这是indexloc提供的服务,不要输入任何密码
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Homotypic RNA clustering accompanies a liquid-to-solid transition inside the core of multi-component biomolecular condensates

Abstract

RNA-driven condensation plays a central role in organizing and regulating ribonucleoprotein granules within cells. Disruptions to this process—such as the aberrant aggregation of repeat-expanded RNA—are associated with numerous neurological disorders. Here we study the role of biomolecular condensates in irreversible RNA aggregation. We find that physiologically relevant and disease-associated repeat RNAs spontaneously undergo an age-dependent percolation transition inside multi-component condensates to form nanoscale clusters. Homotypic RNA clusters drive the emergence of multi-phasic condensate structures, with an RNA-rich solid core surrounded by an RNA-depleted fluid shell. The timescale of RNA clustering is determined by sequence, secondary structure and repeat length. Importantly, G3BP1, the core scaffold of stress granules, introduces heterotypic buffering to homotypic RNA–RNA interactions and prevents RNA clustering in an ATP-independent manner. Our work suggests that biomolecular condensates can act as sites for RNA aggregation and highlights the chaperone-like function of RNA-binding proteins against aberrant RNA phase transitions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RNA aggregation is enhanced within multi-component biomolecular condensates.
Fig. 2: TERRA undergoes phase separation coupled to percolation that can be perturbed by mutations.
Fig. 3: TERRA repeat numbers dictate the timescale of RNA clustering.
Fig. 4: Repeat expanded RNAs form intracondensate clusters in a length-dependent manner.
Fig. 5: Intracondensate RNA clustering accompanies a liquid-to-solid transition.
Fig. 6: Heterotypic buffering by ASO and G3BP1 can prevent homotypic RNA clustering in biomolecular condensates.

Similar content being viewed by others

Data availability

All data are available in the Article or its Supplementary Information. Source data are provided with this paper. The source microscopy data are available via Dryad at https://doi.org/10.5061/dryad.cc2fqz6hn (ref. 90).

Code availability

Codes for nanorheology, SAC, RNA state diagram, co-localization analyses, condensate fusion assay and complex shear moduli estimation are available via GitHub at https://github.com/BanerjeeLab-repertoire/Biomolecular-Condensates-Can-Enhance-Pathological-RNA-Clustering (ref. 86).

References

  1. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  PubMed  Google Scholar 

  2. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pappu, R. V., Cohen, S. R., Dar, F., Farag, M. & Kar, M. Phase transitions of associative biomacromolecules. Chem. Rev. 123, 8945–8987 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lyon, A. S., Peeples, W. B. & Rosen, M. K. A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. 22, 215–235 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Alshareedah, I., Moosa, M. M., Pham, M., Potoyan, D. A. & Banerjee, P. R. Programmable viscoelasticity in protein–RNA condensates with disordered sticker-spacer polypeptides. Nat. Commun. 12, 6620 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jawerth, L. et al. Protein condensates as aging Maxwell fluids. Science 370, 1317–1323 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Riback, J. A. et al. Viscoelasticity and advective flow of RNA underlies nucleolar form and function. Mol. Cell 83, 3095–3107 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghosh, A., Kota, D. & Zhou, H.-X. Shear relaxation governs fusion dynamics of biomolecular condensates. Nat. Commun. 12, 5995 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alshareedah, I. et al. Sequence-specific interactions determine viscoelasticity and aging dynamics of protein condensates. Nat. Phys. 20, 1482–1491 (2024).

    Article  CAS  PubMed  Google Scholar 

  13. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. St George-Hyslop, P. et al. The physiological and pathological biophysics of phase separation and gelation of RNA binding proteins in amyotrophic lateral sclerosis and fronto-temporal lobar degeneration. Brain Res. 1693, 11–23 (2018).

    Article  Google Scholar 

  15. Zhou, X. et al. Mutations linked to neurological disease enhance self-association of low-complexity protein sequences. Science 377, eabn5582 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zbinden, A., Pérez-Berlanga, M., De Rossi, P. & Polymenidou, M. Phase separation and neurodegenerative diseases: a disturbance in the force. Dev. Cell 55, 45–68 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Alberti, S. & Carra, S. Quality control of membraneless organelles. J. Mol. Biol. 430, 4711–4729 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Babinchak, W. M. & Surewicz, W. K. Liquid–liquid phase separation and its mechanistic role in pathological protein aggregation. J. Mol. Biol. 432, 1910–1925 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin, Y., Protter, D. S., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Murakami, T. et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88, 678–690 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Linsenmeier, M. et al. The interface of condensates of the hnRNPA1 low-complexity domain promotes formation of amyloid fibrils. Nat. Chem. 15, 1340–1349 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Van Treeck, B. et al. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc. Natl Acad. Sci. USA 115, 2734–2739 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Protter, D. S. W. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668–679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tauber, D. et al. Modulation of RNA condensation by the DEAD-box protein eIF4A. Cell 180, 411–426 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin, Y., Schmidt, B. F., Bruchez, M. P. & McManus, C. J. Structural analyses of NEAT1 lncRNAs suggest long-range RNA interactions that may contribute to paraspeckle architecture. Nucleic Acids Res. 46, 3742–3752 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. West, J. A. et al. Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization. J. Cell Biol. 214, 817–830 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. La Spada, A. R. & Taylor, J. P. Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat. Rev. Genet. 11, 247–258 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Malik, I., Kelley, C. P., Wang, E. T. & Todd, P. K. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat. Rev. Mol. Cell Biol. 22, 589–607 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gatchel, J. R. & Zoghbi, H. Y. Diseases of unstable repeat expansion: mechanisms and common principles. Nat. Rev. Genet. 6, 743–755 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mankodi, A. et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289, 1769–1773 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Lee, J.-M. et al. CAG repeat not polyglutamine length determines timing of Huntington’s disease onset. Cell 178, 887–900 (2019).

    Article  Google Scholar 

  38. Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, Y. B. et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep. 5, 1178–1186 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kimchi, O., King, E. M. & Brenner, M. P. Uncovering the mechanism for aggregation in repeat expanded RNA reveals a reentrant transition. Nat. Commun. 14, 332 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Trcek, T. et al. Sequence-independent self-assembly of germ granule mRNAs into homotypic clusters. Mol Cell 78, 941–950 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Trcek, T. et al. Drosophila germ granules are structured and contain homotypic mRNA clusters. Nat. Commun. 6, 7962 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wadsworth, G. M. et al. RNAs undergo phase transitions with lower critical solution temperatures. Nat. Chem. 15, 1693–1704 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mittag, T. & Pappu, R. V. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol. Cell 82, 2201–2214 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6, e30294 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dar, F. et al. Biomolecular condensates form spatially inhomogeneous network fluids. Nat. Commun. 15, 3413 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Alshareedah, I. et al. Determinants of viscoelasticity and flow activation energy in biomolecular condensates. Sci. Adv. 10, eadi6539 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cusanelli, E. & Chartrand, P. Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity. Front. Genet. 6, 143 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E. & Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798–801 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Xu, Y., Suzuki, Y., Ito, K. & Komiyama, M. Telomeric repeat-containing RNA structure in living cells. Proc. Natl Acad. Sci. USA 107, 14579–14584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Collie, G. W., Haider, S. M., Neidle, S. & Parkinson, G. N. A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Res. 38, 5569–5580 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martadinata, H. & Phan, A. T. Structure of propeller-type parallel-stranded RNA G-quadruplexes, formed by human telomeric RNA sequences in K+ solution. JACS 131, 2570–2578 (2009).

    Article  CAS  Google Scholar 

  53. Bhattacharyya, D., Mirihana Arachchilage, G. & Basu, S. Metal cations in G-quadruplex folding and stability. Front. Chem. 4, 38 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Takahama, K., Kino, K., Arai, S., Kurokawa, R. & Oyoshi, T. Identification of Ewing’s sarcoma protein as a G-quadruplex DNA- and RNA-binding protein. FEBS J. 278, 988–998 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Takahama, K. & Oyoshi, T. Specific binding of modified RGG domain in TLS/FUS to G-quadruplex RNA: tyrosines in RGG domain recognize 2′-OH of the riboses of loops in G-quadruplex. JACS 135, 18016–18019 (2013).

    Article  CAS  Google Scholar 

  56. Renaud de la Faverie, A., Guédin, A., Bedrat, A., Yatsunyk, L. A. & Mergny, J. L. Thioflavin T as a fluorescence light-up probe for G4 formation. Nucleic Acids Res. 42, e65 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu, S. et al. Thioflavin T as an efficient fluorescence sensor for selective recognition of RNA G-quadruplexes. Sci. Rep. 6, 24793 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yeasmin Khusbu, F., Zhou, X., Chen, H., Ma, C. & Wang, K. Thioflavin T as a fluorescence probe for biosensing applications. Trends Anal. Chem. 109, 1–18 (2018).

    Article  CAS  Google Scholar 

  59. Reddy, K., Zamiri, B., Stanley, S. Y. R., Macgregor, R. B. Jr. & Pearson, C. E. The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures. J. Biol. Chem. 288, 9860–9866 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lipps, H. J. & Rhodes, D. G-quadruplex structures: in vivo evidence and function. Trends Cell Biol. 19, 414–422 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Randall, A. & Griffith, J. D. Structure of long telomeric RNA transcripts: the G-rich RNA forms a compact repeating structure containing G-quartets. J. Biol. Chem. 284, 13980–13986 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Martadinata, H., Heddi, B., Lim, K. W. & Phan, A. T. Structure of long human telomeric RNA (TERRA): G-quadruplexes formed by four and eight UUAGGG repeats are stable building blocks. Biochemistry 50, 6455–6461 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Usdin, K. The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. Genome Res. 18, 1011–1019 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fiszer, A. & Krzyzosiak, W. J. RNA toxicity in polyglutamine disorders: concepts, models, and progress of research. J. Mol. Med. 91, 683–691 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Sznajder, Ł. J. & Swanson, M. S. Short tandem repeat expansions and RNA-mediated pathogenesis in myotonic dystrophy. Int. J. Mol. Sci. 20, 3365 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Orr, H. T. et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat. Genet. 4, 221–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Davis, B. M., McCurrach, M. E., Taneja, K. L., Singer, R. H. & Housman, D. E. Expansion of a CUG trinucleotide repeat in the 3′ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc. Natl Acad. Sci. USA 94, 7388–7393 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jin, P. et al. RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila. Neuron 39, 739–747 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Alshareedah, I., Kaur, T. & Banerjee, P. R. in Methods in Enzymology, Vol. 646 (ed. Keating, C. D.) 143–183 (Academic Press, 2021).

  70. Ghosh, A., Kota, D. & Zhou, H. X. Determining thermodynamic and material properties of biomolecular condensates by confocal microscopy and optical tweezers. Methods Mol. Biol. 2563, 237–260 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Azevedo, T. N. & Rizzi, L. G. Microrheology of filament networks from Brownian dynamics simulations. J. Phys. Conf. Ser. 1483, 012001 (2020).

    Article  Google Scholar 

  72. Kar, M. et al. Phase-separating RNA-binding proteins form heterogeneous distributions of clusters in subsaturated solutions. Proc. Natl Acad. Sci. USA 119, e2202222119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mittag, T. & Parker, R. Multiple modes of protein–protein interactions promote RNP granule assembly. J. Mol. Biol. 430, 4636–4649 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tauber, D., Tauber, G. & Parker, R. Mechanisms and regulation of RNA condensation in RNP granule formation. Trends Biochem. Sci. 45, 764–778 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Protter, D. S. W. et al. Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly. Cell Rep. 22, 1401–1412 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Youn, J. Y. et al. Properties of stress granule and P-body proteomes. Mol. Cell 76, 286–294 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Yang, P. et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181, 325–345 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sanders, D. W. et al. Competing protein–RNA interaction networks control multiphase intracellular organization. Cell 181, 306–324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Guillén-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346–361 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ferreiro, D. U., Komives, E. A. & Wolynes, P. G. Frustration, function and folding. Curr. Opin. Struct. Biol. 48, 68–73 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Shen, Y. et al. The liquid-to-solid transition of FUS is promoted by the condensate surface. Proc. Natl Acad. Sci. USA 120, e2301366120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Alshareedah, I. et al. Interplay between short-range attraction and long-range repulsion controls reentrant liquid condensation of ribonucleoprotein–RNA complexes. J. Am. Chem. Soc. 141, 14593–14602 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Mahendran, T. S. et al. Biomolecular-Condensates-Can-Enhance-Pathological-RNA-Clustering. GitHub https://github.com/BanerjeeLab-repertoire/Biomolecular-Condensates-Can-Enhance-Pathological-RNA-Clustering (2024).

  87. Alshareedah, I., Thurston, G. M. & Banerjee, P. R. Quantifying viscosity and surface tension of multicomponent protein-nucleic acid condensates. Biophys. J. 120, 1161–1169 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. hDAQami™ Easy-to-Use Advanced Data Logging Application - Acquire, View, And Log Data - Download Only. msI https://www.measurementsystems.co.uk/measurement-computing/software-mcc/daqamitrade

  89. Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mahendran, T. S. et al. Biomolecular condensates can enhance homotypic RNA clustering [Dataset]. Dryad https://doi.org/10.5061/dryad.cc2fqz6hn (2025).

Download references

Acknowledgements

This work was supported by the US National Institutes of Health through grants R35 GM138186 (P.R.B.) and the St. Jude Children’s Research Collaborative on the Biology and Biophysics of RNP Granules (P.R.B.). The funders had no role in the study design, data collection and analysis, the decision to publish or the preparation of the manuscript. We gratefully acknowledge P. Taylor’s laboratory at St. Jude Children’s Research Hospital for providing purified G3BP1 protein. We also gratefully acknowledge I. Alshareedah, currently at Boston Children’s Hospital, Harvard Medical School, for providing the initial SAC analysis codes. We deeply appreciate critical feedback from R. Pappu and T. Mittag and the group members of Banerjee laboratory.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: P.R.B. and T.S.M.; methodology: P.R.B., T.S.M., A.S. and G.M.W.; investigation: P.R.B., T.S.M., A.S. and G.M.W. Specifically, T.S.M. performed all confocal imaging experiments and data analysis; A.S. performed VPT-based nanorheology measurements and SAC analysis; G.M.W. performed temperature-controlled microscopy of RNA samples; R.G. participated only in the development phase of this study. P.R.B. supervised all experiments and data analysis. Resources: P.R.B.; writing—original draft and revisions: P.R.B., G.M.W. and T.S.M.; writing—reviewing and editing: P.R.B., T.S.M., A.S. and G.M.W.; funding acquisition: P.R.B.

Corresponding author

Correspondence to Priya R. Banerjee.

Ethics declarations

Competing interests

P.R.B. is a member of the Biophysics Reviews (AIP Publishing) editorial board. This affiliation did not influence the work reported here. All other authors declare no conflicts of interest.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 TERRA clustering propensity is independent of the bulk RNA concentration.

Effect of titration of bulk RNA concentration in (a) (TERRA)10 and (b) (TERRA)4 containing ternary RGG-d(T)40 condensate systems on RNA cluster formation upon aging. The condensates and RNA clusters were visualized using FAM-labeled (TERRA)4. The composition of the condensate systems used here is 5 mg/ml RGG, variable d(T)40, and variable (TERRA)10 concentrations (as indicated in the figure panels), with the total nucleic acid concentration kept constant at 2.5 mg/ml. TERRA concentration (in mg/ml and molarity) used in each sample is indicated in each panel of the figure. The buffer contained 25 mM Tris-HCl (pH 7.5), 25 mM NaCl, and 20 mM DTT. The concentration of FAM labeled (TERRA)4 is 250 nM. Each measurement was independently repeated three times.

Extended Data Fig. 2 G-tracts determine the clustering propensity of TERRA independent of the G-quadruplex structure.

(a) Fluorescence images of WT (TERRA)10 and (mut6GtoU-TERRA)10 containing RGG-d(T)40 ternary condensates at different time points after sample preparation. (b) Reports Thioflavin T (ThT) fluorescence images of (mut6GtoU-TERRA)10 containing RGG-d(T)40 condensates at the indicated time points along with line profiles (shown in green) and corresponding ThT intensity profiles. The ThT intensity profiles for RGG-(TERRA)10-d(T)40 ternary condensates are shown (grey; data is taken from Fig. 2h) for comparison purposes. The composition of the condensate system used here is 1 mg/ml RNA [(TERRA)10, 50.7 μΜ; (mut6GtoU-TERRA)10, 51.3 μΜ], 5 mg/ml RGG, and 1.5 mg/ml d(T)40 in a buffer containing 25 mM Tris-HCl (pH 7.5), 25 mM NaCl, and 20 mM DTT. RNA clusters (or a lack thereof) were probed using 250 nM to 500 nM SYTO-13 in (a). The concentration of ThT used in (b) is 50 μΜ. These experiments were independently repeated three times.

Source data

Extended Data Fig. 3 Intra-condensate demixing of RNA clusters in a time-dependent manner.

(a) The white dashed lines shown here correspond to line profile analyses shown in (b) and (c). Pairwise line profile analyses of (TERRA)4 images with respect to RGG (b) and d(T)40 (c) as a function of time. Each line profile shown here is normalized with respect to the maximum intensity value, wherein all values were first offset by the minimum intensity value. The composition of the condensate system used here is 1 mg/ml (TERRA)4 (corresponds to 127 μΜ), 5 mg/ml RGG, and 1.5 mg/ml d(T)40 in a buffer containing 25 mM Tris-HCl (pH 7.5), 25 mM NaCl, and 20 mM DTT. The concentration range of labeled components is 250 nM. Each measurement was independently repeated three times.

Source data

Extended Data Fig. 4 GC-rich repeat expanded RNAs form intra-condensate clusters in a length-dependent manner.

Fluorescence images utilizing SYTO-13 and Cy5-d(T)40 of RGG-d(T)40 condensates containing either r(CAG) or r(CUG) repeat RNAs corresponding to data shown in Fig. 4b–e. The composition of the condensate system used here is 1 mg/ml RNA [0.45 mg/ml in the case of r(CUG)47; r(CAG)20, 51.2 μM; r(CAG)31, 33 μM; r(CUG)31, 33.8 μM; r(CUG)47, 10 μM], 5 mg/ml RGG, and 1.5 mg/ml d(T)40 in a buffer containing 25 mM Tris-HCl (pH 7.5), 25 mM NaCl, and 20 mM DTT. The concentration range of labeled components is 250 nM to 500 nM. Each measurement was independently repeated three times.

Extended Data Fig. 5 Fluorescence recovery after photobleaching (FRAP) reveals dynamical arrest of the RNA component, TERRA, but not RGG and d(T)40 with condensate aging.

(a) Schematic of FRAP assay in condensate. (b) Fluorescence images of (TERRA)4 containing RGG-d(T)40 condensates at pre-bleach, bleach, and post-bleach steps of FRAP experiments corresponding to Fig. 5c and Supplementary Videos 1116. Shaded regions in each plot signify the standard error. The composition of the (TERRA)4 containing RGG-d(T)40 condensate system used here is 1 mg/ml (TERRA)4 (corresponds to 127 μM), 5 mg/ml RGG, and 1.5 mg/ml d(T)40 in a buffer containing 25 mM Tris-HCl (pH 7.5), 25 mM NaCl, and 20 mM DTT. The concentration of labeled components is 250 nM. Each experiment was independently repeated three times.

Extended Data Fig. 6 Cluster size measurements in quaternary condensate systems show the efficacy of ASO or G3BP1 in buffering intra-condensate RNA clustering.

The cluster size plots from SAC at distinct sample ages for (a) ASO-treated (TERRA)10 containing ternary condensate system, (b) G3BP1-treated (TERRA)10 containing ternary condensate system, (c) G3BP1-treated r(CAG)31 containing ternary condensate system, and (d) G3BP1-treated r(CUG)47 containing ternary condensate system. The detection limit of SAC is demarcated (see Methods for further details). All box plot elements are defined similarly to Fig. 2d. The concentrations of the ASO and G3BP1 are 1 mg/ml and 10 μM, respectively. The composition of the ternary condensate system used in these experiments is 1 mg/ml RNA [0.45 mg/ml in the case of r(CUG)47; (TERRA)10, 101 μΜ, r(CAG)31, 33 μM; r(CUG)47, 10 μM], 5 mg/ml RGG, and 1.5 mg/ml d(T)40. Buffer composition for all experiments is 25 mM Tris-HCl (pH 7.5), 25 mM NaCl, and 20 mM DTT. The concentration range of labeled components is 250 nM to 500 nM. The sample size for each condition is 10 condensates, representative of three biological replicates.

Source data

Extended Data Fig. 7 Scrambled ASO is unable to obstruct intra-condensate RNA clustering.

Fluorescence images utilizing FAM-(TERRA)4 and Cy5-d(T)40 of (TERRA)10 containing RGG-d(T)40 condensates treated with a scrambled version of TERRA antisense oligonucleotide (ASO): CACUAC. The composition of the condensates is 1.0 mg/ml (TERRA)10 (corresponds to 50.7 μM), 5.0 mg/ml RGG, 1.5 mg/ml d(T)40 in a buffer containing 25 mM Tris-HCl (pH 7.5), 25 mM NaCl, 20 mM DTT. 1.0 mg/ml ASO was added to the buffer prior to condensate formation. The concentration range of labeled components is 250 nM to 500 nM. This experiment was independently repeated three times.

Extended Data Fig. 8 G3BP1 buffers intra-condensate RNA clustering.

(top) Fluorescence images utilizing FAM-(TERRA)4 and Cy5-d(T)40 of RGG-d(T)40 condensates containing (TERRA)10 along with G3BP1. (bottom) Cluster sizes derived from SAC are reported. The detection limit of SAC is demarcated. These observations correspond to data shown in Fig. 6. The composition of the condensate system used here is 10 μM G3BP1, 1 mg/ml RNA (corresponds to 50.7 μM), 5 mg/ml RGG, and 1.5 mg/ml d(T)40 in a buffer containing 25 mM Tris-HCl (pH 7.5), 25 mM NaCl, and 20 mM DTT. The concentration of labeled components is 250 nM. The sample size for each condition is 10 condensates, representative of three biological replicates.

Source data

Extended Data Fig. 9 A schematic showing the proposed model of intra-condensate RNA percolation and heterotypic buffering.

(a) A model of multi-component condensates formed by two RNAs with strong (as shown in green) and weak (as shown in orange) percolation propensity, respectively, and an RBP. (b) Three possible scenarios of RNA percolation-driven condensate aging or a lack thereof in the presence of a multivalent RBP. (c) Zoomed-in views of the panels shown above.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–35, Notes 1–7, Tables 1 and 2, video legends and references.

Reporting Summary

Supplementary Video 1

Time-lapse fluorescence imaging showing cluster formation in RGG–d(T)40 condensates containing (TERRA)10, as visualized by SYTO-13 fluorescence. The composition of the condensate system used here is 1 mg ml−1 (TERRA)10, 5 mg ml−1 RGG and 1.5 mg ml−1 d(T)40 in a buffer containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl and 20 mM DTT. The concentration of the labelled component is 500 nM. Scale bar, 10 μm.

Supplementary Video 2

Addition of 1.5 mg ml−1 d(T)40, doped with Cy5-labelled d(T)40, to RGG–(TERRA)10 condensates visualized with FAM-(TERRA)4 fluorescence. The composition of the binary condensate system used here is 1 mg ml−1 (TERRA)10 and 5 mg ml−1 RGG in a buffer containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl and 20 mM DTT. The concentration of the labelled components is 250 nM.

Supplementary Video 3

Temperature-controlled microscopy showing (TERRA)10 phase separation coupled to percolation; 1 mg ml−1 (TERRA)10 in a buffer composed of 50 mM HEPES (pH 7.5), 6.25 mM Mg2+.

Supplementary Video 4

Temperature-controlled microscopy showing shape relaxation and persistence of percolated (TERRA)10 condensates; 1 mg ml−1 (TERRA)10 in buffer composed of 50 mM HEPES (pH 7.5), 10 mM Mg2+.

Supplementary Video 5

Temperature-controlled microscopy showing reversible phase separation of (mut-TERRA)10; 1 mg ml−1 (mut-TERRA)10 in buffer composed of 50 mM HEPES pH 7.5, 25 mM Mg2+.

Supplementary Video 6

Active fusion of (TERRA)10-containing RGG–d(T)40 condensates at 20 min of age visualized with FAM-(TERRA)4 and Cy5-d(T)40 fluorescence. The composition of the condensate system used here is 1 mg ml−1 (TERRA)10, 5 mg ml−1 RGG and 1.5 mg ml−1 d(T)40 in a buffer containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl and 20 mM DTT. The concentration of the labelled components is 250 nM.

Supplementary Video 7

Active fusion of (TERRA)10-containing RGG–d(T)40 condensates at 150 min of age visualized with FAM-(TERRA)4 and Cy5-d(T)40 fluorescence. The composition of the condensate system used here is 1 mg ml−1 (TERRA)10, 5 mg ml−1 RGG and 1.5 mg ml−1 d(T)40 in a buffer containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl and 20 mM DTT. The concentration of the labelled components is 250 nM.

Supplementary Video 8

Dissolution of the condensate shell but not the inner RNA clusters using 455 mM NaCl in a 6-h-aged RGG–d(T)40 condensate containing (TERRA)10, visualized with FAM-(TERRA)4 and Cy5-d(T)40 fluorescence. The composition of the condensate system used here is 0.5 mg ml−1 (TERRA)10, 2.5 mg ml−1 RGG and 0.75 mg ml−1 d(T)40 in a buffer containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl and 20 mM DTT. The concentration of the labelled components is 250 nM.

Supplementary Video 9

Dissolution of the condensate shell but not the inner RNA clusters using 455 mM NaCl in a 24-h-aged RGG–d(T)40 condensate containing (TERRA)10, visualized by FAM-(TERRA)4 and Cy5-d(T)40 fluorescence. The composition of the condensate system used here is 1 mg ml−1 (TERRA)10, 5 mg ml−1 RGG and 1.5 mg ml−1 d(T)40 in a buffer containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl and 20 mM DTT. The concentration of the labelled components is 250 nM.

Supplementary Video 10

Dissolution of freshly prepared (15 min of age) RGG–d(T)40 condensates containing (TERRA)10 using 455 mM NaCl, visualized with FAM-(TERRA)4 and Cy5-d(T)40 fluorescence. The composition of the condensate system used here is 0.5 mg ml−1 (TERRA)10, 2.5 mg ml−1 RGG and 0.75 mg ml−1 d(T)40 in a buffer containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl and 20 mM DTT. The concentration of the labelled components is 250 nM.

Supplementary Video 11

FRAP of FAM-(TERRA)4 at the 0-h timepoint in (TERRA)4-containing RGG–d(T)40 condensates. Scale bar, 10 μm. The composition of the condensate system used here is 1 mg ml−1 (TERRA)4, 5 mg ml−1 RGG and 1.5 mg ml−1 d(T)40 in a buffer containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl and 20 mM DTT. The concentration of the labelled component is 250 nM.

Supplementary Video 12

FRAP of A594-RGG at the 0-h timepoint in (TERRA)4-containing RGG–d(T)40 condensates. Scale bar, 10 μm. The composition of the condensate system used here is 1 mg ml−1 (TERRA)4, 5 mg ml−1 RGG and 1.5 mg ml−1 d(T)40 in a buffer containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl and 20 mM DTT. The concentration of the labelled component is 250 nM.

Supplementary Video 13

FRAP of Cy5-d(T)40 at the 0-h timepoint in (TERRA)4-containing RGG–d(T)40 condensates. Scale bar, 10 μm. The composition of the condensate system used here is 1 mg ml−1 (TERRA)4, 5 mg ml−1 RGG and 1.5 mg ml−1 d(T)40 in a buffer containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl and 20 mM DTT. The concentration of the labelled component is 250 nM.

Supplementary Video 14

FRAP of FAM-(TERRA)4 at the 8-h timepoint in (TERRA)4-containing RGG–d(T)40 condensates. Scale bar, 10 μm. The composition of the condensate system used here is 1 mg ml−1 (TERRA)4, 5 mg ml−1 RGG and 1.5 mg ml−1 d(T)40 in a buffer containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl and 20 mM DTT. The concentration of the labelled component is 250 nM.

Supplementary Video 15

FRAP of A594-RGG at the 8-h timepoint in (TERRA)4-containing RGG–d(T)40 condensates. Scale bar, 10 μm. The composition of the condensate system used here is 1 mg ml−1 (TERRA)4, 5 mg ml−1 RGG and 1.5 mg ml−1 d(T)40 in a buffer containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl and 20 mM DTT. The concentration of the labelled component is 250 nM.

Supplementary Video 16

FRAP of Cy5-d(T)40 at the 8-h timepoint in (TERRA)4-containing RGG–d(T)40 condensates. Scale bar, 10 μm. The composition of the condensate system used here is 1 mg ml−1 (TERRA)4, 5 mg ml−1 RGG and 1.5 mg ml−1 d(T)40 in a buffer containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl and 20 mM DTT. The concentration of the labelled component is 250 nM.

Supplementary Video 17

VPT of 200-nm beads inside (TERRA)10-containing RGG–d(T)40 condensates at the 15-min timepoint after sample preparation. The composition of the condensate system used here is 2 mg ml−1 (TERRA)10, 10 mg ml−1 RGG and 3 mg ml−1 d(T)40 in a buffer containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl and 20 mM DTT.

Supplementary Video 18

VPT of 200-nm beads inside (TERRA)10-containing RGG–d(T)40 condensates at the 45-min timepoint after sample preparation. The composition of the condensate system used here is 2 mg ml−1 (TERRA)10, 10 mg ml−1 RGG and 3 mg ml−1 d(T)40 in a buffer containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl and 20 mM DTT.

Supplementary Video 19

VPT of 200-nm beads inside (TERRA)10-containing RGG–d(T)40 condensates at the 150-min timepoint after sample preparation. The composition of the condensate system used here is 2 mg ml−1 (TERRA)10, 10 mg ml−1 RGG and 3 mg ml−1 d(T)40 in a buffer containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl and 20 mM DTT.

Supplementary Video 20

Addition of 1 mg ml−1 ASO (r(CCCUAA)) to 5-h-aged RGG–d(T)40 condensates with RNA clusters of (TERRA)10, visualized with FAM-(TERRA)4 and Cy5-d(T)40 fluorescence. The composition of the condensate system used here is 0.5 mg ml−1 (TERRA)10, 2.5 mg ml−1 RGG and 0.75 mg ml−1 d(T)40 in a buffer containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl and 20 mM DTT. The concentration of the labelled components is 250 nM.

Supplementary Video 21

Addition of 1 mg ml−1 ASO (r(CCCUAA)) to 18-h-aged RGG–d(T)40 condensates with RNA clusters of (TERRA)10, visualized with FAM-(TERRA)4 and Cy5-d(T)40 fluorescence. The composition of the condensate system used here is 0.5 mg ml−1 (TERRA)10, 2.5 mg ml−1 RGG and 0.75 mg ml−1 d(T)40 in a buffer containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl and 20 mM DTT. The concentration of the labelled components is 250 nM.

Supplementary Data 1

Source data for Supplementary Figs. 6, 7, 9, 10, 12–14, 17, 19–22, 25, 28, 31, 33 and 34, for example, statistical source data.

Source data

Source Data Figs. 1–6

Statistical source data.

Source Data Extended Data Figs. 2, 3, 6 and 8

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahendran, T.S., Wadsworth, G.M., Singh, A. et al. Homotypic RNA clustering accompanies a liquid-to-solid transition inside the core of multi-component biomolecular condensates. Nat. Chem. 17, 1236–1246 (2025). https://doi.org/10.1038/s41557-025-01847-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01847-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing