这是indexloc提供的服务,不要输入任何密码
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lessons from complex networks to smart cities

Abstract

A smart city is an urban area that uses technology, data and digital infrastructure to improve the quality of life for its citizens, enhance the efficiency of city services and promote sustainability. Complex networks can enable the extraction of useful information from technologies, such as the Internet of Things, artificial intelligence and big data analytics, in a comprehensive way. This would enable common urban challenges, such as traffic congestion, pollution, waste management and energy usage, to be addressed. Network theory offers a strong framework for analyzing and visualizing complex relationships in urban environments, including transportation, social interactions and infrastructure. This interdisciplinary approach aids in comprehensive city modeling and serves as a vital tool for policymakers to improve the robustness and resilience of urban landscapes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms for urban growth and transformation.

Similar content being viewed by others

Data availability

Requests for materials can be made to G. Caldarelli and M.D.D.

References

  1. Ritchie, H., Samborska, V. & Roser, M. Urbanization. Our World in Data https://ourworldindata.org/urbanization (accessed 4 November 2023).

  2. Schelling, T. C. Dynamic models of segregation. J. Math. Sociol. 1, 143–186 (1971).

    Article  Google Scholar 

  3. Clark, W. A. V. & Fossett, M. Understanding the social context of the Schelling segregation model. Proc. Natl Acad. Sci. USA 105, 4109–4114 (2008).

    Article  Google Scholar 

  4. Vu, D. D. & Kaddoum, G. A waste city management system for smart cities applications. In 2017 Advances in Wireless and Optical Communications (RTUWO), 225–229 (IEEE, 2017).

  5. Gallotti, R., Sacco, P. & De Domenico, M. Complex urban systems: challenges and integrated solutions for the sustainability and resilience of cities. Complexity https://doi.org/10.1155/2021/1782354 (2021).

  6. Sensarma, D. in Handbook of Research on Data-Driven Mathematical Modeling in Smart Cities (eds Pramanik, S. & Sagayam, K. M.) 40–54 (IGI Global, 2023).

  7. Bilal, M. et al. in Handbook of Smart Cities (ed. Augusto, J. C.) 1–29 (Springer, 2020).

  8. Ahmad, A. et al. A complex network-based approach for security and governance in the smart green city. Expert Syst. Appl. 214, 119094 (2023).

    Article  Google Scholar 

  9. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).

    Article  Google Scholar 

  10. Nezamoddini, N. & Gholami, A. A survey of adaptive multi-agent networks and their applications in smart cities. Smart Cities 5, 318–346 (2022).

    Article  Google Scholar 

  11. Ambühl, L., Menendez, M. & González, M. C. Understanding congestion propagation by combining percolation theory with the macroscopic fundamental diagram. Commun. Phys. 6, 26 (2023).

    Article  Google Scholar 

  12. Jacobs, J. The Death and Life of Great American Cities (Random House, 1961).

  13. Barthelemy, M. The statistical physics of cities. Nat. Rev. Phys. 1, 406–415 (2019).

    Article  Google Scholar 

  14. Batty, M. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals (MIT Press, 2005).

  15. Verbavatz, V. & Barthelemy, M. The growth equation of cities. Nature 587, 397–401 (2020).

    Article  Google Scholar 

  16. Arshad, S., Hu, S. & Ashraf, B. N. Zipf’s law and city size distribution: a survey of the literature and future research agenda. Physica A Stat. Mech. Appl. 492, 75–92 (2018).

    Article  Google Scholar 

  17. Griffith, D. A. Evaluating the transformation from a monocentric to a polycentric city. Prof. Geogr. 33, 189–196 (1981).

    Article  Google Scholar 

  18. Louf, R. & Barthelemy, M. Modeling the polycentric transition of cities. Phys. Rev. Lett. 111, 198702 (2013).

    Article  Google Scholar 

  19. Roth, C., Kang, S. M., Batty, M. & Barthélemy, M. Structure of urban movements: polycentric activity and entangled hierarchical flows. PLoS ONE 6, e15923 (2011).

    Article  Google Scholar 

  20. Louail, T. et al. From mobile phone data to the spatial structure of cities. Sci. Rep. 4, 5276 (2014).

    Article  Google Scholar 

  21. Gallotti, R., Bertagnolli, G. & De Domenico, M. Unraveling the hidden organisation of urban systems and their mobility flows. EPJ Data Sci. https://doi.org/10.1140/epjds/s13688-020-00258-3 (2021).

  22. Taubenböck, H. et al. Monitoring urbanization in mega cities from space. Remote Sens. Environ. 117, 162–176 (2012).

    Article  Google Scholar 

  23. Nicholls, R. J. Coastal megacities and climate change. GeoJournal 37, 369–379 (1995).

    Article  Google Scholar 

  24. Baklanov, A., Molina, L. T. & Gauss, M. Megacities, air quality and climate. Atmos. Environ. 126, 235–249 (2016).

    Article  Google Scholar 

  25. Cross, J. A. Megacities and small towns: different perspectives on hazard vulnerability. Environ. Hazards 3, 63–80 (2001).

    Google Scholar 

  26. Aerts, J. C. J. H. et al. Evaluating flood resilience strategies for coastal megacities. Science 344, 473–475 (2014).

    Article  Google Scholar 

  27. Simini, F., González, M. C., Maritan, A. & Barabási, A.-L. A universal model for mobility and migration patterns. Nature 484, 96–100 (2012).

    Article  Google Scholar 

  28. Gallotti, R. & Barthelemy, M. Anatomy and efficiency of urban multimodal mobility. Sci. Rep. 4, 6911 (2014).

    Article  Google Scholar 

  29. Bettencourt, L. M. A., Lobo, J., Helbing, D., Kühnert, C. & West, G. B. Growth, innovation, scaling, and the pace of life in cities. Proc. Natl Acad. Sci. USA 104, 7301–7306 (2007).

    Article  Google Scholar 

  30. Lobo, J., Bettencourt, L. M. A., Strumsky, D. & West, G. B. Urban scaling and the production function for cities. PLoS ONE 8, e58407 (2013).

    Article  Google Scholar 

  31. Schläpfer, M. et al. The scaling of human interactions with city size. J. R. Soc. Interface https://doi.org/10.1098/rsif.2013.0789 (2014).

  32. New York smart cities innovation partnership Empire State Development https://esd.ny.gov/new-york-smart-cities-innovation-partnership#overview (2023).

  33. Bettencourt, L. M. A., Lobo, J., Strumsky, D. & West, G. B. Urban scaling and its deviations: revealing the structure of wealth, innovation and crime across cities. PLoS ONE 5, e13541 (2010).

    Article  Google Scholar 

  34. Altmann, E. G. Spatial interactions in urban scaling laws. PloS ONE 15, e0243390 (2020).

    Article  Google Scholar 

  35. Mori, T., Smith, T. E. & Hsu, W.-T. Common power laws for cities and spatial fractal structures. Proc. Natl Acad. Sci. USA 117, 6469–6475 (2020).

    Article  Google Scholar 

  36. Arvidsson, M., Lovsjö, N. & Keuschnigg, M. Urban scaling laws arise from within-city inequalities. Nat. Hum. Behav. 7, 365–374 (2023).

    Article  Google Scholar 

  37. Gorawski, M. & Grochla, K. Graph representation of linear infrastructure in smart city IoT systems. In 2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) https://doi.org/10.1109/ICUMT48472.2019.8970674(IEEE, 2019).

  38. Faye, S. & Chaudet, C. Connectivity analysis of wireless sensor networks deployments in smart cities. In 2015 IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT) https://doi.org/10.1109/SCVT.2015.7374221 (IEEE, 2015).

  39. Li, W., Batty, M. & Goodchild, M. F. Real-time gis for smart cities. Int. J. Geogr. Inf. Sci. 34, 311–324 (2019).

    Article  Google Scholar 

  40. De Domenico, M. et al. Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013).

    Google Scholar 

  41. De Domenico, M. More is different in real-world multilayer networks. Nat. Phys. 19, 1247–1262 (2023).

    Article  Google Scholar 

  42. Schoonenberg, W. C. & Farid, A. M. Modeling smart cities with hetero-functional graph theory. In 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 1627–1632 (IEEE, 2017).

  43. De Domenico, M., Granell, C., Porter, M. A. & Arenas, A. The physics of spreading processes in multilayer networks. Nat. Phys. 12, 901–906 (2016).

    Article  Google Scholar 

  44. Danziger, M. M., Bonamassa, I., Boccaletti, S. & Havlin, S. Dynamic interdependence and competition in multilayer networks. Nat. Phys. 15, 178–185 (2019).

    Article  Google Scholar 

  45. Bontorin, S., Cencetti, G., Gallotti, R., Lepri, B. & De Domenico, M. Emergence of complex network topologies from flow-weighted optimization of network efficiency. Phys. Rev. X 14, 021050 (2024).

    Google Scholar 

  46. Solé-Ribalta, A., Gómez, S. & Arenas, A. Congestion induced by the structure of multiplex networks. Phys. Rev. Lett. 116, 108701 (2016).

    Article  Google Scholar 

  47. Artime, O. et al. Robustness and resilience of complex networks. Nat. Rev. Phys. 6, 114–131 (2024).

    Article  Google Scholar 

  48. Bashan, A., Berezin, Y., Buldyrev, S. V. & Havlin, S. The extreme vulnerability of interdependent spatially embedded networks. Nat. Phys. 9, 667–672 (2013).

    Article  Google Scholar 

  49. Olmos, L. E. et al. A data science framework for planning the growth of bicycle infrastructures. Transp. Res. Part C Emerg. Technol. 115, 102640 (2020).

    Article  Google Scholar 

  50. De Domenico, M., Solé-Ribalta, A., Gómez, S. & Arenas, A. Navigability of interconnected networks under random failures. Proc. Natl Acad. Sci. USA 111, 8351–8356 (2014).

    Article  Google Scholar 

  51. Barbosa, H. et al. Human mobility: models and applications. Phys. Rep. 734, 1–74 (2018).

    Article  Google Scholar 

  52. Gallotti, R., Maniscalco, D., Barthelemy, M. & De Domenico, M. The distorting lens of human mobility data. Commun. Phys. (in the press).

  53. Gutierrez, J. M., Jensen, M. & Riaz, T. Applied graph theory to real smart city logistic problems. Procedia Comput. Sci. 95, 40–47 (2016).

    Article  Google Scholar 

  54. Schneider, C. M., Belik, V., Couronné, T., Smoreda, Z. & González, M. C. Unravelling daily human mobility motifs. J. R. Soc. Interface 10, 20130246 (2013).

    Article  Google Scholar 

  55. Bassolas, A. et al. Hierarchical organization of urban mobility and its connection with city livability. Nat. Commun. 10, 4817 (2019).

    Article  Google Scholar 

  56. Gallotti, R., Bazzani, A., Rambaldi, S. & Barthelemy, M. A stochastic model of randomly accelerated walkers for human mobility. Nat. Commun. 7, 12600 (2016).

    Article  Google Scholar 

  57. De Domenico, M., Lima, A., González, M. C. & Arenas, A. Personalized routing for multitudes in smart cities. EPJ Data Sci. https://doi.org/10.1140/epjds/s13688-015-0038-0 (2015).

  58. Jiang, S. et al. The TimeGeo modeling framework for urban mobility without travel surveys. Proc. Natl Acad. Sci. USA 113, E5370–E5378 (2016).

    Article  Google Scholar 

  59. Xu, Y. et al. Urban dynamics through the lens of human mobility. Nat. Comput. Sci. 3, 611–620 (2023).

    Article  Google Scholar 

  60. Hasan, S., Schneider, C. M., Ukkusuri, S. V. & González, M. C. Spatiotemporal patterns of urban human mobility. J. Stat. Phys. 151, 304–318 (2012).

    Article  Google Scholar 

  61. Gallotti, R., Bazzani, A., Esposti, M. D. & Rambaldi, S. Entropic measures of individual mobility patterns. J. Stat. Mech. 2013, P10022 (2013).

    Article  Google Scholar 

  62. Alessandretti, L., Aslak, U. & Lehmann, S. The scales of human mobility. Nature 587, 402–407 (2020).

    Article  Google Scholar 

  63. Bliss, L. The war on cars, Norwegian edition. Bloomberg CityLab https://www.bloomberg.com/news/articles/2018-05-03/oslo-bans-cars-builds-a-bike-lane-haven (2018).

  64. Li, R. et al. Simple spatial scaling rules behind complex cities. Nat. Commun. 8, 1841 (2017).

    Article  Google Scholar 

  65. Louf, R. & Barthelemy, M. How congestion shapes cities: from mobility patterns to scaling. Sci. Rep. 4, 5561 (2014).

    Article  Google Scholar 

  66. Barthélemy, M. Spatial networks. Phys. Rep. 499, 1–101 (2011).

    Article  Google Scholar 

  67. Voloch, N., Voloch-Bloch, N. & Zadok, Y. Managing large distributed dynamic graphs for smart city network applications. Appl. Netw. Sci. 4, 130 (2019).

    Article  Google Scholar 

  68. Wang, P., Hunter, T., Bayen, A. M., Schechtner, K. & González, M. C. Understanding road usage patterns in urban areas. Sci. Rep. https://doi.org/10.1038/srep01001 (2012).

  69. Solé-Ribalta, A., Gómez, S. & Arenas, A. A model to identify urban traffic congestion hotspots in complex networks. R. Soc. Open Sci. 3, 160098 (2016).

    Article  Google Scholar 

  70. Çolak, S., Lima, A. & González, M. C. Understanding congested travel in urban areas. Nat. Commun. 7, 10793 (2016).

    Article  Google Scholar 

  71. Pappalardo, L., Manley, E., Sekara, V. & Alessandretti, L. Future directions in human mobility science. Nat. Comput. Sci. 3, 588–600 (2023).

    Article  Google Scholar 

  72. Silva, T. H. & Silver, D. Using graph neural networks to predict local culture. Environ. Plan. B Urban Anal. City Sci. https://doi.org/10.1177/23998083241262053 (2024).

  73. Shah, S. A. et al. Towards disaster resilient smart cities: can internet of things and big data analytics be the game changers? IEEE Access 7, 91885–91903 (2019).

    Article  Google Scholar 

  74. Caragliu, A. & Del Bo, C. F. Smart cities and the urban digital divide. npj Urban Sustain. 3, 43 (2023).

    Article  Google Scholar 

  75. Delclòs-Alió, X. & Miralles-Guasch, C. Looking at Barcelona through Jane Jacobs’s eyes: mapping the basic conditions for urban vitality in a Mediterranean conurbation. Land Use Policy 75, 505–517 (2018).

    Article  Google Scholar 

  76. Lynch, K. The Image of the City (MIT Press, 1960).

  77. Gehl, J. & Svarre, B. How to Study Public Life (Island Press, 2013).

  78. Huang, J. et al. Re-examining Jane Jacobs’ doctrine using new urban data in Hong Kong. Environ. Plan. B Urban Anal. City Sci. 50, 76–93 (2023).

    Article  Google Scholar 

  79. Osóch, B. & Czaplińska, A. City image based on mental maps – the case study of Szczecin (Poland). Misc. Geogr. 23, 111–119 (2019).

    Google Scholar 

  80. Dellenbaugh-Losse, M. & Dreyer, B. C. Gender Equal Cities (URBACT, 2022).

  81. Tedeschi, M. Datafication and urban (in) justice: towards a digital spatial justice. Geogr. Compass 18, e12763 (2024).

    Article  Google Scholar 

  82. Vanolo, A. Smartmentality: the smart city as disciplinary strategy. Urban Stud. 51, 883–898 (2014).

    Article  Google Scholar 

  83. Cugurullo, F. et al. The rise of AI urbanism in post-smart cities: a critical commentary on urban artificial intelligence. Urban Stud. 61, 1168–1182 (2024).

    Article  Google Scholar 

  84. Cardullo, P. & Kitchin, R. Smart urbanism and smart citizenship: the neoliberal logic of ‘citizen-focused’ smart cities in Europe. Environ. Plan. C Polit. Space 37, 813–830 (2019).

    Article  Google Scholar 

  85. Nelson, Q., Steffensmeier, D. & Pawaskar, S. A simple approach for sustainable transportation systems in smart cities: a graph theory model. In 2018 IEEE Conference on Technologies for Sustainability (SusTech) https://doi.org/10.1109/SusTech.2018.8671384(IEEE, 2018).

  86. Holland, O. Singapore is building a 42,000-home eco ‘smart’ city. CNN style https://edition.cnn.com/style/article/singapore-tengah-eco-town/index.html (2021).

  87. New, J., Castro, D. & Beckwith, M. How National Governments Can Help Smart Cities Succeed (Center for Data Innovation, 2017).

  88. Bettencourt, L. M. A. The origins of scaling in cities. Science 340, 1438–1441 (2013).

    Article  Google Scholar 

  89. Kennedy, C. A. et al. Energy and material flows of megacities. Proc. Natl Acad. Sci. USA 112, 5985–5990 (2015).

    Article  Google Scholar 

  90. Facchini, A., Kennedy, C., Stewart, I. & Mele, R. The energy metabolism of megacities. Appl. Energy 186, 86–95 (2017).

    Article  Google Scholar 

  91. Duren, R. M. & Miller, C. E. Measuring the carbon emissions of megacities. Nat. Clim. Chang. 2, 560–562 (2012).

    Article  Google Scholar 

  92. Rhoads, D., Solé-Ribalta, A., González, M. C. & Borge-Holthoefer, J. A sustainable strategy for open streets in (post) pandemic cities. Commun. Phys. 4, 183 (2021).

    Article  Google Scholar 

  93. Gurjar, B. R., Butler, T. M., Lawrence, M. G. & Lelieveld, J. Evaluation of emissions and air quality in megacities. Atmos. Environ. 42, 1593–1606 (2008).

    Article  Google Scholar 

  94. Parrish, D. D. & Zhu, T. Clean air for megacities. Science 326, 674–675 (2009).

    Article  Google Scholar 

  95. Kovats, R. S. & Kristie, L. E. Heatwaves and public health in Europe. Eur. J. Public Health 16, 592–599 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

M.D.D. acknowledges partial financial support from the INFN grant LINCOLN from MUR funding within the PRIN 2022 PNRR (DD n. 1214 31-07-2023) project no. P2022A889F and from MUR funding within the FIS (DD n. 1219 31-07-2023) project no. FIS00000158. G. Chirici declares partial support from PRIN 2020 MULTIFOR ‘Multi-scale observations to predict Forest response to pollution and climate change’ PRIN_2020_LS9 and from the project NBFC ‘National Biodiversity Future Center’ funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 – Call for tender No. 3138 16/12/2021, rectified by Decree n. 3175 18/12/2021 of Italian Ministry of University and Research funded by the European Union – NextGenerationEU; Award Number: Project code CN_00000033, Concession Decree No. 1034 of 1706/2022 adopted by the Italian Ministry of University and Research, CUP B83C220002910001. G. Caldarelli acknowledges support from EU proposal HumanE-AI-Net no. 952026 and EU proposal NODES CNECT/2022/5162608.

Author information

Authors and Affiliations

Authors

Contributions

G. Caldarelli and M.D.D. designed the paper’s focus and contributed equally to the writing of the manuscript. All of the authors contributed to the production of the paper.

Corresponding authors

Correspondence to Guido Caldarelli or Manlio De Domenico.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cities thanks Michail Fragkias, Perry Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caldarelli, G., Chiesi, L., Chirici, G. et al. Lessons from complex networks to smart cities. Nat Cities 2, 127–134 (2025). https://doi.org/10.1038/s44284-024-00188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44284-024-00188-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing