Abstract
Fish telemetry is an important tool for studying fish behavior, allowing to monitor fish movements in real-time. Analyzing telemetry data and translating it into meaningful indicators of fish welfare remains a challenge. This is where entropy approaches can provide valuable insights. Methods based on information theory can quantify the complexity and unpredictability of animal behavior distribution, providing a comprehensive understanding of the animal state. Entropy-based techniques can analyze telemetry data and detect changes in fish behavior, or irregularity. By analyzing the accelerometer data, using entropy approach, it is possible to identify atypical behavior that may be indicative of compromised welfare
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Prapti, D.R., Mohamed Shariff, A.R., Che Man, H., Ramli, N.M., Perumal, T., Shariff, M.: Internet of things (IoT)-based aquaculture: an overview of IoT application on water quality monitoring. Rev. Aquac. 14(2), 979–992 (2022)
Rowan, N.J.: The role of digital technologies in supporting and improving fishery and aquaculture across the supply chain-Quo Vadis? Aquaculture and Fisheries (2022)
Zhang, H., Gui, F.: The application and research of new digital technology in marine aquaculture. J. Mar. Sci. Eng. 11(2), 401 (2023)
O’Donncha, F., Grant, J.: Precision aquaculture. IEEE Internet Things Mag. 2(4), 26–30 (2019)
Bárta, A., Souček, P., Bozhynov, V., Urbanová, P., Bekkozhayeova, D.: Trends in online biomonitoring. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2018. LNCS, vol. 10813, pp. 3–14. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78723-7_1
Mustapha, U.F., Alhassan, A.W., Jiang, D.N., Li, G.L.: Sustainable aquaculture development: a review on the roles of cloud computing, internet of things and artificial intelligence (CIA). Rev. Aquac. 13(4), 2076–2091 (2021)
Yadav, A., Noori, M.T., Biswas, A., Min, B.: A concise review on the recent developments in the internet of things (IoT)-based smart aquaculture practices. Rev. Fish. Sci. Aquac. 31(1), 103–118 (2023)
Abinaya, T., Ishwarya, J., Maheswari, M.: A novel methodology for monitoring and controlling of water quality in aquaculture using internet of things (IoT). In: 2019 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–4. IEEE (2019)
Rastegari, H., et al.: Internet of things in aquaculture: a review of the challenges and potential solutions based on current and future trends. Smart Agric. Technol. 4, 100187 (2023)
Sun, M., Yang, X., Xie, Y.: Deep learning in aquaculture: a review. J. Comput. 31(1), 294–319 (2020)
Gladju, J., Kamalam, B.S., Kanagaraj, A.: Applications of data mining and machine learning framework in aquaculture and fisheries: a review. Smart Agric. Technol. 4, 100061 (2022)
Antonucci, F., Costa, C.: Precision aquaculture: a short review on engineering innovations. Aquac. Int. 28(1), 41–57 (2020)
Hu, Z., Li, R., Xia, X., Yu, C., Fan, X., Zhao, Y.: A method overview in smart aquaculture. Environ. Monit. Assess. 192(8), 1–25 (2020). https://doi.org/10.1007/s10661-020-08409-9
Saberioon, M., Gholizadeh, A., Cisar, P., Pautsina, A., Urban, J.: Application of machine vision systems in aquaculture with emphasis on fish: state-of-the-art and key issues. Rev. Aquac. 9(4), 369–387 (2017)
Brijs, J., Føre, M., Gräns, A., Clark, T., Axelsson, M., Johansen, J.: Bio-sensing technologies in aquaculture: how remote monitoring can bring us closer to our farm animals. Philos. Trans. R. Soc. B 376(1830), 20200218 (2021)
Pramana, R., Suprapto, B.Y., Nawawi, Z.: Remote water quality monitoring with early-warning system for marine aquaculture. In: E3S Web of Conferences. vol. 324, p. 05007. EDP Sciences (2021)
Davidson, K., et al.: HABreports: online early warning of harmful algal and biotoxin risk for the Scottish shellfish and finfish aquaculture industries. Front. Mar. Sci. 8, 631732 (2021)
Zhabitskii, M., Andryenko, Y., Malyshev, V., Chuykova, S., Zhosanov, A.: Digital transformation model based on the digital twin concept for intensive aquaculture production using closed water circulation technology. In: IOP Conference Series: Earth and Environmental Science, vol. 723, p. 032064. IOP Publishing (2021)
Lima, A.C., Royer, E., Bolzonella, M., Pastres, R.: Digital twin prototypes in flow-through systems for finfish. Aquaculture 2021 (2021)
Lan, H.Y., Ubina, N.A., Cheng, S.C., Lin, S.S., Huang, C.T.: Digital twin architecture evaluation for intelligent fish farm management using modified analytic hierarchy process. Appl. Sci. 13(1), 141 (2022)
Ahmed, A., Zulfiqar, S., Ghandar, A., Chen, Y., Hanai, M., Theodoropoulos, G.: Digital twin technology for aquaponics: towards optimizing food production with dynamic data driven application systems. In: Tan, G., Lehmann, A., Teo, Y.M., Cai, W. (eds.) AsiaSim 2019. CCIS, vol. 1094, pp. 3–14. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-1078-6_1
Muñoz, L., Aspillaga, E., Palmer, M., Saraiva, J.L., Arechavala-Lopez, P.: Acoustic telemetry: a tool to monitor fish swimming behavior in sea-cage aquaculture. Front. Mar. Sci. 7, 645 (2020)
Føre, M.: Using acoustic telemetry to monitor the effects of crowding and delousing procedures on farmed Atlantic salmon (Salmo salar). Aquaculture 495, 757–765 (2018)
Brownscombe, J.W., Griffin, L.P., Brooks, J.L., Danylchuk, A.J., Cooke, S.J., Midwood, J.D.: Applications of telemetry to fish habitat science and management. Can. J. Fish. Aquat. Sci. 79(8), 1347–1359 (2022)
Brownscombe, J.W., et al.: Conducting and interpreting fish telemetry studies: considerations for researchers and resource managers. Rev. Fish Biol. Fish. 29, 369–400 (2019)
Gesto, M., Zupa, W., Alfonso, S., Spedicato, M.T., Lembo, G., Carbonara, P.: Using acoustic telemetry to assess behavioral responses to acute hypoxia and ammonia exposure in farmed rainbow trout of different competitive ability. Appl. Anim. Behav. Sci. 230, 105084 (2020)
Hassan, W., Føre, M., Urke, H.A., Ulvund, J.B., Bendiksen, E., Alfredsen, J.A.: New concept for measuring swimming speed of free-ranging fish using acoustic telemetry and doppler analysis. Biosys. Eng. 220, 103–113 (2022)
Alfonso, S., Zupa, W., Spedicato, M.T., Lembo, G., Carbonara, P.: Use of telemetry sensors as a tool for health/welfare monitoring of European sea bass (Dicentrarchus labrax) in aquaculture. In: 2021 International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), pp. 262–267. IEEE (2021)
Azevedo, J., Bartolomeu, T., Teixeira, S., Teixeira, J.: Design concept of a non-invasive tagging device for blue sharks. In: Innovations in Mechanical Engineering II. icieng 2022. Lecture Notes in Mechanical Engineering, pp. 80–90. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09382-1_8
Nguyen, V.M., Young, N., Brownscombe, J.W., Cooke, S.J.: Collaboration and engagement produce more actionable science: quantitatively analyzing uptake of fish tracking studies. Ecol. Appl. 29(6), e01943 (2019)
Williamson, M.J.: Analysing detection gaps in acoustic telemetry data to infer differential movement patterns in fish. Ecol. Evol. 11(6), 2717–2730 (2021)
Bohaboy, E.C., Guttridge, T.L., Hammerschlag, N., Van Zinnicq Bergmann, M.P., Patterson III, W.F.: Application of three-dimensional acoustic telemetry to assess the effects of rapid recompression on reef fish discard mortality. ICES J. Mar. Sci. 77(1), 83–96 (2020)
Matley, J.K., et al.: Global trends in aquatic animal tracking with acoustic telemetry. Trends Ecol. Evol. 37(1), 79–94 (2022)
Lees, K.J., MacNeil, M.A., Hedges, K.J., Hussey, N.E.: Estimating survival in a remote community-based fishery using acoustic telemetry. Can. J. Fish. Aquat. Sci. 79(11), 1830–1842 (2022)
Bassing, S.B., et al.: Are we telling the same story? comparing inferences made from camera trap and telemetry data for wildlife monitoring. Ecol. Appl. 33(1), e2745 (2023)
Hvas, M., Folkedal, O., Oppedal, F.: Fish welfare in offshore salmon aquaculture. Rev. Aquac. 13(2), 836–852 (2021)
Arechavala-Lopez, P., Cabrera-Álvarez, M.J., Maia, C.M., Saraiva, J.L.: Environmental enrichment in fish aquaculture: a review of fundamental and practical aspects. Rev. Aquac. 14(2), 704–728 (2022)
Jones, N.A., Webster, M.M., Salvanes, A.G.V.: Physical enrichment research for captive fish: time to focus on the details. J. Fish Biol. 99(3), 704–725 (2021)
Macaulay, G., Bui, S., Oppedal, F., Dempster, T.: Challenges and benefits of applying fish behaviour to improve production and welfare in industrial aquaculture. Rev. Aquac. 13(2), 934–948 (2021)
Sloman, K.A., Bouyoucos, I.A., Brooks, E.J., Sneddon, L.U.: Ethical considerations in fish research. J. Fish Biol. 94(4), 556–577 (2019)
Runde, B.J., Michelot, T., Bacheler, N.M., Shertzer, K.W., Buckel, J.A.: Assigning fates in telemetry studies using hidden Markov models: an application to deepwater groupers released with descender devices. North Am. J. Fish. Manag. 40(6), 1417–1434 (2020)
Elliott, C.W., Ridgway, M.S., Blanchfield, P.J., Tufts, B.L.: Novel insights gained from tagging walleye (Sander vitreus) with pop-off data storage tags and acoustic transmitters in Lake Ontario. J. Great Lakes Res. 49, 51–530 (2023)
Smirnov, N.: Ob uklonenijah empiriceskoi krivoi raspredelenija. Recl. Math.(Matematiceskii Sb.) NS 6(48), 3–26 (1939)
Kolmogorov, A.: On determination of empirical low of distribution. J. Ital. Inst. Actuaries 4, 83–91 (1933)
Lee, S., Kim, M.: On entropy-based goodness-of-fit test for asymmetric student-t and exponential power distributions. J. Stat. Comput. Simul. 87(1), 187–197 (2017)
Evren, A., Tuna, E.: On some properties of goodness of fit measures based on statistical entropy. Int. J. Res. Rev. Appl. Sci. 13, 192–205 (2012)
Shoaib, M., Siddiqui, I., Rehman, S., ur Rehman, S., Khan, S.: Speed distribution analysis based on maximum entropy principle and Weibull distribution function. Environ. Prog. Sustain. Energy 36(5), 1480–1489 (2017)
Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)
Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine. MIT Press, Cambridge (2019)
Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)
Havrda, J., Charvát, F.: Quantification method of classification processes. concept of structural \( a \)-entropy. Kybernetika 3(1), 30–35 (1967)
Jizba, P., Korbel, J., Zatloukal, V.: Tsallis thermostatics as a statistical physics of random chains. Phys. Rev. E 95(2), 022103 (2017)
Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)
Urban, J., Vanek, J., Stys, D.: Preprocessing of microscopy images via Shannon’s entropy (2009)
Urban, J.: Information Entropy. Applications from Engineering with MATLAB Concepts, p. 43 (2016)
Martins, C.I., et al.: Behavioural indicators of welfare in farmed fish. Fish Physiol. Biochem. 38, 17–41 (2012)
Sánchez-Suárez, W., Franks, B., Torgerson-White, L.: From land to water: taking fish welfare seriously. Animals 10(9), 1585 (2020)
Fife-Cook, I., Franks, B.: Positive welfare for fishes: rationale and areas for future study. Fishes 4(2), 31 (2019)
Acknowledgments
The study was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic - project CENAKVA (LM2018099) and the European Union’s research and innovation program under grant agreement No. 652831 (AQUAEXCEL3.0). Author thanks to M.Føre for data access and discussion.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Urban, J. (2023). Entropy Approach of Processing for Fish Acoustic Telemetry Data to Detect Atypical Behavior During Welfare Evaluation. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13920. Springer, Cham. https://doi.org/10.1007/978-3-031-34960-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-34960-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34959-1
Online ISBN: 978-3-031-34960-7
eBook Packages: Computer ScienceComputer Science (R0)