Abstract
A smart city is an urban area that uses technology, data and digital infrastructure to improve the quality of life for its citizens, enhance the efficiency of city services and promote sustainability. Complex networks can enable the extraction of useful information from technologies, such as the Internet of Things, artificial intelligence and big data analytics, in a comprehensive way. This would enable common urban challenges, such as traffic congestion, pollution, waste management and energy usage, to be addressed. Network theory offers a strong framework for analyzing and visualizing complex relationships in urban environments, including transportation, social interactions and infrastructure. This interdisciplinary approach aids in comprehensive city modeling and serves as a vital tool for policymakers to improve the robustness and resilience of urban landscapes.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Requests for materials can be made to G. Caldarelli and M.D.D.
References
Ritchie, H., Samborska, V. & Roser, M. Urbanization. Our World in Data https://ourworldindata.org/urbanization (accessed 4 November 2023).
Schelling, T. C. Dynamic models of segregation. J. Math. Sociol. 1, 143–186 (1971).
Clark, W. A. V. & Fossett, M. Understanding the social context of the Schelling segregation model. Proc. Natl Acad. Sci. USA 105, 4109–4114 (2008).
Vu, D. D. & Kaddoum, G. A waste city management system for smart cities applications. In 2017 Advances in Wireless and Optical Communications (RTUWO), 225–229 (IEEE, 2017).
Gallotti, R., Sacco, P. & De Domenico, M. Complex urban systems: challenges and integrated solutions for the sustainability and resilience of cities. Complexity https://doi.org/10.1155/2021/1782354 (2021).
Sensarma, D. in Handbook of Research on Data-Driven Mathematical Modeling in Smart Cities (eds Pramanik, S. & Sagayam, K. M.) 40–54 (IGI Global, 2023).
Bilal, M. et al. in Handbook of Smart Cities (ed. Augusto, J. C.) 1–29 (Springer, 2020).
Ahmad, A. et al. A complex network-based approach for security and governance in the smart green city. Expert Syst. Appl. 214, 119094 (2023).
Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).
Nezamoddini, N. & Gholami, A. A survey of adaptive multi-agent networks and their applications in smart cities. Smart Cities 5, 318–346 (2022).
Ambühl, L., Menendez, M. & González, M. C. Understanding congestion propagation by combining percolation theory with the macroscopic fundamental diagram. Commun. Phys. 6, 26 (2023).
Jacobs, J. The Death and Life of Great American Cities (Random House, 1961).
Barthelemy, M. The statistical physics of cities. Nat. Rev. Phys. 1, 406–415 (2019).
Batty, M. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals (MIT Press, 2005).
Verbavatz, V. & Barthelemy, M. The growth equation of cities. Nature 587, 397–401 (2020).
Arshad, S., Hu, S. & Ashraf, B. N. Zipf’s law and city size distribution: a survey of the literature and future research agenda. Physica A Stat. Mech. Appl. 492, 75–92 (2018).
Griffith, D. A. Evaluating the transformation from a monocentric to a polycentric city. Prof. Geogr. 33, 189–196 (1981).
Louf, R. & Barthelemy, M. Modeling the polycentric transition of cities. Phys. Rev. Lett. 111, 198702 (2013).
Roth, C., Kang, S. M., Batty, M. & Barthélemy, M. Structure of urban movements: polycentric activity and entangled hierarchical flows. PLoS ONE 6, e15923 (2011).
Louail, T. et al. From mobile phone data to the spatial structure of cities. Sci. Rep. 4, 5276 (2014).
Gallotti, R., Bertagnolli, G. & De Domenico, M. Unraveling the hidden organisation of urban systems and their mobility flows. EPJ Data Sci. https://doi.org/10.1140/epjds/s13688-020-00258-3 (2021).
Taubenböck, H. et al. Monitoring urbanization in mega cities from space. Remote Sens. Environ. 117, 162–176 (2012).
Nicholls, R. J. Coastal megacities and climate change. GeoJournal 37, 369–379 (1995).
Baklanov, A., Molina, L. T. & Gauss, M. Megacities, air quality and climate. Atmos. Environ. 126, 235–249 (2016).
Cross, J. A. Megacities and small towns: different perspectives on hazard vulnerability. Environ. Hazards 3, 63–80 (2001).
Aerts, J. C. J. H. et al. Evaluating flood resilience strategies for coastal megacities. Science 344, 473–475 (2014).
Simini, F., González, M. C., Maritan, A. & Barabási, A.-L. A universal model for mobility and migration patterns. Nature 484, 96–100 (2012).
Gallotti, R. & Barthelemy, M. Anatomy and efficiency of urban multimodal mobility. Sci. Rep. 4, 6911 (2014).
Bettencourt, L. M. A., Lobo, J., Helbing, D., Kühnert, C. & West, G. B. Growth, innovation, scaling, and the pace of life in cities. Proc. Natl Acad. Sci. USA 104, 7301–7306 (2007).
Lobo, J., Bettencourt, L. M. A., Strumsky, D. & West, G. B. Urban scaling and the production function for cities. PLoS ONE 8, e58407 (2013).
Schläpfer, M. et al. The scaling of human interactions with city size. J. R. Soc. Interface https://doi.org/10.1098/rsif.2013.0789 (2014).
New York smart cities innovation partnership Empire State Development https://esd.ny.gov/new-york-smart-cities-innovation-partnership#overview (2023).
Bettencourt, L. M. A., Lobo, J., Strumsky, D. & West, G. B. Urban scaling and its deviations: revealing the structure of wealth, innovation and crime across cities. PLoS ONE 5, e13541 (2010).
Altmann, E. G. Spatial interactions in urban scaling laws. PloS ONE 15, e0243390 (2020).
Mori, T., Smith, T. E. & Hsu, W.-T. Common power laws for cities and spatial fractal structures. Proc. Natl Acad. Sci. USA 117, 6469–6475 (2020).
Arvidsson, M., Lovsjö, N. & Keuschnigg, M. Urban scaling laws arise from within-city inequalities. Nat. Hum. Behav. 7, 365–374 (2023).
Gorawski, M. & Grochla, K. Graph representation of linear infrastructure in smart city IoT systems. In 2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) https://doi.org/10.1109/ICUMT48472.2019.8970674(IEEE, 2019).
Faye, S. & Chaudet, C. Connectivity analysis of wireless sensor networks deployments in smart cities. In 2015 IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT) https://doi.org/10.1109/SCVT.2015.7374221 (IEEE, 2015).
Li, W., Batty, M. & Goodchild, M. F. Real-time gis for smart cities. Int. J. Geogr. Inf. Sci. 34, 311–324 (2019).
De Domenico, M. et al. Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013).
De Domenico, M. More is different in real-world multilayer networks. Nat. Phys. 19, 1247–1262 (2023).
Schoonenberg, W. C. & Farid, A. M. Modeling smart cities with hetero-functional graph theory. In 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 1627–1632 (IEEE, 2017).
De Domenico, M., Granell, C., Porter, M. A. & Arenas, A. The physics of spreading processes in multilayer networks. Nat. Phys. 12, 901–906 (2016).
Danziger, M. M., Bonamassa, I., Boccaletti, S. & Havlin, S. Dynamic interdependence and competition in multilayer networks. Nat. Phys. 15, 178–185 (2019).
Bontorin, S., Cencetti, G., Gallotti, R., Lepri, B. & De Domenico, M. Emergence of complex network topologies from flow-weighted optimization of network efficiency. Phys. Rev. X 14, 021050 (2024).
Solé-Ribalta, A., Gómez, S. & Arenas, A. Congestion induced by the structure of multiplex networks. Phys. Rev. Lett. 116, 108701 (2016).
Artime, O. et al. Robustness and resilience of complex networks. Nat. Rev. Phys. 6, 114–131 (2024).
Bashan, A., Berezin, Y., Buldyrev, S. V. & Havlin, S. The extreme vulnerability of interdependent spatially embedded networks. Nat. Phys. 9, 667–672 (2013).
Olmos, L. E. et al. A data science framework for planning the growth of bicycle infrastructures. Transp. Res. Part C Emerg. Technol. 115, 102640 (2020).
De Domenico, M., Solé-Ribalta, A., Gómez, S. & Arenas, A. Navigability of interconnected networks under random failures. Proc. Natl Acad. Sci. USA 111, 8351–8356 (2014).
Barbosa, H. et al. Human mobility: models and applications. Phys. Rep. 734, 1–74 (2018).
Gallotti, R., Maniscalco, D., Barthelemy, M. & De Domenico, M. The distorting lens of human mobility data. Commun. Phys. (in the press).
Gutierrez, J. M., Jensen, M. & Riaz, T. Applied graph theory to real smart city logistic problems. Procedia Comput. Sci. 95, 40–47 (2016).
Schneider, C. M., Belik, V., Couronné, T., Smoreda, Z. & González, M. C. Unravelling daily human mobility motifs. J. R. Soc. Interface 10, 20130246 (2013).
Bassolas, A. et al. Hierarchical organization of urban mobility and its connection with city livability. Nat. Commun. 10, 4817 (2019).
Gallotti, R., Bazzani, A., Rambaldi, S. & Barthelemy, M. A stochastic model of randomly accelerated walkers for human mobility. Nat. Commun. 7, 12600 (2016).
De Domenico, M., Lima, A., González, M. C. & Arenas, A. Personalized routing for multitudes in smart cities. EPJ Data Sci. https://doi.org/10.1140/epjds/s13688-015-0038-0 (2015).
Jiang, S. et al. The TimeGeo modeling framework for urban mobility without travel surveys. Proc. Natl Acad. Sci. USA 113, E5370–E5378 (2016).
Xu, Y. et al. Urban dynamics through the lens of human mobility. Nat. Comput. Sci. 3, 611–620 (2023).
Hasan, S., Schneider, C. M., Ukkusuri, S. V. & González, M. C. Spatiotemporal patterns of urban human mobility. J. Stat. Phys. 151, 304–318 (2012).
Gallotti, R., Bazzani, A., Esposti, M. D. & Rambaldi, S. Entropic measures of individual mobility patterns. J. Stat. Mech. 2013, P10022 (2013).
Alessandretti, L., Aslak, U. & Lehmann, S. The scales of human mobility. Nature 587, 402–407 (2020).
Bliss, L. The war on cars, Norwegian edition. Bloomberg CityLab https://www.bloomberg.com/news/articles/2018-05-03/oslo-bans-cars-builds-a-bike-lane-haven (2018).
Li, R. et al. Simple spatial scaling rules behind complex cities. Nat. Commun. 8, 1841 (2017).
Louf, R. & Barthelemy, M. How congestion shapes cities: from mobility patterns to scaling. Sci. Rep. 4, 5561 (2014).
Barthélemy, M. Spatial networks. Phys. Rep. 499, 1–101 (2011).
Voloch, N., Voloch-Bloch, N. & Zadok, Y. Managing large distributed dynamic graphs for smart city network applications. Appl. Netw. Sci. 4, 130 (2019).
Wang, P., Hunter, T., Bayen, A. M., Schechtner, K. & González, M. C. Understanding road usage patterns in urban areas. Sci. Rep. https://doi.org/10.1038/srep01001 (2012).
Solé-Ribalta, A., Gómez, S. & Arenas, A. A model to identify urban traffic congestion hotspots in complex networks. R. Soc. Open Sci. 3, 160098 (2016).
Çolak, S., Lima, A. & González, M. C. Understanding congested travel in urban areas. Nat. Commun. 7, 10793 (2016).
Pappalardo, L., Manley, E., Sekara, V. & Alessandretti, L. Future directions in human mobility science. Nat. Comput. Sci. 3, 588–600 (2023).
Silva, T. H. & Silver, D. Using graph neural networks to predict local culture. Environ. Plan. B Urban Anal. City Sci. https://doi.org/10.1177/23998083241262053 (2024).
Shah, S. A. et al. Towards disaster resilient smart cities: can internet of things and big data analytics be the game changers? IEEE Access 7, 91885–91903 (2019).
Caragliu, A. & Del Bo, C. F. Smart cities and the urban digital divide. npj Urban Sustain. 3, 43 (2023).
Delclòs-Alió, X. & Miralles-Guasch, C. Looking at Barcelona through Jane Jacobs’s eyes: mapping the basic conditions for urban vitality in a Mediterranean conurbation. Land Use Policy 75, 505–517 (2018).
Lynch, K. The Image of the City (MIT Press, 1960).
Gehl, J. & Svarre, B. How to Study Public Life (Island Press, 2013).
Huang, J. et al. Re-examining Jane Jacobs’ doctrine using new urban data in Hong Kong. Environ. Plan. B Urban Anal. City Sci. 50, 76–93 (2023).
Osóch, B. & Czaplińska, A. City image based on mental maps – the case study of Szczecin (Poland). Misc. Geogr. 23, 111–119 (2019).
Dellenbaugh-Losse, M. & Dreyer, B. C. Gender Equal Cities (URBACT, 2022).
Tedeschi, M. Datafication and urban (in) justice: towards a digital spatial justice. Geogr. Compass 18, e12763 (2024).
Vanolo, A. Smartmentality: the smart city as disciplinary strategy. Urban Stud. 51, 883–898 (2014).
Cugurullo, F. et al. The rise of AI urbanism in post-smart cities: a critical commentary on urban artificial intelligence. Urban Stud. 61, 1168–1182 (2024).
Cardullo, P. & Kitchin, R. Smart urbanism and smart citizenship: the neoliberal logic of ‘citizen-focused’ smart cities in Europe. Environ. Plan. C Polit. Space 37, 813–830 (2019).
Nelson, Q., Steffensmeier, D. & Pawaskar, S. A simple approach for sustainable transportation systems in smart cities: a graph theory model. In 2018 IEEE Conference on Technologies for Sustainability (SusTech) https://doi.org/10.1109/SusTech.2018.8671384(IEEE, 2018).
Holland, O. Singapore is building a 42,000-home eco ‘smart’ city. CNN style https://edition.cnn.com/style/article/singapore-tengah-eco-town/index.html (2021).
New, J., Castro, D. & Beckwith, M. How National Governments Can Help Smart Cities Succeed (Center for Data Innovation, 2017).
Bettencourt, L. M. A. The origins of scaling in cities. Science 340, 1438–1441 (2013).
Kennedy, C. A. et al. Energy and material flows of megacities. Proc. Natl Acad. Sci. USA 112, 5985–5990 (2015).
Facchini, A., Kennedy, C., Stewart, I. & Mele, R. The energy metabolism of megacities. Appl. Energy 186, 86–95 (2017).
Duren, R. M. & Miller, C. E. Measuring the carbon emissions of megacities. Nat. Clim. Chang. 2, 560–562 (2012).
Rhoads, D., Solé-Ribalta, A., González, M. C. & Borge-Holthoefer, J. A sustainable strategy for open streets in (post) pandemic cities. Commun. Phys. 4, 183 (2021).
Gurjar, B. R., Butler, T. M., Lawrence, M. G. & Lelieveld, J. Evaluation of emissions and air quality in megacities. Atmos. Environ. 42, 1593–1606 (2008).
Parrish, D. D. & Zhu, T. Clean air for megacities. Science 326, 674–675 (2009).
Kovats, R. S. & Kristie, L. E. Heatwaves and public health in Europe. Eur. J. Public Health 16, 592–599 (2006).
Acknowledgements
M.D.D. acknowledges partial financial support from the INFN grant LINCOLN from MUR funding within the PRIN 2022 PNRR (DD n. 1214 31-07-2023) project no. P2022A889F and from MUR funding within the FIS (DD n. 1219 31-07-2023) project no. FIS00000158. G. Chirici declares partial support from PRIN 2020 MULTIFOR ‘Multi-scale observations to predict Forest response to pollution and climate change’ PRIN_2020_LS9 and from the project NBFC ‘National Biodiversity Future Center’ funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 – Call for tender No. 3138 16/12/2021, rectified by Decree n. 3175 18/12/2021 of Italian Ministry of University and Research funded by the European Union – NextGenerationEU; Award Number: Project code CN_00000033, Concession Decree No. 1034 of 1706/2022 adopted by the Italian Ministry of University and Research, CUP B83C220002910001. G. Caldarelli acknowledges support from EU proposal HumanE-AI-Net no. 952026 and EU proposal NODES CNECT/2022/5162608.
Author information
Authors and Affiliations
Contributions
G. Caldarelli and M.D.D. designed the paper’s focus and contributed equally to the writing of the manuscript. All of the authors contributed to the production of the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Cities thanks Michail Fragkias, Perry Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Caldarelli, G., Chiesi, L., Chirici, G. et al. Lessons from complex networks to smart cities. Nat Cities 2, 127–134 (2025). https://doi.org/10.1038/s44284-024-00188-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44284-024-00188-5
This article is cited by
-
Modeling and analysis of the coupling effect for large-scale multi-band optical networks
Scientific Reports (2025)
-
Digital Jevons paradox in urban data center energy systems
Nature Cities (2025)
-
Emergency management in the age of smart cities: toward safer urban futures
Smart Construction and Sustainable Cities (2025)