这是indexloc提供的服务,不要输入任何密码
Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. The European Physical Journal C
  3. Article

SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 12 January 2018
  • Volume 78, article number 22, (2018)
  • Cite this article

You have full access to this open access article

Download PDF
The European Physical Journal C Aims and scope Submit manuscript
SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables
Download PDF
  • The GAMBIT Models Workgroup: ,
  • Peter Athron1,2,
  • Csaba Balázs1,2,
  • Lars A. Dal3,
  • Joakim Edsjö4,5,
  • Ben Farmer4,5,
  • Tomás E. Gonzalo3,
  • Anders Kvellestad6,
  • James McKay7,
  • Antje Putze8,
  • Chris Rogan9,
  • Pat Scott7,
  • Christoph Weniger10 &
  • …
  • Martin White2,11 
  • 864 Accesses

  • 24 Citations

  • 1 Altmetric

  • Explore all metrics

Abstract

We present the GAMBIT modules SpecBit, DecayBit and PrecisionBit. Together they provide a new framework for linking publicly available spectrum generators, decay codes and other precision observable calculations in a physically and statistically consistent manner. This allows users to automatically run various combinations of existing codes as if they are a single package. The modular design allows software packages fulfilling the same role to be exchanged freely at runtime, with the results presented in a common format that can easily be passed to downstream dark matter, collider and flavour codes. These modules constitute an essential part of the broader GAMBIT framework, a major new software package for performing global fits. In this paper we present the observable calculations, data, and likelihood functions implemented in the three modules, as well as the conventions and assumptions used in interfacing them with external codes. We also present 3-BIT-HIT, a command-line utility for computing mass spectra, couplings, decays and precision observables in the MSSM, which shows how the three modules can easily be used independently of GAMBIT.

Article PDF

Download to read the full article text

Similar content being viewed by others

DarkBit: a GAMBIT module for computing dark matter observables and likelihoods

Article Open access 06 December 2017

A global fit of the MSSM with GAMBIT

Article Open access 18 December 2017

The GAMBIT Universal Model Machine: from Lagrangians to likelihoods

Article Open access 15 December 2021

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Mass Spectrometry
  • Open Reading Frames
  • Open Source
  • Proteasome
  • Qubits
  • Technical Languages
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. P.Z. Skands et al., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages, and event generators. JHEP 07, 036 (2004). arXiv:hep-ph/0311123

    Article  ADS  Google Scholar 

  2. B.C. Allanach et al., SUSY Les Houches accord 2. Comput. Phys. Commun. 180, 8–25 (2009). arXiv:0801.0045

    Article  ADS  Google Scholar 

  3. A. Djouadi, M.M. Mühlleitner, M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-Hdecay-InTerface). Acta Phys. Pol. 38, 635–644 (2007). arXiv:hep-ph/0609292

    ADS  Google Scholar 

  4. U. Ellwanger, J.F. Gunion, C. Hugonie, NMHDECAY: a Fortran code for the Higgs masses, couplings and decay widths in the NMSSM. JHEP 02, 066 (2005). arXiv:hep-ph/0406215

    Article  ADS  Google Scholar 

  5. U. Ellwanger, C. Hugonie, NMHDECAY 2.0: an updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM. Comput. Phys. Commun. 175, 290–303 (2006). arXiv:hep-ph/0508022

    Article  ADS  MATH  Google Scholar 

  6. U. Ellwanger, C. Hugonie, NMSPEC: a Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions. Comput. Phys. Commun. 177, 399–407 (2007). arXiv:hep-ph/0612134

    Article  ADS  Google Scholar 

  7. B.C. Allanach, S. Kraml, W. Porod, Theoretical uncertainties in sparticle mass predictions from computational tools. JHEP 03, 016 (2003). arXiv:hep-ph/0302102

    Article  ADS  Google Scholar 

  8. B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod, P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM. JHEP 09, 044 (2004). arXiv:hep-ph/0406166

    Article  ADS  Google Scholar 

  9. F. Staub, P. Athron, U. Ellwanger, R. Gröber, M. Mühlleitner, P. Slavich, A. Voigt, Higgs mass predictions of public NMSSM spectrum generators. Comput. Phys. Commun. 202, 113–130 (2016). https://doi.org/10.1016/j.cpc.2016.01.005

  10. P. Drechsel, R. Gröber, S. Heinemeyer, M.M. Muhlleitner, H. Rzehak, G.Weiglein, Higgs-boson masses and mixing matrices in the NMSSM: analysis of on-shell calculations. Eur. Phys. J. C77(6), 366 (2017). https://doi.org/10.1140/epjc/s10052-017-4932-4

  11. The GAMBIT Collaboration: P. Athron, et al., GAMBIT: the global and modular beyond-the-standard-model inference tool. Eur. Phys. J. C77(11), 784 (2017). https://doi.org/10.1140/epjc/s10052-017-5321-8

  12. The GAMBIT Scanner Workgroup: G.D. Martinez, J. McKay, B. Farmer, P. Scott, E. Roebber, A. Putze, J. Conrad, Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module. Eur. Phys. J. C77(11), 761 (2017). https://doi.org/10.1140/epjc/s10052-017-5274-y

  13. GAMBIT Dark Matter Workgroup: T. Bringmann et al., DarkBit: A GAMBIT module for computing dark matter observables and likelihoods. Eur. Phys. J. C77(12), 831 (2017). https://doi.org/10.1140/epjc/s10052-017-5155-4

  14. The GAMBIT Scanner Workgroup: C. Balázs et al., ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods. GAMBIT collaboration. Eur. Phys. J. C77(11), 795 (2017). https://doi.org/10.1140/epjc/s10052-017-5285-8

  15. The GAMBIT Flavour Workgroup collaboration: F.U. Bernlochner et al., FlavBit: A GAMBIT module for computing flavour observables and likelihoods. Eur. Phys. J. C77(11), 786 (2017). https://doi.org/10.1140/epjc/s10052-017-5157-2

  16. The GAMBIT Collaboration: P. Athron et al., Global fits of GUT-scale SUSY models with GAMBIT. Eur. Phys. J. C77(12), 824 (2017). https://doi.org/10.1140/epjc/s10052-017-5167-0

  17. GAMBIT Collaboration: P. Athron, C. Balázs et al., A global fit of the MSSM with GAMBIT. Eur. Phys. J. C (2017, under final review). arXiv:1705.07917

  18. GAMBIT Collaboration: P. Athron, C. Balázs et al., Status of the scalar singlet dark matter model. Eur. Phys. J. C 77, 568 (2017). arXiv:1705.07931

  19. P. Athron, J.-H. Park, D. Stöckinger, A. Voigt, FlexibleSUSY—a spectrum generator for supersymmetric models. Comput. Phys. Commun. 190, 139–172 (2015). arXiv:1406.2319

    Article  ADS  Google Scholar 

  20. W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at \(e^+e^-\) colliders. Comput. Phys. Commun. 153, 275–315 (2003). arXiv:hep-ph/0301101

    Article  ADS  Google Scholar 

  21. W. Porod, F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM. Comput. Phys. Commun. 183, 2458–2469 (2012). arXiv:1104.1573

    Article  ADS  Google Scholar 

  22. S. Heinemeyer, W. Hollik, G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM. Comput. Phys. Commun. 124, 76–89 (2000). arXiv:hep-ph/9812320

    Article  ADS  MATH  Google Scholar 

  23. S. Heinemeyer, W. Hollik, G. Weiglein, The masses of the neutral CP—even Higgs bosons in the MSSM: accurate analysis at the two loop level. Eur. Phys. J. C 9, 343–366 (1999). arXiv:hep-ph/9812472

    ADS  MATH  Google Scholar 

  24. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Towards high precision predictions for the MSSM Higgs sector. Eur. Phys. J. C 28, 133–143 (2003). arXiv:hep-ph/0212020

    Article  ADS  Google Scholar 

  25. M. Frank, T. Hahn et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach. JHEP 02, 047 (2007). arXiv:hep-ph/0611326

    Article  ADS  Google Scholar 

  26. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric standard model. Phys. Rev. Lett. 112, 141801 (2014). arXiv:1312.4937

    Article  ADS  Google Scholar 

  27. H. Bahl, W. Hollik, Precise prediction for the light MSSM Higgs boson mass combining effective field theory and fixed-order calculations. Eur. Phys. J. C 76, 499 (2016). arXiv:1608.01880

  28. A. Djouadi, J. Kalinowski, M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension. Comput. Phys. Commun. 108, 56–74 (1998). arXiv:hep-ph/9704448

    Article  ADS  MATH  Google Scholar 

  29. M. Spira, QCD effects in Higgs physics. Fortschr. Phys. 46, 203–284 (1998). arXiv:hep-ph/9705337

    Article  MATH  Google Scholar 

  30. J.M. Butterworth et al., The Tools and Monte Carlo Working Group, in Summary Report from the Les Houches 2009 Workshop on TeV Colliders, in Physics at TeV colliders. Proceedings, 6th Workshop, Dedicated to Thomas Binoth, Les Houches, France, June 8–26, 2009 (2010). arXiv:1003.1643

  31. M. Muhlleitner, A. Djouadi, Y. Mambrini, SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM. Comput. Phys. Commun. 168, 46–70 (2005). arXiv:hep-ph/0311167

    Article  ADS  Google Scholar 

  32. F. Mahmoudi, SuperIso: a program for calculating the isospin asymmetry of \(B \rightarrow K^* \gamma \) in the MSSM. Comput. Phys. Commun. 178, 745 (2008). arXiv:0710.2067

    Article  ADS  MATH  Google Scholar 

  33. F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry. Comput. Phys. Commun. 180, 1579 (2009). arXiv:0808.3144

    Article  ADS  Google Scholar 

  34. F. Mahmoudi, SuperIso v3.0, flavor physics observables calculations: extension to NMSSM. Comput. Phys. Commun. 180, 1718 (2009)

    Article  ADS  Google Scholar 

  35. P. Athron, M. Bach et al., GM2Calc: precise MSSM prediction for (g-2) of the muon. Eur. Phys. J. C 76, 62 (2016). arXiv:1510.08071

  36. B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra. Comput. Phys. Commun. 143, 305–331 (2002). arXiv:hep-ph/0104145

    Article  ADS  MATH  Google Scholar 

  37. B.C. Allanach, M.A. Bernhardt, Including R-parity violation in the numerical computation of the spectrum of the minimal supersymmetric standard model: SOFTSUSY. Comput. Phys. Commun. 181, 232–245 (2010). arXiv:0903.1805

    Article  ADS  MATH  Google Scholar 

  38. B.C. Allanach, C.H. Kom, M. Hanussek, Computation of neutrino masses in R-parity violating supersymmetry: SOFTSUSY3.2. Comput. Phys. Commun. 183, 785–793 (2012). arXiv:1109.3735

    Article  ADS  Google Scholar 

  39. B.C. Allanach, A. Bednyakov, R. Ruiz de Austri, Higher order corrections and unification in the minimal supersymmetric standard model: SOFTSUSY3.5. Comput. Phys. Commun. 189, 192–206 (2015). arXiv:1407.6130

    Article  ADS  MATH  Google Scholar 

  40. A. Djouadi, J.-L. Kneur, G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM. Comput. Phys. Commun. 176, 426–455 (2007). arXiv:hep-ph/0211331

    Article  ADS  MATH  Google Scholar 

  41. B.C. Allanach, P. Athron, L.C. Tunstall, A. Voigt, A.G. Williams, Next-to-minimal SOFTSUSY. Comput. Phys. Commun. 185, 2322–2339 (2014). arXiv:1311.7659

    Article  ADS  MATH  Google Scholar 

  42. K. Ender, T. Graf, M. Muhlleitner, H. Rzehak, Analysis of the NMSSM Higgs boson masses at one-loop level. Phys. Rev. D 85, 075024 (2012). arXiv:1111.4952

    Article  ADS  Google Scholar 

  43. T. Graf, R. Grober, M. Muhlleitner, H. Rzehak, K. Walz, Higgs boson masses in the complex NMSSM at one-loop level. JHEP 10, 122 (2012). arXiv:1206.6806

    Article  ADS  Google Scholar 

  44. J. Baglio, R. Gröber et al., NMSSMCALC: a program package for the calculation of loop-corrected Higgs boson masses and decay widths in the (complex) NMSSM. Comput. Phys. Commun. 185, 3372–3391 (2014). arXiv:1312.4788

    Article  ADS  Google Scholar 

  45. S.F. King, M. Muhlleitner, R. Nevzorov, K. Walz, Exploring the CP-violating NMSSM: EDM constraints and phenomenology. Nucl. Phys. B 901, 526–555 (2015). arXiv:1508.03255

  46. F. Staub, SARAH. arXiv:0806.0538

  47. F. Staub, Automatic calculation of supersymmetric renormalization group equations and self energies. Comput. Phys. Commun. 182, 808–833 (2011). arXiv:1002.0840

    Article  ADS  MATH  Google Scholar 

  48. F. Staub, SARAH 3.2: Dirac Gauginos, UFO output, and more. Comput. Phys. Commun. 184, 1792–1809 (2013). arXiv:1207.0906

    Article  ADS  Google Scholar 

  49. F. Staub, SARAH 4: a tool for (not only SUSY) model builders. Comput. Phys. Commun. 185, 1773–1790 (2014). arXiv:1309.7223

    Article  ADS  MATH  Google Scholar 

  50. M.D. Goodsell, K. Nickel, F. Staub, Two-loop Higgs mass calculations in supersymmetric models beyond the MSSM with SARAH and SPheno. Eur. Phys. J. C 75, 32 (2015). arXiv:1411.0675

    Article  ADS  Google Scholar 

  51. W. Frisch, H. Eberl, H. Hlucha, HFOLD—a program package for calculating two-body MSSM Higgs decays at full one-loop level. Comput. Phys. Commun. 182, 2219–2226 (2011). arXiv:1012.5025

    Article  ADS  Google Scholar 

  52. H. Hlucha, H. Eberl, W. Frisch, SFOLD—a program package for calculating two-body sfermion decays at full one-loop level in the MSSM. Comput. Phys. Commun. 183, 2307–2312 (2012). arXiv:1104.2151

    Article  ADS  Google Scholar 

  53. J. Pardo Vega, G. Villadoro, SusyHD: Higgs mass determination in supersymmetry. JHEP 07, 159 (2015). arXiv:1504.05200

  54. E. Bagnaschi, F. Brümmer, W. Buchmüller, A. Voigt, G. Weiglein, Vacuum stability and supersymmetry at high scales with two Higgs doublets. JHEP 03, 158 (2016). arXiv:1512.07761

  55. P. Athron, J.-H. Park, T. Steudtner, D. Stöckinger, A. Voigt, Precise Higgs mass calculations in (non-)minimal supersymmetry at both high and low scales. JHEP 01, 079 (2017). arXiv:1609.00371

  56. M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1896 (2012). arXiv:1111.6097

    Article  ADS  Google Scholar 

  57. W. Siegel, Supersymmetric dimensional regularization via dimensional reduction. Phys. Lett. B 84, 193–196 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  58. D.M. Capper, D.R.T. Jones, P. van Nieuwenhuizen, Regularization by dimensional reduction of supersymmetric and nonsupersymmetric gauge theories. Nucl. Phys. B 167, 479–499 (1980)

    Article  ADS  Google Scholar 

  59. I. Jack, D.R.T. Jones, S.P. Martin, M.T. Vaughn, Y. Yamada, Decoupling of the epsilon scalar mass in softly broken supersymmetry. Phys. Rev. D 50, R5481–R5483 (1994). arXiv:hep-ph/9407291

    Article  ADS  Google Scholar 

  60. W.A. Bardeen, A.J. Buras, D.W. Duke, T. Muta, Deep inelastic scattering beyond the leading order in asymptotically free gauge theories. Phys. Rev. D 18, 3998 (1978)

    Article  ADS  Google Scholar 

  61. Particle Data Group: K.A. Olive et al., Review of particle physics. Chin. Phys. C 38, 090001 (2014)

  62. G. Bélanger, K. Kannike, A. Pukhov, M. Raidal, \(Z_{3}\) scalar singlet dark matter. JCAP 1, 022 (2013). arXiv:1211.1014

    Article  Google Scholar 

  63. T. Alanne, K. Tuominen, V. Vaskonen, Strong phase transition, dark matter and vacuum stability from simple hidden sectors. Nucl. Phys. B 889, 692–711 (2014). arXiv:1407.0688

    Article  ADS  MATH  Google Scholar 

  64. N. Khan, S. Rakshit, Study of electroweak vacuum metastability with a singlet scalar dark matter. Phys. Rev. D 90, 113008 (2014). arXiv:1407.6015

    Article  ADS  Google Scholar 

  65. J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis: SPA convention and project. Eur. Phys. J. C 46, 43–60 (2006). arXiv:hep-ph/0511344

    Article  ADS  Google Scholar 

  66. F. Staub, W. Porod, Improved predictions for intermediate and heavy Supersymmetry in the MSSM and beyond. Eur. Phys. J. C77(5), 338 (2017). https://doi.org/10.1140/epjc/s10052-017-4893-7

  67. M. Sher, Electroweak Higgs potential and vacuum stability. Phys. Rep. 179, 273 (1989)

    Article  ADS  Google Scholar 

  68. J. Elias-Miró, J.R. Espinosa et al., Higgs mass implications on the stability of the electroweak vacuum. Phys. Lett. Sect. B Nucl. Elementary Part. High Energy Phys. 709, 222–228 (2012). arXiv:1112.3022

  69. S. Alekhin, A. Djouadi, S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum. Phys. Lett. Sect. B Nucl. Elementary Part. High Energy Phys. 716, 214–219 (2012). arXiv:1207.0980

  70. F. Bezrukov, M.Yu. Kalmykov, B.A. Kniehl, M. Shaposhnikov, Higgs Boson mass and new physics. JHEP 10, 140 (2012). arXiv:1205.2893 [275 (2012)]

  71. G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Strumia, Higgs mass and vacuum stability in the Standard Model at NNLO. JHEP 08, 098 (2012). https://doi.org/10.1007/JHEP08(2012)098

  72. I. Masina, Higgs boson and top quark masses as tests of electroweak vacuum stability. Phys. Rev. D 87, 053001 (2013). arXiv:1209.0393

    Article  ADS  Google Scholar 

  73. V. Branchina, E. Messina, Stability, Higgs boson mass, and new physics. Phys. Rev. Lett. 111, 1–5 (2013). arXiv:1307.5193

    Article  Google Scholar 

  74. D. Buttazzo, G. Degrassi et al., Investigating the near-criticality of the Higgs boson. JHEP 12, 089 (2013). arXiv:1307.3536

    Article  ADS  Google Scholar 

  75. L. Di Luzio, L. Mihaila, On the gauge dependence of the Standard Model vacuum instability scale. JHEP 06, 079 (2014). arXiv:1404.7450

    Article  Google Scholar 

  76. N.K. Nielsen, Removing the gauge parameter dependence of the effective potential by a field redefinition. Phys. Rev. D 90, 036008 (2014). arXiv:1406.0788

    Article  ADS  Google Scholar 

  77. A. Andreassen, W. Frost, M.D. Schwartz, Consistent use of the standard model effective potential. Phys. Rev. Lett. 113, 241801 (2014). arXiv:1408.0292

    Article  ADS  Google Scholar 

  78. J.R. Espinosa, G.F. Giudice et al., The cosmological Higgstory of the vacuum instability. JHEP 09, 174 (2015). arXiv:1505.04825

  79. A.V. Bednyakov, B.A. Kniehl, A.F. Pikelner, O.L. Veretin, Stability of the electroweak vacuum: gauge independence and advanced precision. Phys. Rev. Lett. 115, 201802 (2015). arXiv:1507.08833

  80. M. Lindner, Implications of triviality for the standard model. Z. Phys. C 31, 295 (1986)

    Article  ADS  Google Scholar 

  81. B. Schrempp, M. Wimmer, Top quark and Higgs boson masses: interplay between infrared and ultraviolet physics. Prog. Part. Nucl. Phys. 37, 112 (1996). arXiv:hep-ph/9606386

    Article  Google Scholar 

  82. G. Altarelli, G. Isidori, Lower limit on the Higgs mass in the standard model: an update. Phys. Lett. B 337, 141–144 (1994)

    Article  ADS  Google Scholar 

  83. N. Cabibbo, L. Maiani, G. Parisi, R. Petronzio, Bounds on the fermions and Higgs boson masses in grand unified theories. Nucl. Phys. B 158, 295–305 (1979)

    Article  ADS  Google Scholar 

  84. P.Q. Hung, Vacuum instability and new constraints on fermion masses. Phys. Rev. Lett. 42, 873 (1979)

    Article  ADS  Google Scholar 

  85. G. Aad, T. Abajyan et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012). arXiv:1207.7214

    Article  ADS  Google Scholar 

  86. S. Chatrchyan, V. Khachatryan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235

    Article  ADS  Google Scholar 

  87. V. Branchina, E. Messina, Stability and UV completion of the Standard Model. EPL 117(6), 61002 (2017). https://doi.org/10.1209/0295-5075/117/61002

  88. L. Di Luzio, G. Isidori, G. Ridolfi, Stability of the electroweak ground state in the Standard Model and its extensions. Phys. Lett. B 753, 150–160 (2016). arXiv:1509.05028

  89. J.A. Casas, J.R. Espinosa, M. Quiros, Improved Higgs mass stability bound in the standard model and implications for supersymmetry. Phys. Lett. B 342, 171 (1995). arXiv:hep-ph/9409458

    Article  ADS  Google Scholar 

  90. J.A. Casas, J.R. Espinosa, M. Quirós, Standard model stability bounds for new physics within LHC reach. Phys. Lett. B 382, 374–382 (1996). arXiv:hep-ph/9603227

    Article  ADS  Google Scholar 

  91. G. Isidori, G. Ridolfi, A. Strumia, On the metastability of the Standard Model vacuum. Nucl. Phys. B 609, 387–409 (2001). arXiv:hep-ph/0104016v2

    Article  ADS  MATH  Google Scholar 

  92. C.P. Burgess, V. Di Clemente, J. Ramón Espinosa, Effective operators and vacuum instability as heralds of new physics. JHEP 1, 041 (2002). arXiv:hep-ph/0201160

  93. G. Isidori, V.S. Rychkov, A. Strumia, N. Tetradis, Gravitational corrections to standard model vacuum decay. Phys. Rev. D 77, 1–6 (2008). arXiv:0712.0242

    Article  Google Scholar 

  94. N. Arkani-Hamed, S. Dubovsky, L. Senatore, G. Villadoro, (No) eternal inflation and precision Higgs physics. JHEP 0803, 075 (2008). arXiv:0801.2399

    Article  ADS  Google Scholar 

  95. F. Bezrukov, M. Shaposhnikov, Standard model Higgs boson mass from inflation: two loop analysis. JHEP 0907, 089 (2009). arXiv:0904.1537

    Article  ADS  Google Scholar 

  96. L.J. Hall, Y. Nomura, A finely-predicted Higgs boson mass from a finely-tuned weak scale. JHEP 1003, 076 (2010). arXiv:0910.2235

    Article  ADS  MATH  Google Scholar 

  97. J. Ellis, J.R. Espinosa, G.F. Giudice, A. Hoecker, A. Riotto, The probable fate of the Standard Model. Phys. Lett. B 679, 369–375 (2009). arXiv:0906.0954

    Article  ADS  Google Scholar 

  98. F. Loebbert, J. Plefka, Quantum Gravitational Contributions to the Standard Model Effective Potential and Vacuum Stability. Mod. Phys. Lett. A30(34), 1550189 (2015). https://doi.org/10.1142/S0217732315501898

  99. O. Czerwińska, Z. Lalak, Ł. Nakonieczny, Stability of the effective potential of the gauge-less top-Higgs model in curved spacetime. JHEP 11, 207 (2015). https://doi.org/10.1007/JHEP11(2015)207

  100. M. Gonderinger, Y. Li, H. Patel, M.J. Ramsey-Musolf, Vacuum stability, perturbativity, and scalar singlet dark matter. JHEP 1, 53 (2010). arXiv:0910.3167

    Article  ADS  MATH  Google Scholar 

  101. A. Drozd, B. Grzadkowski, J. Wudka, Cosmology of multi-singlet-scalar extensions of the standard model. Acta Phys. Pol. B 42, 2255–2262 (2011). arXiv:1310.2985

    Article  Google Scholar 

  102. C.-S. Chen, Y. Tang, Vacuum stability, neutrinos, and dark matter. JHEP 4, 19 (2012). arXiv:1202.5717

    Article  ADS  Google Scholar 

  103. H. Han, S. Zheng, New constraints on Higgs-portal scalar dark matter. JHEP 12, 44 (2015). arXiv:1509.01765

  104. S. Kanemura, M. Kikuchi, K. Yagyu, Radiative corrections to the Higgs boson couplings in the model with an additional real singlet scalar field. Nucl. Phys. B 907, 286–322 (2016). arXiv:1511.06211

  105. S. Coleman, Fate of the false vacuum: semiclassical theory. Phys. Rev. D 15, 2929–2936 (1977)

    Article  ADS  Google Scholar 

  106. E. Kolb, M.S. Turner, The Early Universe (Addison-Wesley Publishing Company, Redwood City, 1990)

    MATH  Google Scholar 

  107. K. Lee, E.J. Weinberg, Tunneling without barries. Nucl. Phys. B 267, 181 (1986)

    Article  ADS  Google Scholar 

  108. G.C. Callan, S. Coleman, Fate of the false vacuum II, first quantum corrections. Phys. Rev. D 16, 1762–1768 (1977)

    Article  ADS  Google Scholar 

  109. G. Degrassi, SM vacuum stability (2014). Retrieved from http://benasque.org/2014imfp/talks_contr/296_Degrassi.pdf

  110. LHC Higgs Cross Section Working Group: J.R. Andersen et al. In Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, ed. By S. Heinemeyer, C. Mariotti, G. Passarino, R. Tanaka (2013). https://doi.org/10.5170/CERN-2013-004

  111. A. Bredenstein, A. Denner, S. Dittmaier, M.M. Weber, Precise predictions for the Higgs-boson decay H \(\rightarrow \) WW/ZZ \(\rightarrow \) 4 leptons. Phys. Rev. D 74, 013004 (2006). arXiv:hep-ph/0604011

    Article  ADS  Google Scholar 

  112. A. Bredenstein, A. Denner, S. Dittmaier, M.M. Weber, Radiative corrections to the semileptonic and hadronic Higgs-boson decays H \(\rightarrow \) W W / Z Z \(\rightarrow \) 4 fermions. JHEP 02, 080 (2007). arXiv:hep-ph/0611234

    Article  ADS  Google Scholar 

  113. G. Belanger, B. Dumont, U. Ellwanger, J.F. Gunion, S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors. Phys. Rev. D 88, 075008 (2013). arXiv:1306.2941

    Article  ADS  Google Scholar 

  114. D. Das, U. Ellwanger, A.M. Teixeira, NMSDECAY: a Fortran code for supersymmetric particle decays in the next-to-minimal supersymmetric standard model. Comput. Phys. Commun. 183, 774–779 (2012). arXiv:1106.5633

    Article  ADS  Google Scholar 

  115. LHC Higgs Cross Section Working Group: S. Dittmaier et al, Handbook of LHC higgs cross sections: 1. Inclusive Observables (2011). https://doi.org/10.5170/CERN-2011-002

  116. The ATLAS, CDF, CMS, D0 Collaborations:, First combination of Tevatron and LHC measurements of the top-quark mass (2014). arXiv:1403.4427

  117. ATLAS, CMS: G. Aad et al., Combined measurement of the Higgs boson mass in \(pp\) collisions at \(\sqrt{s}=7\) and 8 TeV with the ATLAS and CMS experiments. Phys. Rev. Lett. 114, 191803 (2015). arXiv:1503.07589

  118. Particle Data Group: K.A. Olive et al., Review of particle physics, update to Ref. [61] (2015). http://pdg.lbl.gov/2015/tables/rpp2015-sum-gauge-higgs-bosons.pdf

  119. S. Heinemeyer, W. Hollik, D. Stöckinger, A.M. Weber, G. Weiglein, Precise prediction for M(W) in the MSSM. JHEP 08, 052 (2006). arXiv:hep-ph/0604147

    Article  ADS  Google Scholar 

  120. S. Heinemeyer, W. Hollik, A.M. Weber, G. Weiglein, \(Z\) pole observables in the MSSM. JHEP 04, 039 (2008). arXiv:0710.2972

    Article  ADS  Google Scholar 

  121. S. Heinemeyer, W. Hollik, G. Weiglein, L. Zeune, Implications of LHC search results on the W boson mass prediction in the MSSM. JHEP 12, 084 (2013). arXiv:1311.1663

    Article  ADS  Google Scholar 

  122. O. StÃěl, G. Weiglein, L. Zeune, Improved prediction for the mass of the W boson in the NMSSM. JHEP 09, 158 (2015). arXiv:1506.07465

  123. K. Matchev, TASI lectures on precision electroweak physics, in Particle physics and cosmology: the quest for physics beyond the standard model(s). in Proceedings, Theoretical Advanced Study Institute, TASI 2002, Boulder, USA, June 3–28, 2002 (2004), pp. 51–98. arXiv:hep-ph/0402031

  124. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Reevaluation of the hadronic contributions to the muon g-2 and to \(\alpha \)(\(\text{ M }^{2}_{Z}\)). Eur. Phys. J. C 71, 1515 (2011). arXiv:1010.4180

    Article  ADS  Google Scholar 

  125. Particle Data Group, Berkeley: K. Nakamura et al., Review of particle properties. J. Phys. G 37, 075021 (2010)

  126. G.W. Bennett, B. Bousquet et al., Final report of the E821 muon anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006). arXiv:hep-ex/0602035

    Article  ADS  Google Scholar 

  127. S.M. Barr, A. Zee, Electric dipole moment of the electron and of the neutron. Phys. Rev. Lett. 65, 21–24 (1990) [Erratum: Phys. Rev. Lett. 65, 2920 (1990)]

  128. D. Stöckinger, Topical review: the muon magnetic moment and supersymmetry. J. Phys. G 34, R45–R91 (2007). arXiv:hep-ph/0609168

    Article  Google Scholar 

  129. S. Heinemeyer, W. Hollik, G. Weiglein, Electroweak precision observables in the minimal supersymmetric standard model. Phys. Rep. 425, 265–368 (2006). arXiv:hep-ph/0412214

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Physics and Astronomy, Monash University, Melbourne, VIC, 3800, Australia

    Peter Athron & Csaba Balázs

  2. Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale, Australia http://www.coepp.org.au/

    Peter Athron, Csaba Balázs & Martin White

  3. Department of Physics, University of Oslo, 0316, Oslo, Norway

    Lars A. Dal & Tomás E. Gonzalo

  4. Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, 10691, Stockholm, Sweden

    Joakim Edsjö & Ben Farmer

  5. Department of Physics, Stockholm University, 10691, Stockholm, Sweden

    Joakim Edsjö & Ben Farmer

  6. NORDITA, Roslagstullsbacken 23, 10691, Stockholm, Sweden

    Anders Kvellestad

  7. Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK

    James McKay & Pat Scott

  8. LAPTh, Université de Savoie, CNRS, 9 chemin de Bellevue, B.P.110, 74941, Annecy-le-Vieux, France

    Antje Putze

  9. Department of Physics, Harvard University, Cambridge, MA, 02138, USA

    Chris Rogan

  10. GRAPPA, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands

    Christoph Weniger

  11. Department of Physics, University of Adelaide, Adelaide, SA, 5005, Australia

    Martin White

Authors
  1. Peter Athron
    View author publications

    Search author on:PubMed Google Scholar

  2. Csaba Balázs
    View author publications

    Search author on:PubMed Google Scholar

  3. Lars A. Dal
    View author publications

    Search author on:PubMed Google Scholar

  4. Joakim Edsjö
    View author publications

    Search author on:PubMed Google Scholar

  5. Ben Farmer
    View author publications

    Search author on:PubMed Google Scholar

  6. Tomás E. Gonzalo
    View author publications

    Search author on:PubMed Google Scholar

  7. Anders Kvellestad
    View author publications

    Search author on:PubMed Google Scholar

  8. James McKay
    View author publications

    Search author on:PubMed Google Scholar

  9. Antje Putze
    View author publications

    Search author on:PubMed Google Scholar

  10. Chris Rogan
    View author publications

    Search author on:PubMed Google Scholar

  11. Pat Scott
    View author publications

    Search author on:PubMed Google Scholar

  12. Christoph Weniger
    View author publications

    Search author on:PubMed Google Scholar

  13. Martin White
    View author publications

    Search author on:PubMed Google Scholar

Consortia

The GAMBIT Models Workgroup:

Corresponding author

Correspondence to Ben Farmer.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Funded by SCOAP3

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

The GAMBIT Models Workgroup: ., Athron, P., Balázs, C. et al. SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables. Eur. Phys. J. C 78, 22 (2018). https://doi.org/10.1140/epjc/s10052-017-5390-8

Download citation

  • Received: 16 March 2017

  • Accepted: 16 November 2017

  • Published: 12 January 2018

  • Version of record: 12 January 2018

  • DOI: https://doi.org/10.1140/epjc/s10052-017-5390-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature