.

Proof. The key in our proof is that we consider ` as a (possibly very large) constant. We start with
the code construction and we first show that both Algorithm A and Algorithm B have poly(N)
time complexity. In the worst case, we need to check all 2`2 possible kernels in Algorithm A, and
for each kernel we need to calculate the conditional entropy of the ` subchannels. Since we always
work with the quantized channel with output size upper bounded by N3, each subchannel of the
quantized channels has no more than 2`N3` outputs. Therefore, the conditional entropy of these
subchannels can be calculated in poly(N) time, so Algorithm A also has poly(N) complexity. After
finding the good kernels, we need to use Algorithm B to quantize/bin the output alphabet of the
subchannels produced by these good kernels. As mentioned above, the original alphabet size of
these subchannels is no more than 2`N3`. Therefore, Algorithm B also has poly(N) complexity.
At Step i, we use Algorithm A `i times to find good kernels, and then we use Algorithm B `i+1

times to quantize the bit-channels produced by these kernels, so in total we use Algorithm A N−1
`−1

times and we use Algorithm B `(N−1)
`−1 times. Finally, finding the set Sgood only requires calculating

the conditional entropy of the bit-channels in the last step, so this can also be done in polynomial
time. Thus we conclude that the code construction has poly(N) complexity, albeit the degree in
poly(N) complexity depends on `.

In the encoding procedure, we first form the vector U[1:N] by putting putting all the information
in the bits {Ui : τt(i) ∈ Sgood} and setting all the other bits {Ui : τt(i) /∈ Sgood} to be 0. Then we
multiply U[1:N] with the encoding matrix M (t) and obtain the codeword X[1:N] = U[1:N]M

(t). Since
the matrix M (t) has size N ×N , a naive implementation of the encoding procedure would require
O(N2) operations. Fortunately, we can use (86) to accelerate the encoding procedure. Namely, we
first multiply U[1:N] with D(t−1), then multiply the result with Q(t−1), then multiply by D(t−2), so
on and so forth. As mentioned above, for j = 0, 1, . . . , t−1, each D(j) is a block diagonal matrix with
N/` blocks on the diagonal, where each block has size `×`. Therefore, multiplication with D(j) only
requires N` operations. By definition, Q(j), j ∈ [t− 1] are permutation matrices, so multiplication

52

with them only requires N operations. In total, we multiply with 2t − 1 = 2 log`N − 1 matrices.
Therefore, the encoding procedure can be computed in O`(N logN) time, where O` means that the
constant in big-O depends on `.

The decoding algorithm uses exactly the same idea as the algorithm in Arıkan’s original paper
[Arı09, Section VIII-B]. Here we only use the special case of ` = 3 and t = 2 in Fig. 3 to explain
how Arıkan’s decoding algorithm works for large (and mixed) kernels, and we omit the proof for
general parameters. We start with the decoding of U1, U2, U3 in Fig. 3. It is clear that decoding
U1, U2, U3 is equivalent to decoding U (1)

1 , U
(1)
4 , U

(1)
7 . Then the log-likelihood ratio (LLR) of each of

these three bits can be calculated locally from only three output symbols. More precisely, the LLR
of U (1)

1 can be computed from Y[1:3], the LLR of U (1)
4 can be computed from Y[4:6], and the LLR of

U
(1)
7 can be computed from Y[7:9]. Therefore, the complexity of calculating each LLR only depends

on the value of `. Since ` is considered as a constant, the calculation of each LLR also has constant
time complexity (although the complexity is exponential in `). The next step is to decode U[4:6]

from Y[1:9] together with U[1:3]. This is equivalent to calculating the LLRs of U (1)
2 , U

(1)
5 , U

(1)
8 given

Y[1:9] and U
(1)
1 , U

(1)
4 , U

(1)
7 . This again can be done locally: To compute the LLR of U (1)

2 , we only
need the values of Y[1:3] and U (1)

1 ; to compute the LLR of U (1)
5 , we only need the values of Y[4:6] and

U
(1)
4 ; to compute the LLR of U (1)

8 , we only need the values of Y[7:9] and U (1)
7 . Finally, the decoding

of U[7:9] from Y[1:9] and U[1:6] can be decomposed into local computations in a similar way. Using
this idea, one can show that for general values of ` and t, the decoding can also be decomposed
into t = log`N stages, and in each stage, the decoding can further be decomposed into N/` local
tasks, each of which has constant time complexity (although the complexity is exponential in `).
Therefore, the decoding complexity at each stage is O`(N) and the overall decoding complexity is
O`(N logN). As a final remark, we mention that after calculating the LLRs of all Ui’s, we will only
use the LLRs of the bits {Ui : τt(i) ∈ Sgood}. For these bits, we decode Ui as 0 if its LLR is larger
than 0 and decode it 1 otherwise. Recall that in the encoding procedure, we have set all the other
bits {Ui : τt(i) /∈ Sgood} to be 0, so for these bits we simply decode them as 0.

9.3 Code rate and decoding error probability

In (80), we have defined the conditional entropy for all the bit-channels obtained in the last step
(Step t − 1). Here we also define the conditional entropy for the bit-channels obtained in the
previous steps. More precisely, for every j ∈ [t] and every (i1, i2, . . . , ij) ∈ [`]j , we use the following
short-hand notation:

Hi1,...,ij (W) := H(Wi1,...,ij (K
(0)
1 ,K

(1)
i1
, . . . ,K

(j−1)
i1,...,ij−1

))

Hbin
i1,...,ij (W) := H(W bin

i1,...,ij (K
(0)
1 ,K

(1)
i1
, . . . ,K

(j−1)
i1,...,ij−1

))

Hbin ∗
i1,...,ij (W) := H(W bin ∗

i1,...,ij (K
(0)
1 ,K

(1)
i1
, . . . ,K

(j−1)
i1,...,ij−1

)).

According to (79), we have

Hbin ∗
i1,...,ij (W) ≤ Hbin

i1,...,ij (W) ≤ Hbin ∗
i1,...,ij (W) + 6 logN

N3 (87)

for every j ∈ [t] and every (i1, i2, . . . , ij) ∈ [`]j .

53

Proposition 9.3. For every j ∈ [t] and (i1, i2, . . . , ij) ∈ [`]j, the conditional entropy Hi1,...,ij (W)
and Hbin

i1,...,ij
(W) satisfy the following inequality

Hi1,...,ij (W) ≤ Hbin
i1,...,ij (W) ≤ Hi1,...,ij (W) + 6` logN

N2 (88)

Proof. Since the binning algorithm (Algorithm B) always produces a channel that is degraded
with respect to the original channel, the first inequality in (88) follows immediately by applying
Proposition 4.4 recursively in our t-step code construction.

Now we prove the second inequality in (88). We will prove the following inequality by induction
on j:

Hbin
i1,...,ij (W) ≤ Hi1,...,ij (W) + 6 logN

N3 (1 + `+ `2 + · · ·+ `j) ∀(i1, i2, . . . , ij) ∈ [`]j . (89)

The base case of j = 0 is trivial. Now assume that this inequality holds for j and we prove it for
j + 1. By chain rule, we know that

∑̀
ij+1=1

Hbin ∗
i1,...,ij ,ij+1(W) = `Hbin

i1,...,ij (W),
∑̀

ij+1=1
Hi1,...,ij ,ij+1(W) = `Hi1,...,ij (W).

Therefore,

∑̀
ij+1=1

(
Hbin ∗
i1,...,ij ,ij+1(W)−Hi1,...,ij ,ij+1(W)

)
= `

(
Hbin
i1,...,ij (W)−Hi1,...,ij (W)

)
.

Since every summand on the left-hand side is non-negative, we have

Hbin ∗
i1,...,ij ,ij+1(W)−Hi1,...,ij ,ij+1(W) ≤ `

(
Hbin
i1,...,ij (W)−Hi1,...,ij (W)

)
≤ 6 logN

N3 (`+ `2 + · · ·+ `j+1),

where the second inequality follows from the induction hypothesis. Combining this with (87), we
obtain that

Hbin
i1,...,ij ,ij+1(W) ≤ Hi1,...,ij ,ij+1(W) + 6 logN

N3 (1 + `+ `2 + · · ·+ `j+1).

This establishes the inductive step and completes the proof of (89). The inequality (88) then follows
directly from (89) by using the fact that 1 + `+ · · ·+ `j < `N for all j ≤ t.

Theorem 9.4. For arbitrarily small α > 0, if we choose a constant ` ≥ exp(α−1.01) to be a power
of 2 and let t = log`N grow, then the codes constructed from the above procedure have decoding
error probability Oα(logN/N) under successive decoding and code rate I(W) − N−1/2+7α, where
N = `t is the code length.

Proof. By (88) and the definition of Sgood in (81), we know that for every (i1, . . . , it) ∈ Sgood, we
have Hi1,...,it(W) ≤ Hbin

i1,...,it(W) ≤ 7` logN
N2 . Then by Lemma 2.2 in [BGN+18], we know that the

ML decoding error probability of the bit-channel Wi1,...,it(K
(0)
1 ,K

(1)
i1
, . . . ,K

(t−1)
i1,...,it−1

) is also upper
bounded by 7` logN

N2 . Since the cardinality of Sgood is at most N , we can conclude that the overall
decoding error probability under the successive decoder is Oα(logN/N) using the union bound.

54

Notice that |Sgood| is the code dimension. Therefore, we only need to lower bound |Sgood| in
order to get the lower bound on the code rate. Define another set

S ′good :=
{

(i1, i2, . . . , it) ∈ [`]t : Hi1,...,it(W) ≤ ` logN
N2

}
. (90)

According to (88), if Hi1,...,it(W) < ` logN
N2 , then Hbin

i1,...,it(W) ≤ 7` logN
N2 . Therefore, S ′good ⊆ Sgood,

so |Sgood| ≥ |S ′good|. In Lemma 9.5 below, we will prove that |S ′good| ≥ N(I(W) − N−1/2+7α).
Therefore, |Sgood| ≥ N(I(W)−N−1/2+7α). This completes the proof of the theorem.

Lemma 9.5. If ` ≥ exp(α−1.01) is a power of 2, then the set S ′good defined in (90) satisfies the
following inequality ∣∣∣S ′good

∣∣∣ ≥ N (
I(W)−N−

1
2 +7α

)
Proof. The proof is the same as in [BGN+18, Claim A.2]. Recall that we proved in (4)-(6)

P
[
H(t) ∈

(
` logN
N2 , 1− ` logN

N2

)]
≤ 2 N2α

(` logN)α · λ
t
α,

where H(t) is (marginally) the entropy of the random channel at the last level of construction, i.e.
H(t) is uniformly distributed over Hi1,...,it(W) for all possible (i1, i2, . . . , it) ∈ [`]t, and λα is such
that (5) holds for any channel W ′ throughout the construction. By Proposition 9.3, we can choose
the error parameter ∆ in Algorithm A to be ∆ = 6` logN

N2 , which satisfies the condition ∆ ≤ `− log ` in
Theorem 5.1. Then Theorem 5.1 and Remark 5.2 tell us that as long as log ` ≥ α−1.01, Algorithm A
allows us to choose kernels such that λα ≤ `−1/2+5α, which gives

P
[
H(t) ∈

(
` logN
N2 , 1− ` logN

N2

)]
≤ 2N−1/2+7α

(` logN)α . (91)

On the other hand, conservation of entropy throughout the process implies E
[
H(t)

]
= H(W),

therefore by Markov’s inequality

P
[
H(t) ≥ 1− ` logN

N2

]
≤ H(W)

1− ` logN
N2

≤ H(W) + 2` logN
N2 .

Since H(W) = 1− I(W) for symmetric channels and
∣∣∣S ′good

∣∣∣ = N · P
[
H(t) ≤ ` logN

N2

]
, we have

∣∣∣S ′good

∣∣∣ ≥ N (
1− 2N−1/2+7α

(` logN)α −H(W)− 2` logN
N2

)

≥ N
(
I(W)− 3N−1/2+7α

(` logN)α

)
≥ N

(
I(W)−N−1/2+7α

)
.

9.4 Main theorem: Putting everything together

As we mentioned at the beginning of this section, the code construction presented above only takes
the special case of Q = N3 as a concrete example, where Q is the upper bound on the output
alphabet size after binning; see Algorithm B. In fact, we can change the value of Q to be any

55

polynomial of N , and this will allow us to obtain a trade-off between the decoding error probability
and the gap to capacity while maintaining the polynomial-time code construction as well as the
Oα(N logN) encoding and decoding complexity. More precisely, we have the following theorem.

Theorem 9.6. For any BMS channel W , any c > 0 and arbitrarily small α > 0, if we choose
a constant ` ≥ exp(α−1.01) to be a power of 2 and set Q = N c+2 in the above code construction
procedure, then we can construct a code C with code length N = `t such that the following four
properties hold when t grows: (1) the code construction has NOα(1) complexity; (2) both encoding
and decoding have Oα(N logN) complexity; (3) rate of C is I(W)−O(N−1/2+(c+6)α); (4) decoding
error probability of C is Oα(logN/N c) under successive decoding when C is used for channel coding
over W .

Proof. The proof of properties (1) and (2) is exactly the same as Proposition 9.2. Here we only
briefly explain how to adjust the proof of Theorem 9.4 to show properties (3) and (4). First, we
change the definitions of Sgood and S ′good to

Sgood :=
{

(i1, i2, . . . , it) ∈ [`]t : Hbin
i1,...,it(W) ≤ (2c+ 3)` logN

N c+1

}
,

S ′good :=
{

(i1, i2, . . . , it) ∈ [`]t : Hi1,...,it(W) ≤ ` logN
N c+1

}
.

The definition of Sgood immediately implies property (4). Next we prove property (3). Since we
change Q from N3 to N c+2, inequality (87) becomes

Hbin ∗
i1,...,ij (W) ≤ Hbin

i1,...,ij (W) ≤ Hbin ∗
i1,...,ij (W) + 2(c+ 2) logN

N c+2 .

As a consequence, inequality (88) in Proposition 9.3 becomes

Hi1,...,ij (W) ≤ Hbin
i1,...,ij (W) ≤ Hi1,...,ij (W) + 2(c+ 2)` logN

N c+1 .

This inequality tells us that S ′good ⊆ Sgood, so |Sgood| ≥ |S ′good|. Then we follow Lemma 9.5 to
lower bound |S ′good|. Inequality (91) now becomes

P
[
H(t) ∈

(
` logN
N c+1 , 1− ` logN

N c+1

)]
≤ 2N−1/2+(c+6)α

(` logN)α .

Therefore, we obtain that

|Sgood| ≥ |S ′good| ≥ N
(
I(W)−N−1/2+(c+6)α

)
.

This completes the proof of the theorem.

10 Inverse sub-exponential decoding error probability

In this section we finish proving our main result (Theorem 1.1), by showing how to obtain inverse
sub-exponential exp(−Nα) probability of error decoding within our construction of polar codes,
while still having poly(N) time complexity of construction. Note that up to this point we only
claimed inverse polynomial decoding error probability in Theorem 9.6. This restriction came from

56

the fact that we need to approximate the channels we see in the tree during the construction
phase (recall the discussion at the beginning of Sections 5.1 and 9), and to get a polynomial-time
construction we need the binning parameter Q to be poly(N) itself. But this means that we are
only able to track the parameters (entropies, for instance) of the bit-channels approximately, with
an additive error which is inverse polynomial in N , see (87). Since the decoding error probability
relates directly to the upper bound on the entropies of the “good” bit-channels we choose, this
leads to only being able to claim inverse polynomial decoding error probability.

It was proved in a recent work [WD19] that it is possible to achieve a fast scaling of polar
codes (good scaling exponent) and good decoding error probability (inverse sub-exponential instead
of inverse polynomial in N) simultaneously, using the idea of multiple (dynamic) kernels in the
construction. Specifically, for any constants π, µ > 0 such that π + 2µ < 1, it is shown that one
can construct a polar code with rate N−µ close to capacity of the channel (which corresponds to
scaling exponent µ) and decoding error probability exp(−Nπ), as N → ∞. Moreover, it is shown
that this is an optimal scaling of these two parameters one can obtain for any (not just polar)
codes. However, the construction phase in [WD19] tracked the true bit-channels that are obtained
in the `-ary tree of channels, which makes the construction intractable. This is because (most of)
the true bit-channels cannot even be described in a tractable way, since they have exponential size
of output alphabet.

In what follows we combine our approach of using Arıkan’s kernels for polarized bit-channels
with a stronger analysis of polarization from [WD19] to overcome this issue of intractable con-
struction. Specifically, we show that even though we only track approximations (binned versions)
of the bit-channels in the tree, if we use Arıkan’s channels for suction at the end regime, then we
are still able to prove very strong polarization, as in [WD19]. This comes from the fact that we
know very well how Arıkan’s basic 2 × 2 kernel evolves the parameters of the bit-channels. This
allows us to get very strong bounds on the parameters of the true bit-channels (which leads to
good decoding error probability), while still only tracking their approximations (which keeps the
construction time polynomial). Somewhat surprisingly, the phase of the construction where the
local kernels are chosen is exactly the same as it was before in Section 9, and the difference lies in
a much tighter analysis of how to choose a set of ”good” indices to actually construct a polar code.

Notations

We fix a small positive parameter α > 0 from the statement of Theorem 1.1, which corresponds
to how close the scaling exponent will be to 1/2. Specifically, we will have the scaling exponent
µ = 2 + O(α). As before, the size of the kernel is denoted by ` = 2s, where ` is large enough in
terms of α (specifically, the bounds from the statement of the Theorem 5.1 must hold).

We are going to work with the complete `-ary tree of bit-channels, as described in Section 2.4.
Let t be the depth of this tree, then there are N = `t bit-channels at the last level, denoted as Wi

for i ∈ [`t] (these notations depend on the depth t of the tree at which we are looking, but it will
always be clear from the context). Throughout this section we will denote such a tree of depth t
as Tt.

We will again have a random process of going down the tree, starting from the root, and picking
a random child of a current bit-channel at each step. To be more precise, the random process Wi

is defined as follows: W0 = W (the initial channel, i.e. the root of the tree), and Wj+1 = (Wj)k,
where k ∼ [`], and (Wj)k is the kth Arıkan’s bit-channel of Wj with respect to the corresponding
kernel in the tree. This indeed is equivalent to a random walk down the tree. Then we also define
the random processes Zj = Z(Wj) and Hj = H(Wj). Note that Wt marginally is distributed as Wi

57

for i ∼ [N], where N = `t, i.e. Wt is just a random bit-channel at the level t of the tree. Further,
we will also look at random processes Wbin

j ,Hbin
j ,Zbin

j , which mean that we also do the binning
procedure as described in the construction phase in Section 9. Note that Wbin

j are the channels
that we actually track during the construction of the code, while Wj are the true bit-channels in
the tree.

Finally, by exp(•) we will denote 2• in this section, and we denote by x+ = max{x, 0} the
positive part of x.

Plan

First, notice that building the tree Tt of bit-channels is itself a part of construction of our polar
codes. This includes tracking the binned versions of the bit-channels, and picking the kernels using
Algorithm A. This part will stay exactly the same as it is described in Section 9, with the binning
parameter Q = N3, and the same threshold of `−4 in the Algorithm A. The only part of the
construction that is going to change is how we pick the set of good indices which we use to transmit
information.

We will closely follow the analysis from [WD19, Appendices B, C] (also appearing in [WD18]),
modified for our purposes. Specifically, we will prove the needed polarization of the construction
presented in Section 9 in three steps (recall that s = log2 `):

1) P
[
Zt ≤ exp(−2st)

]
≥ I(W)− `−(1/2−10α)t,

2) P
[
Zt ≤ exp

(
−2t1/3

)]
≥ I(W)− `−(1/2−11α)t+

√
t,

3) P
[
Zt ≤ exp

(
−st · `α·t

)]
≥ I(W)− `−(1/2−16α)t+2

√
t for t = Ω(log6 s).

Moreover, for each step, we prove that the polarization at each step is poly-time constructible:

Definition 10.1. We call the polarization P[Zt ≤ p(t)] ≥ R(t) to be poly-time constructible if one
can find at least N ·R(t) indexes i ∈ [N] such that Z(Wi) ≤ p(t), where N = `t, in time polynomial
in N .

Notice that if polarization P[Zt ≤ p(t)] ≥ R(t) is poly-time constructible, then by choosing these
N ·R(t) indexes as information bits of the code, a standard argument implies that one obtains a polar
code of rate R(t) and decoding error probability at most N ·p(t). Moreover, since the indexes of the
information bits were found in poly(N) time, this makes the whole code construction complexity
polynomial in N .

The polarization behavior from Step 3 with t ≥ 1
α2 will then correspond to polar codes with

rate I(W) −N−1/2+18α (i.e. codes with scaling exponent (2 + O(α)) and sub-exponentially small
decoding error probability N · exp

(
−st · `α·t

)
= exp(−Nα), with poly(N) construction time, which

finishes the proof of the main result of this paper.

10.1 Step 1

Lemma 10.2. P
[
Zt ≤ exp(−2st)

]
≥ I(W)− `−(1/2−10α)t. Moreover, this polarization is poly-time

constructible.

58

Proof. This follows from the analysis of the construction we already have in the previous sections.
Fix some t and let N = `t. Then the following is implied from Section 9.4 if one takes Q = N3, i.e.
c = 3:

P
i∼[N]

[
H(W bin

i) ≤ 1
N4

]
≥ I(W)−N−(1/2−10α).

Note here that H(W bin
i) are the entropies of the binned bit-channels that we are actually

tracking during the construction phase, so they are computable in polynomial time. This means
that there is poly(N)-time procedure which returns all the indices i for which H(W bin

i) ≤ 1
N4 .

Then Z(W bin
i) <

√
H(W bin

i) ≤ 1
N2 for these indices, so we have for the random process Zbin

t :

P
[
Zbin
t ≤ `−2t

]
= P

[
Zbin
t ≤ 2−2st

]
= P

[
Zbin
t ≤ exp (−2st)

]
≥ I(W)−N−(1/2−10α),

and moreover, one can find at least N(I(W) − N−(1/2−10α)) indexes within i ∈ [N] for which the
inequality Z(W bin

i) ≤ exp (−2st) holds in poly(N) time (just by returning the indices for which
H(W bin

i) ≤ 1
N4). Since it always holds Zt ≤ Zbin

t , the statement of the lemma follows.

10.2 Step 2

Next, we are going to strengthen the polarization of the construction, using the result of
Lemma 10.2. Specifically, we prove

Lemma 10.3. P
[
Zn ≤ exp

(
−2n1/3

)]
≥ I(W) − `−(1/2−11α)n+

√
n. Moreover, this polarization is

poly-time constructible.

Proof. For this lemma, we fix n to be the total depth of the tree (instead of t), and we want to
prove the speed of polarization at level n. To do this, we will divide the tree into

√
n stages, each

of depth
√
n, and apply the polarization we obtained at Step 1 at each stage. So, we look at m

being
√
n, 2
√
n, . . . , n −

√
n. Define the following events, starting with E

(0)
0 = ∅ (again, closely

following [WD19]):

Am =
{

Zbin
m < exp(−2sm)

}
\ E(m−

√
n)

0

Bm = Am
⋂

s
√
n∑

i=1
gsm+i ≤ β · s

√
n


Em = Am \Bm

E
(m)
0 = E

(m−
√
n)

0 ∪ Em,

where for now one can think of gj ’s as of independent Bern(1/2) random variables for all j ∈ [s ·n].
In the following several paragraphs we explain what these events are going to correspond to. First
of all, the actual random variable we are tracking here is Wn, and its realizations are `n bit-channels
Wi for i ∈ [`n] at the last level of the tree. We can then think of events and subsets of bit-channels
at level n interchangeably.

Notice that each bit-channel Wi for i ∈ [`n] corresponds to a unique path in the tree Tn from
the root W (the initial channel) to the leaf Wi on the nth level. We will be interested in the
bit-channels on these path, their binned versions, and the parameters of both versions (true and
binned) of these channels during the ensuing arguments. We denote this path of true bit-channels

59

as W (0)
i = W,W

(1)
i , . . . ,W

(n−1)
i ,W

(n)
i = Wi. Clearly, this path is just a realization of a random

walk W0,W1, . . . ,Wn, when Wn ends up being Wi. In the same way, we will denote by W (k),bin
i , for

k = 0, 1, . . . , n the binned version of the bit-channel along this path, and by H
(k)
i , H(k),bin

i , Z(k)
i ,

and Z
(k),bin
i the corresponding parameters of these channels.

We are going to construct a set of “good” bit-channels E(n−
√
n)

0 incrementally, by inspecting
the tree from top to bottom. We start with the set E(0)

0 = ∅. Then, at each stage m =
√
n,

2
√
n, . . . , n−

√
n, we find a set Em of bit-channels which we mark to be ”good” at level m. Precisely,

the channel Wi, for some i ∈ [`n], is going to be in Em, if: a) it is not marked as good before that
(i.e. it is not in E

(m−
√
n)

0); b) the Bhattacharyya parameter Z(m),bin
i is small, specifically smaller

then exp(−2sm); and c) a certain condition holds for how the branches are chosen in the path for
Wi between levels m and m +

√
n in the tree (more details on this later). Here conditions a) and

b) correspond together to the event Am, while condition c) further defines the event Bm. Then
the set E(m)

0 will be the set of all bit-channels that we marked to be good up to the level m in
the tree, and in the end, by collecting all the bit-channels that we marked as good at the stages
m =

√
n, 2
√
n, . . . , n−

√
n, we obtain the final set E(n−

√
n)

0 .
Denote by corresponding lowercase letters the probabilities of the events described before, i.e.

am := P[Am], etc.. Finally, let qm = I(W)− e(m)
0 , i.e. qm is the gap between the capacity and the

fraction of the channels which we marked as “good” up to level m.

To begin the formal analysis, let us first consider what happens in case of the event Am. First,
it means that Zbin

m < exp(−2sm). But then we know that we are going to apply Arıkan’s kernel
A⊗s2 to this bit-channel at level m, since the threshold for picking Arıkan’s kernel in Algorithm A,
which we use in the construction phaze, is `−4 = exp(−4s). This means that, conditioned on Am,
we have Zm+1 ≤ Zm · 2s ≤ Zbin

m · 2s < 2s · exp(−2sm), where the first inequality follows from that
we know how Bhattacharrya parameter evolves when we use basic Arıkan’s transforms. Precisely,
using the kernel A⊗s2 is equivalent to using the basic 2 × 2 kernel A2 for s times, and the kernel
A2 in the worst case doubles the Bhattacharyya parameter. Thus s applications of A2 can increase
the Bhattacharyya parameter by at most a factor of 2s.

Then it is easy to see that even after we apply Arıkan’s kernel A⊗s2 a total of
√
n times,

the Bhattacharyya parameter will still be below the threshold `−4: conditioned on Am, one has
Zm+

√
n ≤ Zm · (2s)

√
n < exp(−2sm) · exp(s

√
n) < exp(−sm) < `−4, as m ≥

√
n. It is easy to verify,

using Proposition 9.3 and the relation (65) between the entropy and Bhattacharyya parameter of
the bit-channel, that the binned parameter Hbin

m+j will also be below `−4 for j = 1, 2, . . . ,
√
n. This

means that indeed for these
√
n levels, the Arıkan’s kernel was taken in the construction phase.

Therefore, we know that only the kernel A⊗s2 was applied at levels between m and m+
√
n, which

can also be viewed as applying the basic 2 × 2 kernel A2 for s
√
n levels in the tree. Further this

can be viewed as taking s
√
n “good” or “bad” branches while going down the tree, where the good

branch corresponds to squaring the Bhattachryya parameter, and the bad branch at most doubles
it. Denote then by bits gsm+i ∈ {0, 1}, for i ∈ [s

√
n], the indicators of these branches being good

or bad, where gsm+i = 0 means the branch is bad, and gsm+i = 1 means the branch is good. It
is clear then that since we consider the random process of going down the tree choosing the next
child randomly, then all gsm+i’s are independent Bern(1/2) random variables. These are exactly
the random variables appearing in the definition of Bm.

60

Notice then that

bm
am

= P

s√n∑
i=1

gsm+i ≤ β · s
√
n

 ≤ 2−s
√
n(1−h2(β)) ≤ 2−γs

√
n ,

where we can take, for instance, β = 1/20 and γ = 0.85. The inequality follows from entropic
bound on the sum of binomial coefficients (one could also just use the Chernoff bound).

Recall that we defined qm = I(W)−e(m)
0 . We then can write qm−√n−am = I(W)− (e(m−

√
n)

0 +
am). But note that by definition, the event

{
Zbin
m < exp(−2sm)

}
is a subevent of Am ∪ E(m−

√
n)

0 ,
and thus using the bound from Lemma 10.2 (applied for the depth m) we know that

(e(m−
√
n)

0 + am) ≥ P[Am ∪ E(m−
√
n)

0] ≥ P[Zbin
m < exp(−2sm)] ≥ I(W)− 2(−1/2+10α)sm .

Therefore we conclude
(qm−√n − am)+ ≤ 2(−1/2+10α)sm.

We can then derive

qm = I(W)− e(m)
0 = I(W)− (e(m−

√
n)

0 + em) = qm−
√
n − em

= qm−
√
n

(
1− em

am

)
+ em
am

(qm−√n − am)

≤ q+
m−
√
n
· bm
am

+ (qm−√n − am)+

≤ q+
m−
√
n
· 2−γs

√
n + 2(−1/2+10α)sm.

Thus we end up we the following recurrence on q+
m (recall that ` = 2s):

q+√
n
≤ 1

q+
m ≤ q+

m−
√
n
· `−γ

√
n + `−

m
2 +10αm.

Solving this recurrence gives us q+
n−
√
n
≤ `−

n
2 +11αn+

√
n, since γ > 1/2. Therefore we can conclude

e
(n−
√
n)

0 ≥ I(W)− `−
n
2 +11αn+

√
n. (92)

Next, let us look at an arbitrary bit-channel (realization of Zn) for which the event E(n−
√
n)

0 happens,
and prove that such a bit-channel is indeed “good.” Since E(n−

√
n)

0 happened, it means that Em
happened at some stage, thus Zbin

m < exp(−2sm) and
∑s
√
n

i=1 gsm+i ≥ β · s
√
n, where gsm+i for

i ∈ [s
√
n] correspond to taking bad or good branches in the basic 2× 2 Arıkan’s kernel. Similarly

to Claim 8.2, we then can bound

Zm+
√
n <

(
2s
√
nZm

)2β·s
√
n

< (2sm exp(−2sm))2β·s
√
n

≤ exp
(
−sm · 2β·s

√
n
)
.

Then for the remaining (n −m −
√
n) levels of the tree, it is easy to see that the Bhattacharyaa

parameter will also not ever be above the threshold of picking Arıkan’s kernel in Algorithm A, thus,
similarly as before, we can argue that the Bhattacharyya parameter increases by at most a factor
of 2s at each level. Therefore, we derive

Zn < 2s(n−m−
√
n)Zm+

√
n ≤ 2sn exp

(
−sm · 2β·s

√
n
)
< exp

(
−2n1/3)

,

61

where the last inequality follows from m ≥
√
n, β = 1

20 , and the condition s ≥ 11
α from Theorem 5.1

combined with the fact that α is small.
Since we proved that the event E(n−

√
n)

0 implies Zn < exp(−2n1/3), we conclude, using (92):

P[Zn < exp(−2n1/3)] ≥ e(n−
√
n)

0 ≥ I(W)− `−
n
2 +11αn+

√
n,

which precisely proves the polarization that was stated in the lemma.
The only thing left to prove then is that this polarization is poly-time constructible. To do this,

we show that one can find the set E(n−
√
n)

0 of bit-channels in poly-time (recall here the equivalence
between events and subsets of the bit-channel at the level n of the tree Tn). But one can see that
checking if a particular bit-channel Wi, for some i ∈ [`n], is easy. Indeed, to check if Wi is in
E

(n−
√
n)

0 , it suffices to check if Wi is in Em for any m =
√
n, 2
√
n, . . . , n−

√
n. But this corresponds

to looking at a Bhattacharyya parameter Z(m),bin
i and checking if it is smaller than exp(−2sm), and,

if this is the case, also looking at how many “good” branches (in the basic 2×2 Arıkan’s transforms)
there were within the next stage (

√
n levels) in the tree Tn. The latter can be done easily, since this

information is essentially given by the index i of the bit-channel Wi (by its binary representation,
to be precise). The former is actually also straightforward, since Z(m),bin

i is the parameter of the
binned bit-channel W (m),bin

i that we are actually tracking during the construction phase, so we have
this channel written down explicitly, and thus calculating its Bhattacharyya parameter is simple.
Therefore all this can be done in time, polynomial in `n, and then the whole set E(n−

√
n)

0 can be
found in poly-time (we can also say that the event E(n−

√
n)

0 is poly-time checkable). This finishes
the proof of this lemma.

For the following step, we will use the event E(n−
√
n)

0 as was defined in the proof of the above
lemma. For convenience, we denote it as Rn = E

(n−
√
n)

0 , for any integer n. What we will use
is that P[Rn] ≥ I(W) − `−

n
2 +11αn+

√
n; if Rn happens, then Zn < exp

(
−2n1/3

)
; and that for any

bit-channel it can be checked in poly-time if Rn happened, all of which is proven in Lemma 10.3.

10.3 Step 3

Here we will finally prove the polarization that implies the main result of this paper:

Lemma 10.4. P
[
Zt ≤ exp

(
−st · `α·t

)]
≥ I(W) − `−(1/2−16α)t+2

√
t for t ≥ C · log6 s, where C is

an absolute constant. Moreover, this polarization is poly-time constructible.

Proof. We will again closely follow the approach from [WD19], though we are going to change the
indexing notations to avoid any confusion with the previous step. We return to having the total
depth of the tree to be t, and we will have

√
t stages in the tree, each of length

√
t, similarly to the

previous step. As before, we will define several events, starting with C(0)
0 = ∅ and Q(0)

0 = ∅. Then,

62

for n being
√
t, 2
√
t, . . . , t−

√
t, we define:

Cn = Rn \ C(n−
√
t)

0

C
(n)
0 = C

(n−
√
t)

0 ∪ Cn

Dn = Cn
⋂

s(t−n)∑
i=1

gi ≤ α · s · t


Qn = Cn \Dn

Q
(n)
0 = Q

(n−
√
t)

0 ∪Qn,

where Rn is defined at the end of previous step, and gi’s can again be thought of as independent
Bern(1/2) random variables. The intuition behind what these events correspond to is almost the
same as in Step 2, but the bit-channels in Dn have conditions on branching from level n down to
the bottom level t (instead of levels between n and n +

√
t). Here, the channels in Q

(n)
0 are the

channels that we mark as “good” up to level n in the tree, and we will be interested in the final
set Q(t−

√
t)

0 of ”good” channels in the end. We again denote by corresponding lowercase letters the
probabilities of these events. Define also

fn = I(W)− c(n)
0 and pn = I(W)− q(n)

0 .

First, consider event Cn happening. It means that Rn happens, so Zn < exp
(
−2n1/3

)
. Then

at least for some time, we are going to pick Arıkan’s kernel in the construction phase, since the
Bhattacharyya parameter is small enough. But assuming that we take Arıkan’s kernels all the way
down to the bottom of the tree, one can see

Zt < `t−n · Zn < `t · exp
(
−2n1/3) ≤ 2st · exp

(
−2t1/6)

< 2−4s = `−4

for t ≥ C log6 s, where C is large enough. Again, by using Proposition 9.3 and (65) it is easy
to show that the entropy of the binned version of the bit-channel will also always be below the
threshold `−4. It means that we cannot in (t− n) levels go over the threshold of choosing Arıkan’s
kernel, thus we indeed take Arıkan’s kernel all the way down in the tree for the path for which Rn
happens. Thus, similarly to the proof of Lemma 10.3 in the Step 2, we can think of it as taking
the basic 2× 2 Arıkan’s kernels s · (t− n) times, starting at level n. Therefore if Rn happens, the
branching down from level n can be viewed as taking “good” or “bad” branches in the A2 kernels,
so we again define indicator random variables gi, for i ∈ [s(t− n)], to denote these branches. It is
clear that these random variables are going to be independent Bern(1/2). These are exactly the
random variables gi, for i ∈ [s(t− n)], appearing in the definition of Dn.

We have
dn
cn

= P

s(t−n)∑
i=1

gi ≤ αst

 ≤ 2−s(t−n)(1−h2(δ)) ,

where we denote δ := min
{
αt
t−n , 1

}
. The inequality again follows from the entropic inequality on

the sum of binomial coefficients.
Recall that we denoted fn = I(W) − c

(n)
0 . The event C

(n)
0 contains the event Rn, thus

fn ≤ `−
n
2 +11αn+

√
n, which follows from the proof of Lemma 10.3. Same inequality holds for f+

n .

63

We will obtain a recurrence on pn − f+
n as follows:

pn − f+
n = I(W)− q(n)

0 − (I(W)− c(n)
0)+

= pn−
√
t − qn − (fn−√t − cn)+

≤ pn−√t − qn −
qn
cn

(fn−√t − cn)+

≤ pn−√t − qn −
qn
cn

(f+
n−
√
t
− cn)

≤ pn−√t − f
+
n−
√
t
+
(

1− qn
cn

)
f+
n−
√
t

= pn−
√
t − f

+
n−
√
t
+ dn
cn
f+
n−
√
t

≤ pn−√t − f
+
n−
√
t
+ `−(1/2−11α)(n−

√
t)+
√
n · 2−s(t−n)(1−h2(δ)),

where recall that δ = min
{
αt
t−n , 1

}
. We want to obtain an upper bound on the additive term in

the inequality above. Consider the following two cases:

i) δ > 1
10 , i.e. 10αt > t− n, thus n > (1− 10α)t. Then we give up on the term 2−s(t−n)(1−h2(δ))

completely, and we can write

`−(1/2−11α)(n−
√
t)+
√
n · 2−s(t−n)(1−h2(δ)) ≤ `−(1/2−11α)(1−10α)t+ 3

2
√
t ≤ `−(1/2−16α)t+ 3

2
√
t;

ii) δ ≤ 1
10 , and then h2(δ) < 1/2. In this case we derive

`−(1/2−11α)(n−
√
t)+
√
n · 2−s(t−n)(1−h2(δ)) ≤ `−(1/2−11α)n+ 3

2
√
t · `−1/2·(t−n) = `−1/2·t+11αn+ 3

2
√
t

< `−1/2·t+11αt+ 3
2
√
t.

Putting the above together, we obtain

p0 − f+
0 = 0

pn − f+
n ≤ pn−√t − f

+
n−
√
t
+ `−(1/2−16α)t+ 3

2
√
t.

Therefore pt−√t−f
+
t−
√
t
≤
√
t · `−(1/2−16α)t+ 3

2
√
t. Combining this with f+

t−
√
t
≤ `−(1/2−11α)(t−

√
t)+
√
t,

we obtain pt−
√
t ≤ `−(1/2−16α)t+2

√
t, and thus

P
[
Q

(t−
√
t)

0

]
= q

(t−
√
t)

0 ≥ I(W)− `−(1/2−16α)t+2
√
t. (93)

Let us now check that the event Q(t−
√
t)

0 is actually “good” and allows us achieve the needed
polarization. If Q(t−

√
t)

0 happens, then Qn happened for some n = k ·
√
t. It means that Cn, and

therefore Rn takes place, thus Zn < exp
(
−2n1/3

)
. It also means that Dn does not happen, and

thus there is at least αst “good” branches taken in the way down the tree, which corresponds to
αst squarings of the Bhattacharyya parameter. Therefore

Zt ≤
(
`t−nZn

)2αst
<
(
2st exp

(
−2n1/3))2αst

< exp
(
−st · 2αst

)
= exp

(
−st · `αt

)
= 1
N

exp (−Nα) ,

64

where the third inequality trivially follows from n ≥
√
t and t ≥ C log6 s for large enough C.

Combining this with (93), we obtain the desired polarization:

P
[
Zt < exp

(
−st · 2αst

)]
≥ q(t−

√
t)

0 ≥ I(W)− `−(1/2−16α)t+o(t).

It only remains to argue that this polarization is poly-time constructible. But this easily follows
from the fact that the event Rn is poly-time checkable, which we proved in Step 2. Indeed, now for
any bit-channel Wi, i ∈ [`t], we need to check if it is in Q(t−

√
t)

0 . This means that one need to see if
Qn happened for some n = k

√
t. To do this, one checks in poly-time if Cn happened, which reduces

to checking Rn (which can be done in poly-time). If Rn happened, then the only thing to check is
how many “good” branches the remaining path to Wi has, which is easily (in poly-time) retrievable
information from the index i. Therefore, the event Q(t−

√
t)

0 is indeed poly-time checkable, which
finishes the proof of the lemma.

Appendices

A Proofs of entropic lemmas for BMS channels

In the following two proofs we use the representation of BMS channel W as a convex
combination of several BSC subchannels W (1), W (2), . . . , W (m), see the beginning of Sec-
tion 7.1 for details. Each subchannel W (j) can output one of two symbols z

(0)
j , z

(1)
j , and

W (j)(z(0)
j |0) = W (j)(z(1)

j |1), W (j)(z(1)
j |0) = W (j)(z(0)

j |1). The output alphabet for W is thus Y =
{z(0)

1 , z
(1)
1 , z

(0)
2 , z

(1)
2 , . . . , z

(0)
m , z

(1)
m }. Define for these proofs the ”flip” operator ⊕ : Y × {0, 1} → Y

as follows: z(c)
j ⊕ b = z

(b+c)
j , where b, c ∈ {0, 1}, and (b + c) is addition mod 2. In other words,

z
(c)
j ⊕ 0 doesn’t change anything, and z

(c)
j ⊕ 1 flips the output of the subchannel W (j) to the op-

posite symbol. Note then that W (j)(z(c)
j | b) = W (j)(z(c)

j ⊕ b | 0). Finally, we overload the operator
to also work on Y` × {0, 1}` → Y` by applying it coordinate-wise. It then easily follows that
W ` (y |x) = W ` (y ⊕ x |0) for any y ∈ Y` and x ∈ {0, 1}`.

Proof of Lemma 6.1. We can write

E
g∼G

[
H(g)(V1|Y)

]
=
∑
g

P(G = g)

∑
y∈Y`

P(g)[Y = y]H(g)(V1|Y = y)


=
∑
g

P(G = g)

∑
y∈Y`

 ∑
v∈{0,1}k

P(g)[Y = y ,V = v]

h(P(g)[V1 = 0,Y = y]
P(g)[Y = y]

)
= 1

2k
∑

v∈{0,1}k

∑
g

P(G = g)
∑
y∈Y`

P(g)[Y = y
∣∣V = v]h

(
P(g)[V1 = 0,Y = y]

P(g)[Y = y]

)
,(94)

where h(x) := −x log2 x − (1 − x) log2(1 − x) is the binary entropy function. Next, we show that
for any fixed codebook g and any fixed v ∈ {0, 1}k it holds∑
y∈Y`

P(g)[Y = y
∣∣V = v]h

(
P(g)[V1 = 0,Y = y]

P(g)[Y = y]

)
=
∑
y∈Y`

P(g)[Y = y
∣∣V = 0]h

(
P(g)[V1 = 0,Y = y]

P(g)[Y = y]

)
,

(95)

65

where 0 is the all-zero vector.
First of all, we know that

P(g)[Y = y
∣∣V = v] = W `(y |vG) = W `(y ⊕ vG |0) = P(g)[Y = y ⊕ vG |V = 0], (96)

as was discussed at the beginning of this appendix. In the same way, it’s easy to see

P(g)[Y = y] = 1
2k

∑
u∈{0,1}k

P(g)[Y = y
∣∣V = u] = 1

2k
∑

u∈{0,1}k
P(g)[Y = y ⊕ vG

∣∣V = u + v]

= 1
2k

∑
u+v∈{0,1}k

P(g)[Y = y ⊕ vG
∣∣V = u + v]

= P(g)[Y = y ⊕ vG]. (97)

The above equality uses the fact the we are considering linear codes, and vG is an arbitrary
codeword. It follows from the symmetry of linear codes that ”shifting” the output by a codeword
does not change anything. Shifting here means the usual shifting for the BSC case, though for
general BMS channel this is actually flipping the outputs or appropriate BSC subchannels, without
changing which subchannel was actually used for which bit.

Denote now Ṽ = V>1, and recall that we are considering fixed v for now. Denote then also v1
as the first coordinate of v and ṽ = v>1. Then we derive similarly

P(g)[V1 = 0,Y = y] = 1
2k

∑
ũ∈{0,1}k−1

P(g)[Y = y
∣∣V1 = 0, Ṽ = ũ] (98)

= 1
2k

∑
ũ∈{0,1}k−1

P(g)[Y = y ⊕ vG |V1 = v1, Ṽ = ũ + ṽ]

= 1
2k

∑
ũ+ṽ∈{0,1}k−1

P(g)[Y = y ⊕ vG
∣∣V1 = v1, Ṽ = ũ + ṽ]

= P(g)[V1 = v1,Y = y ⊕ vG].

Notice that P(g)[V1 = v1,Y = y ⊕ vG] + P(g)[V1 = 1− v1,Y = y ⊕ vG] = P(g)[Y = y ⊕ vG],
and thus using the symmetry of the binary entropy function around 1/2 obtain

h

(
P(g)[V1 = v1,Y = y ⊕ vG]

P(g)[Y = y ⊕ vG]

)
= h

(
P(g)[V1 = 1− v1,Y = y ⊕ vG]

P(g)[Y = y ⊕ vG]

)
.

Using this and (96)-(98) derive

P(g)[Y = y
∣∣V = v]h

(
P(g)[V1 = 0,Y = y]

P(g)[Y = y]

)

=P(g)[Y = y ⊕ vG |V = 0]h
(
P(g)[V1 = 0,Y = y ⊕ vG]

P(g)[Y = y ⊕ vG]

)
.

Finally, summing the both parts over y ∈ Y` and noticing that y ⊕ vG will also range through all
Y` in this case, we establish (95). Then in (94) deduce

66

E
g∼G

[
H(g)(V1|Y)

]
= 1

2k
∑

v∈{0,1}k

∑
g

P(G = g)
∑
y∈Y`

P(g)[Y = y
∣∣V = 0]h

(
P(g)[V1 = 0,Y = y]

P(g)[Y = y]

)

=
∑
y∈Y`

∑
g

P(G = g)P(g)[Y = y
∣∣V = 0]h

(
P(g)[V1 = 0,Y = y]

P(g)[Y = y]

)

=
∑
y∈Y`

P[Y = y
∣∣V = 0] E

g∼G

[
H(g)(V1|Y = y)

]
,

since P(g)[Y = y
∣∣V = 0] does not depend on the matrix g.

Proof of Proposition 5.5. Let us unfold the conditioning in the LHS as follows

H
(
Ui
∣∣∣W `(U ·K),U<i

)
= E

w∼{0,1}i−1

[
H
(
Ui
∣∣∣W `(U ·K),U<i = w

)]
. (99)

We are going to show that the conditional entropy inside the expectation doesn’t depend on the
choice of w , which will allow us to restrict to w = 0.

Return now to the settings of the Proposition, and denote the (random) output Y = W `(U ·K).
Let us now fix some w ∈ {0, 1}i−1 and consider H

(
Ui
∣∣∣ Y ,U<i = w

)
. Unfolding the conditional

entropy even more, derive

H
(
Ui
∣∣∣ Y ,U<i = w

)
=
∑
y∈Y`

P[Y = y |U<i = w] ·H
(
Ui
∣∣∣ Y = y ,U<i = w

)
. (100)

Denote now by B the first (i−1) rows of K, and thus Y = W `(U ·K) = W `(U<i ·B+U≥i ·G).
We then have

P[Y = y |U<i = w] =
∑

v∈{0,1}k

1
2k P[Y = y |U<i = w ,U≥i = v]

=
∑

v∈{0,1}k

1
2kW

`
(
y
∣∣∣w ·B + v ·G

)
=

∑
v∈{0,1}k

1
2kW

`
(
y ⊕wB

∣∣∣v ·G)
=

∑
v∈{0,1}k

1
2k P[Y = y ⊕wB |U<i = 0,U≥i = v]

= P[Y = y ⊕wB |U<i = 0]. (101)

For the entropy i the RHS of (100), observe

H
(
Ui
∣∣∣ Y = y ,U<i = w

)
= h

(
P [Ui = 0 |Y = y ,U<i = w]

)
,

where h(·) is a binary entropy function. Out of the definition of conditional probability, obtain

P [Ui = 0 |Y = y ,U<i = w] = P[Ui = 0,Y = y |U<i = w]
P[Y = y |U<i = w]

= P[Ui = 0,Y = y ⊕wB |U<i = 0]
P[Y = y ⊕wB |U<i = 0]

= P [Ui = 0 |Y = y ⊕wB,U<i = 0] ,

67

where the second equality also uses (101) (and similar equality with Ui = 0 inside the probability,
which is completely analogical to (101)). Therefore, deduce in (100)

H
(
Ui
∣∣∣ Y ,U<i = w

)
=
∑
y∈Y`

P[Y = y ⊕wB |U<i = 0] ·H
(
Ui
∣∣∣ Y = y ⊕wB,U<i = 0

)
=
∑
z∈Y`

P[Y = z |U<i = 0] ·H
(
Ui
∣∣∣ Y = z,U<i = 0

)
= H

(
Ui
∣∣∣ Y ,U<i = 0

)
,

since z = y ⊕wB ranges over all Y` for y ∈ Y`. Therefore, in (99) there is no actual dependence
on w under the expectation in the RHS, and thus

H
(
Ui
∣∣∣W `(U ·K),U<i

)
= H

(
Ui
∣∣∣W `(U ·K),U<i = 0

)
.

Finally, note that we can take V = U≥i, since it is uniformly distributed over {0, 1}k, and then
V1 = Ui. Since U ·K = U≥i ·G = V ·G when U<i = 0, we indeed obtain

H
(
Ui
∣∣∣W `(U ·K),U<i

)
= H

(
Ui
∣∣∣W `(U ·K),U<i = 0

)
= H

(
V1
∣∣∣W `(V ·G)

)
.

B Proofs in Section 7.1.4

Proof of Claim 7.15. Denote for convenience the distribution Ωi := Binom(di, pi). Note that
Eχi∼Ωi

[
χi
di

]
= pi. Then we derive∣∣∣∣ E
χi∼Di

[
χi
di

]
− pi

∣∣∣∣ =
∣∣∣∣ E
χi∼Di

[
χi
di

]
− E
χi∼Ωi

[
χi
di

]∣∣∣∣
=

∣∣∣∣∣∣
∑

s∈[0:di]

s

di
P

χi∼Di
[χi = s]−

∑
s∈[0:di]

s

di
P

χi∼Ωi
[χi = s]

∣∣∣∣∣∣
(56)=

∣∣∣∣∣∣∣
∑
s∈T (i)

1

s

di
P

χi∼Ωi
[χi = s] · θ−1

i −
∑

s∈[0:di]

s

di
P

χi∼Ωi
[χi = s]

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑
s∈T (i)

1

s

di
P

χi∼Ωi
[χi = s] ·

(
θ−1
i − 1

)
−

∑
s/∈T (i)

1

s

di
P

χi∼Ωi
[χi = s]

∣∣∣∣∣∣∣
≤

∑
s∈T (i)

1

s

di
P

χi∼Ωi
[χi = s] ·

(
θ−1
i − 1

)
+

∑
s/∈T (i)

1

s

di
P

χi∼Ωi
[χi = s].

We have
∑

s/∈T (i)
1

s
di
Pχi∼Ωi [χi = s] ≤

∑
s/∈T (i)

1

Pχi∼Ωi [χi = s] (55)= (1− θi)
(52)
≤ 2`− log `/3.

Next,
∑
s∈T (i)

1

s
di
Pχi∼Ωi [χi = s] ≤ Eχi∼Ωi

[
χi
di

]
≤ 1, and θ−1

i − 1 = 1−θi
θi
≤ 2(1− θi) ≤ 4`− log `/3.

Combining the above together, conclude
∣∣∣E [χidi]− pi∣∣∣ ≤ 6`− log `/3 ≤ 1

` ≤
1
di

.

68

Proof of Claim 7.16. Using the result of Claim 7.15 derive

E
∣∣∣χi − E[χi]

∣∣∣ ≤ E
∣∣∣χi − pidi∣∣∣+ E

∣∣∣pidi − E[χi]
∣∣∣ ≤ E

∣∣∣χi − pidi∣∣∣+ 1. (102)

From (55), (57), and definition (54) of T (i)
1 for i ∈ F2 observe also the following:

E
χi∼Di

∣∣∣χi − pidi∣∣∣ =
∑
s∈T (i)

1

∣∣∣χi − pidi∣∣∣ · P
ηi∼Ωi

[s] · θ−1
i

=
∑
s∈T (i)

1

∣∣∣χi − pidi∣∣∣ · P
ηi∼Ωi

[s] +
∑
s∈T (i)

1

∣∣∣χi − pidi∣∣∣ · P
ηi∼Ωi

[s] · (θ−1
i − 1)

≤
∑
s∈T (i)

1

∣∣∣χi − pidi∣∣∣ · P
ηi∼Ωi

[s] +
√
dipi log ` ·

∑
s∈T (i)

1

P
ηi∼Ωi

[s]

︸ ︷︷ ︸
θi

·
(1− θi

θi

)

=
∑
s∈T (i)

1

∣∣∣χi − pidi∣∣∣ · P
ηi∼Ωi

[s] +
√
dipi log ` · (1− θi)

=
∑
s∈T (i)

1

∣∣∣χi − pidi∣∣∣ · P
ηi∼Ωi

[s] +
∑
s/∈T (i)

1

√
dipi log ` · P

ηi∼Ωi
[s]

≤
∑
s∈T (i)

1

∣∣∣χi − pidi∣∣∣ · P
ηi∼Ωi

[s] +
∑
s/∈T (i)

1

∣∣∣χi − pidi∣∣∣ · P
ηi∼Ωi

[s] = E
ηi∼Ωi

∣∣∣ηi − pidi∣∣∣.
Combining this with (102), obtain the needed.

C Proof in Section 7.2

Here we formally show that the channel W̃ we constructed in Section 7.2 is indeed upgraded with
respect to W . Recall that W , W̃ , and W1 are defined in (60), (61), and (62) correspondingly, and
our goal is to prove (63). First, to check that W1 is a valid channel, observe

∑
k∈[m], c∈{0,1}

W1

(
z

(c)
k

∣∣∣ z̃(b)
j

)
=
∑
k∈Tj

(
W1

(
z0
k

∣∣∣ z̃(b)
j

)
+W1

(
z1
k

∣∣∣ z̃(b)
j

))
=
∑
k∈Tj

qk∑
i∈Tj

qi
= 1.

Finally, for any k ∈ [m], c ∈ {0, 1}, let jk be such that k ∈ Tjk . Then we have for any x ∈ {0, 1}

∑
j∈[
√
`], b∈{0,1}

W̃

(
z̃

(b)
j

∣∣∣x)W1

(
z

(c)
k

∣∣∣ z̃(b)
j

)
=

∑
b∈{0,1}

W̃

(
z̃

(b)
jk

∣∣∣x)W1

(
z

(c)
k

∣∣∣ z̃(b)
jk

)
.

Now, if x = c, we derive

∑
b∈{0,1}

W̃

(
z̃

(b)
jk

∣∣∣x)W1

(
z

(c)
k

∣∣∣ z̃(b)
jk

)

= W̃

(
z̃

(x)
jk

∣∣∣x)W1

(
z

(x)
k

∣∣∣ z̃(x)
jk

)
+ W̃

(
z̃

(1−x)
jk

∣∣∣x)W1

(
z

(x)
k

∣∣∣ z̃(1−x)
jk

)

69

=
∑
i∈Tjk

qi · (1− θjk) · qk∑
i∈Tjk

qi
·
(

1− pk − θjk
1− 2θjk

)
+
∑
i∈Tjk

qi · θjk ·
qk∑

i∈Tjk
qi
·
(
pk − θjk
1− 2θjk

)

= qk

(
1− θjk − (1− θjk) ·

(
pk − θjk
1− 2θjk

)
+ θkj ·

(
pk − θjk
1− 2θjk

))

= qk

(
1− θjk − (1− 2θjk) ·

(
pk − θjk
1− 2θjk

))
= qk · (1− pk).

Otherwise, then x = 1− c, obtain∑
b∈{0,1}

W̃

(
z̃

(b)
jk

∣∣∣x)W1

(
z

(c)
k

∣∣∣ z̃(b)
jk

)

= W̃

(
z̃

(x)
jk

∣∣∣x)W1

(
z

(1−x)
k

∣∣∣ z̃(x)
jk

)
+ W̃

(
z̃

(1−x)
jk

∣∣∣x)W1

(
z

(1−x)
k

∣∣∣ z̃(1−x)
jk

)

=
∑
i∈Tjk

qi · (1− θjk) · qk∑
i∈Tjk

qi
·
(
pk − θjk
1− 2θjk

)
+
∑
i∈Tjk

qi · θjk ·
qk∑

i∈Tjk
qi
·
(

1− pk − θjk
1− 2θjk

)

= qk

(
(1− θjk) ·

(
pk − θjk
1− 2θjk

)
+ θjk − θjk ·

(
pk − θjk
1− 2θjk

))

= qk

(
(1− 2θjk) ·

(
pk − θjk
1− 2θjk

)
+ θjk

)
= qk · pk.

Therefore, for any k ∈ [m] and c, x ∈ {0, 1} it holds∑
j∈[
√
`], b∈{0,1}

W̃

(
z̃

(b)
j

∣∣∣x)W1

(
z

(c)
k

∣∣∣ z̃(b)
j

)
= W

(
z

(c)
k

∣∣∣ x) .

D Proof of Proposition 9.1

We still use U[1:N] to denote the information vector and use X[1:N] = U[1:N]M
(t) to denote the

encoded vector. Assume that U[1:N] consists of N i.i.d. Bernoulli-1/2 random variables. Similarly
to the example in Section 9.1, we define the random vectors V

(j)
[1:N],U

(j)
[1:N] for j = t− 1, t− 2, . . . , 1

recursively
V

(t−1)
[1:N] = U[1:N]D

(t−1),

U
(j)
[1:N] = V

(j)
[1:N]Q

(j) for j = t− 1, t− 2, . . . , 1,

V
(j)
[1:N] = U

(j+1)
[1:N] D

(j) for j = t− 2, t− 3, . . . , 1,

X[1:N] = U
(1)
[1:N]D

(0).

(103)

Moreover, let U
(t)
[1:N] := U[1:N]. We will prove the following two claims:

1. For every a = 1, 2, . . . , t, the following `t−a random vectors

(U (a)
[h`a+1:h`a+`a],Y[h`a+1:h`a+`a]), h = 0, 1, . . . , `t−a − 1

are i.i.d.

70

2. For every a = 1, 2, . . . , t and every i ∈ [`a], we write τa(i) = (i1, i2, . . . , ia), where τa is the
a-digit expansion function defined in (82). Then for every h = 0, 1, . . . , `t−a − 1 and every
i ∈ [`a], we have

P(U (a)
h`a+i → (U (a)

[h`a+1:h`a+i−1],Y[h`a+1:h`a+`a])) ≡Wi1,...,ia(K(0)
1 ,K

(1)
i1
, . . . ,K

(a−1)
i1,...,ia−1

). (104)

Note that Proposition 9.1 follows immediately from taking a = t in (104). Therefore, we only need
to prove these two claims.

We start with the first claim. By (83), for every j = 0, 1, . . . , t − 1, the matrix D(j) is a block
diagonal matrix with `t−j−1 blocks on the diagonal, where each block has size `j+1 × `j+1, and all
the `t−j−1 blocks are the same. According to (84)–(85), the permutation matrix Q(j) keeps the first
t− j − 1 digits of the `-ary expansion to be the same and performs a cyclic shift on the last j + 1
digits. Therefore, for every j = 1, . . . , t − 1, the permutation matrix Q(j) is also a block diagonal
matrix with `t−j−1 blocks on the diagonal, where each block has size `j+1× `j+1, and all the `t−j−1

blocks are the same. Therefore, for every j ∈ [t], the matrix M (j) defined in (86) can be written in
the following block diagonal form

M (j) := {M (j)
,M

(j)
, . . . ,M

(j)}︸ ︷︷ ︸
number of M(j) is `t−j

, (105)

where the size of M (j) is `j × `j . By the recursive definition (103), one can show that for every
j ∈ [t], we have

X[1:N] = U
(j)
[1:N]M

(j).

Combining this with (105), we obtain that for every a ∈ [t] and every h = 0, 1, . . . , `t−a − 1,

X[h`a+1:h`a+`a] = U
(a)
[h`a+1:h`a+`a]M

(a)
. (106)

Since X[1:N] consists of N i.i.d. Bernoulli-1/2 random variables, the following `t−a random vectors

(X[h`a+1:h`a+`a],Y[h`a+1:h`a+`a]), h = 0, 1, . . . , `t−a − 1

are i.i.d. Combining this with (106), we conclude that the random vectors

(U (a)
[h`a+1:h`a+`a],Y[h`a+1:h`a+`a]), h = 0, 1, . . . , `t−a − 1

are also i.i.d. This proves claim 1.
Next we prove claim 2 by induction. The case of a = 1 is trivial. Now we assume that (104)

holds for a and prove it for a + 1. In light of claim 1, we only need to prove (104) for the special
case of h = 0 because the distributions for different values of h are identical, i.e. we only need to
prove that

P(U (a+1)
i → (U (a+1)

[1:i−1],Y[1:`a+1])) ≡Wi1,...,ia+1(K(0)
1 ,K

(1)
i1
, . . . ,K

(a)
i1,...,ia

) ∀i ∈ [`a+1]. (107)

For a given i ∈ [`a+1], we write its (a + 1)-digit expansion as τa+1(i) = (i1, i2, . . . , ia+1). By
(103), we know that V (a)

[1:N] = U
(a+1)
[1:N] D

(a). By (83), the matrix D(a) is a block diagonal matrix with
`t−1 blocks on the diagonal, where each block has size ` × `. (Note that these `t−1 blocks are not
all the same unless a = 0.) Therefore, for every h = 0, 1, . . . , `t−1 − 1, there is a bijection between

71

the two vectors V
(a)
[h`+1:h`+`] and U

(a+1)
[h`+1:h`+`]. Consequently, there is a bijection between the two

vectors U
(a+1)
[1:i−ia+1] and V

(a)
[1:i−ia+1], so we have

P(U (a+1)
i → (U (a+1)

[1:i−1],Y[1:`a+1])) ≡ P(U (a+1)
i → (U (a+1)

[i−ia+1+1:i−1],V
(a)
[1:i−ia+1],Y[1:`a+1])). (108)

By (83), we also have that

V
(a)
[i−ia+1+1:i−ia+1+`] = U

(a+1)
[i−ia+1+1:i−ia+1+`]K

(a)
i1,i2,...,ia

. (109)

Let î := (i− ia+1)/`, so τa(̂i) = (i1, i2, . . . , ia). According to the induction hypothesis,

P(U (a)
î
→ (U (a)

[1:̂i−1],Y[1:`a])) ≡Wi1,...,ia(K(0)
1 ,K

(1)
i1
, . . . ,K

(a−1)
i1,...,ia−1

).

Combining this with the relation U
(a)
[1:N] = V

(a)
[1:N]Q

(a) and (108)–(109), we can prove (107) with the
ideas illustrated in Fig. 4–6. This completes the proof of claim 2 as well as Proposition 9.1.

Acknowledgment

We are grateful to Hamed Hassani for useful discussions and sharing his insights on random coding
theorems during the initial stages of this work.

References

[Arı09] Erdal Arıkan. Channel polarization: A method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels. IEEE Transactions on Infor-
mation Theory, pages 3051–3073, July 2009.

[Ari10] Erdal Arikan. Source polarization. 2010 IEEE International Symposium on Information
Theory, pages 899–903, 2010.

[AT09] Erdal Arıkan and Emre Telatar. On the rate of channel polarization. In Proceedings of
2009 IEEE International Symposium on Information Theory, pages 1493–1495, 2009.

[BBGL17] M. Benammar, V. Bioglio, F. Gabry, and I. Land. Multi-kernel polar codes: Proof of
polarization and error exponents. In 2017 IEEE Information Theory Workshop (ITW),
pages 101–105. IEEE, 2017.

[BF02] Alexander Barg and G. David Forney. Random codes: minimum distances and error
exponents. IEEE Transactions on Information Theory, 48(9):2568–2573, Sep. 2002.

[BGN+18] Jaroslaw Blasiok, Venkatesan Guruswami, Preetum Nakkiran, Atri Rudra, and Madhu
Sudan. General strong polarization. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 485–492. ACM, 2018.

[DR96] Devdatt Dubhashi and Desh Ranjan. Balls and bins: A study in negative dependence.
BRICS Report Series, 3(25), Jan. 1996.

[Dra11] S. Dragomir. A refinement and a divided difference reverse of jensen’s inequality with
applications. Revista Colombiana de Matemáticas, 50, 2011.

72

[DZF16] Y. Domb, R. Zamir, and M. Feder. The random coding bound is tight for the average
linear code or lattice. IEEE Transactions on Information Theory, 62(1):121–130, Jan
2016.

[FHMV17] Arman Fazeli, S. Hamed Hassani, Marco Mondelli, and Alexander Vardy. Binary Linear
Codes with Optimal Scaling and Quasi-Linear Complexity. ArXiv e-prints, November
2017.

[For67] G. David Forney. Concatenated codes. PhD thesis, Massachusetts Institute of Technol-
ogy, 1967.

[For05] G. David Forney. On exponential error bounds for ran-
dom codes on the BSC. Lecture notes, 2005. Available at
http://web.mit.edu/6.441/spring05/reading/Forney ExpEBBSC.pdf.

[FV14] Arman Fazeli and Alexander Vardy. On the scaling exponent of binary polarization
kernels. In 2014 52nd Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 797–804, Sep. 2014.

[Gal65] R. Gallager. A simple derivation of the coding theorem and some applications. IEEE
Transactions on Information Theory, 11(1):3–18, January 1965.

[GB14] Dina Goldin and David Burshtein. Improved bounds on the finite length scaling of
polar codes. IEEE Trans. Information Theory, 60(11):6966–6978, 2014.

[GBLB17] F. Gabry, V. Bioglio, I. Land, and J. Belfiore. Multi-kernel construction of polar
codes. In 2017 IEEE International Conference on Communications Workshops (ICC
Workshops), pages 761–765. IEEE, 2017.

[GRY20] Venkatesan Guruswami, Andrii Riazanov, and Min Ye. Arikan meets shannon: Polar
codes with near-optimal convergence to channel capacity. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, page 552–564,
New York, NY, USA, 2020. Association for Computing Machinery.

[GX15] Venkatesan Guruswami and Patrick Xia. Polar codes: Speed of polarization and polyno-
mial gap to capacity. IEEE Trans. Information Theory, 61(1):3–16, 2015. Preliminary
version in Proc. of FOCS 2013.

[HAU14] S. H. Hassani, K. Alishahi, and R. L. Urbanke. Finite-length scaling for polar codes.
IEEE Transactions on Information Theory, 60(10):5875–5898, Oct 2014.

[iFLM11] A. G. i. Fàbregas, I. Land, and A. Martinez. Extremes of random coding error ex-
ponents. In 2011 IEEE International Symposium on Information Theory Proceedings,
pages 2896–2898, July 2011.

[JDP83] Kumar Joag-Dev and Frank Proschan. Negative association of random variables with
applications. The Annals of Statistics, 11(1):286–295, 1983.

[Kor09] Satish Babu Korada. Polar Codes for Channel and Source Coding. PhD thesis, École
Polytechnique Fédérale De Lausanne, 2009.

[KSU10] Satish Babu Korada, Eren Sasoglu, and Rüdiger L. Urbanke. Polar codes: Charac-
terization of exponent, bounds, and constructions. IEEE Transactions on Information
Theory, 56(12):6253–6264, 2010.

73

[LH06] Ingmar Land and Johannes Huber. Information combining. Foundations and Trends
in Communications and Information Theory, 3(3):227–330, 2006.

[MHU16] Marco Mondelli, S. Hamed Hassani, and Rüdiger L. Urbanke. Unified scaling of polar
codes: Error exponent, scaling exponent, moderate deviations, and error floors. IEEE
Trans. Information Theory, 62(12):6698–6712, 2016.

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-
correcting codes, volume 16. Elsevier, 1977.

[MT12] Vera Miloslavskaya and Peter Trifonov. Design of binary polar codes with arbitrary
kernel. 2012 IEEE Information Theory Workshop, pages 119–123, 2012.

[MT14] Ryuhei Mori and Toshiyuki Tanaka. Source and channel polarization over finite fields
and reed-solomon matrices. IEEE Trans. Information Theory, 60(5):2720–2736, 2014.

[PPV10] Yury Polyanskiy, H Vincent Poor, and Sergio Verdú. Channel coding rate in the finite
blocklength regime. IEEE Transactions on Information Theory, 56(5):2307, 2010.

[PSL15] Noam Presman, Ofer Shapira, and Simon Litsyn. Mixed-kernels constructions of polar
codes. IEEE Journal on Selected Areas in Communications, 34(2):239–253, 2015.

[PU16] Henry D. Pfister and Rüdiger L. Urbanke. Near-optimal finite-length scaling for polar
codes over large alphabets. In IEEE International Symposium on Information Theory,
ISIT, pages 215–219, 2016.

[RU08] Thomas Richardson and Rudiger Urbanke. Modern Coding Theory. Cambridge Uni-
versity Press, 2008.

[Sha48] Claude Elwood Shannon. A mathematical theory of communication. Bell system tech-
nical journal, 27(3):379–423, 1948.

[Str62] Volker Strassen. Asymptotische Abschatzungen in Shannon’s Informationstheories. In
Trans. 3rd Prague Conf. Info. Theory, pages 689–723, 1962.

[Str09] Volker Strassen. Asymptotic estimates in Shannon’s information theory. In Proc. Trans.
3rd Prague Conf. Inf. Theory, pages 689–723, 2009.

[TV13] Ido Tal and Alexander Vardy. How to construct polar codes. IEEE Transactions on
Information Theory, 59(10):6562–6582, Oct 2013.

[WD18] Hsin-Po Wang and Iwan Duursma. Polar-like codes and asymptotic tradeoff among
block length, code rate, and error probability. arXiv:1812.08112, 2018.

[WD19] Hsin-Po Wang and Iwan M. Duursma. Polar codes’ simplicity, random codes’ durability.
ArXiv, abs/1912.08995, 2019.

[Wol57] Jacob Wolfowitz. The coding of messages subject to chance errors. Illinois J. Math.,
1:591–606, 1957.

[YB15] Min Ye and Alexander Barg. Polar codes using dynamic kernels. In 2015 IEEE Inter-
national Symposium on Information Theory (ISIT), pages 231–235. IEEE, 2015.

74

[YFV19] Hanwen Yao, Arman Fazeli, and Alexander Vardy. Explicit polar codes with small scal-
ing exponent. In 2019 IEEE International Symposium on Information Theory (ISIT),
pages 1757–1761, July 2019.

75
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

