这是indexloc提供的服务,不要输入任何密码
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing

A Corrigendum to this article was published on 10 June 2013

This article has been updated

Abstract

Single-molecule real-time (SMRT) DNA sequencing allows the systematic detection of chemical modifications such as methylation but has not previously been applied on a genome-wide scale. We used this approach to detect 49,311 putative 6-methyladenine (m6A) residues and 1,407 putative 5-methylcytosine (m5C) residues in the genome of a pathogenic Escherichia coli strain. We obtained strand-specific information for methylation sites and a quantitative assessment of the frequency of methylation at each modified position. We deduced the sequence motifs recognized by the methyltransferase enzymes present in this strain without prior knowledge of their specificity. Furthermore, we found that deletion of a phage-encoded methyltransferase-endonuclease (restriction-modification; RM) system induced global transcriptional changes and led to gene amplification, suggesting that the role of RM systems extends beyond protecting host genomes from foreign DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extensive kinetic variation detected in C227-11.
Figure 2: Identification and annotation of the MTases targeting the different sequence motifs in the C227-11 genome.
Figure 3: Φ104 encodes a functional restriction-modification system.
Figure 4: The RM system associated with M.

Similar content being viewed by others

Change history

  • 03 May 2013

    In the version of this article initially published, on p. 1235, line 32, the wrong MTases were given for the motif GATC. Instead of “…GATC (for M.EcoGI and M.EcoGII)…,” it should have read, “…GATC (for M.EcoGV and M.EcoGVII)….” The error has been corrected for the PDF and HTML versions of this article.

References

  1. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    Article  CAS  Google Scholar 

  2. Kumar, S. et al. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 22, 1–10 (1994).

    Article  CAS  Google Scholar 

  3. Roberts, R.J., Vincze, T., Posfai, J. & Macelis, D. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 38, D234–D236 (2010).

    Article  CAS  Google Scholar 

  4. Swinton, D. et al. Purification and characterization of the unusual deoxynucleoside, α-N-(9-β-D-2′-deoxyribofuranosylpurin-6-yl)glycinamide, specified by the phage Mu modification function. Proc. Natl. Acad. Sci. USA 80, 7400–7404 (1983).

    Article  CAS  Google Scholar 

  5. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  Google Scholar 

  6. Warren, R.A. Modified bases in bacteriophage DNAs. Annu. Rev. Microbiol. 34, 137–158 (1980).

    Article  CAS  Google Scholar 

  7. Wyatt, G.R. & Cohen, S.S. A new pyrimidine base from bacteriophage nucleic acids. Nature 170, 1072–1073 (1952).

    Article  CAS  Google Scholar 

  8. Anway, M.D., Cupp, A.S., Uzumcu, M. & Skinner, M.K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466–1469 (2005).

    Article  CAS  Google Scholar 

  9. Jirtle, R.L. & Skinner, M.K. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8, 253–262 (2007).

    Article  CAS  Google Scholar 

  10. Kong, A. et al. Parental origin of sequence variants associated with complex diseases. Nature 462, 868–874 (2009).

    Article  CAS  Google Scholar 

  11. Casadesús, J. & Low, D. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70, 830–856 (2006).

    Article  Google Scholar 

  12. Collier, J., McAdams, H.H. & Shapiro, L. A DNA methylation ratchet governs progression through a bacterial cell cycle. Proc. Natl. Acad. Sci. USA 104, 17111–17116 (2007).

    Article  CAS  Google Scholar 

  13. Heithoff, D.M., Sinsheimer, R.L., Low, D.A. & Mahan, M.J. An essential role for DNA adenine methylation in bacterial virulence. Science 284, 967–970 (1999).

    Article  CAS  Google Scholar 

  14. Marinus, M.G. & Casadesus, J. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol. Rev. 33, 488–503 (2009).

    Article  CAS  Google Scholar 

  15. Stephens, C., Reisenauer, A., Wright, R. & Shapiro, L. A cell cycle-regulated bacterial DNA methyltransferase is essential for viability. Proc. Natl. Acad. Sci. USA 93, 1210–1214 (1996).

    Article  CAS  Google Scholar 

  16. van der Woude, M., Braaten, B. & Low, D. Epigenetic phase variation of the pap operon in Escherichia coli. Trends Microbiol. 4, 5–9 (1996).

    Article  CAS  Google Scholar 

  17. Cokus, S.J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008).

    Article  CAS  Google Scholar 

  18. Kahramanoglou, C. et al. Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. Nat. Commun. 3, 886 (2012).

    Article  Google Scholar 

  19. Booth, M.J. et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336, 934–937 (2012).

    Article  CAS  Google Scholar 

  20. Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380 (2012).

    Article  CAS  Google Scholar 

  21. Schadt, E.E., Turner, S. & Kasarskis, A. A window into third-generation sequencing. Hum. Mol. Genet. 19, R227–R240 (2010).

    Article  CAS  Google Scholar 

  22. Clark, T.A. et al. Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res. 40, e29 (2012).

    Article  CAS  Google Scholar 

  23. Flusberg, B.A. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7, 461–465 (2010).

    Article  CAS  Google Scholar 

  24. Schadt, E.E. et al. Modeling kinetic rate variation in third generation DNA sequencing data to detect putative modifications to DNA bases. Genome Res. advance online publication, doi:10.1101/gr.136739.111 (23 October 2012).

  25. Roberts, R.J. & Halford, S.E. Type II Restriction Enzymes (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1993).

    Google Scholar 

  26. Srikhanta, Y.N. et al. Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLoS Pathog. 5, e1000400 (2009).

    Article  Google Scholar 

  27. Reisenauer, A., Kahng, L.S., McCollum, S. & Shapiro, L. Bacterial DNA methylation: a cell cycle regulator? J. Bacteriol. 181, 5135–5139 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rasko, D.A. et al. Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N. Engl. J. Med. 365, 709–717 (2011).

    Article  CAS  Google Scholar 

  29. Bailey, T.L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–8 (2009).

    Article  CAS  Google Scholar 

  30. Broadbent, S.E., Balbontin, R., Casadesus, J., Marinus, M.G. & van der Woude, M. YhdJ, a nonessential CcrM-like DNA methyltransferase of Escherichia coli and Salmonella enterica. J. Bacteriol. 189, 4325–4327 (2007).

    Article  CAS  Google Scholar 

  31. Wion, D. & Casadesus, J. N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat. Rev. Microbiol. 4, 183–192 (2006).

    Article  CAS  Google Scholar 

  32. Low, D.A., Weyand, N.J. & Mahan, M.J. Roles of DNA adenine and methylation in regulating bacterial gene expression and virulence. Infect. Immun. 69, 7197–1204 (2001).

    Article  CAS  Google Scholar 

  33. Camacho, E.M. & Casadesus, J. Regulation of traJ transcription in the Salmonella virulence plasmid by strand-specific DNA adenine hemimethylation. Mol. Microbiol. 57, 1700–1718 (2005).

    Article  CAS  Google Scholar 

  34. Løbner-Olesen, A., Skovgaard, O. & Marinus, M.G. Dam methylation: coordinating cellular processes. Curr. Opin. Microbiol. 8, 154–160 (2005).

    Article  Google Scholar 

  35. Messer, W. & Noyer-Weidner, M. Timing and targeting: the biological functions of Dam methylation in E. coli. Cell 54, 735–737 (1988).

    Article  CAS  Google Scholar 

  36. Roberts, D., Hoopes, B.C., McClure, W.R. & Kleckner, N. IS10 transposition is regulated by DNA adenine methylation. Cell 43, 117–130 (1985).

    Article  CAS  Google Scholar 

  37. Kaper, J.B., Nataro, J.P. & Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140 (2004).

    Article  CAS  Google Scholar 

  38. Karam, J.D. & Drake, J.W. Molecular biology of bacteriophage T4 (American Society for Microbiology, Washington, DC, USA, 1994).

  39. Drozdz, M., Piekarowicz, A., Bujnicki, J.M. & Radlinska, M. Novel non-specific DNA adenine methyltransferases. Nucleic Acids Res. 40, 2119–2130 (2012).

    Article  CAS  Google Scholar 

  40. Furuta, Y., Abe, K. & Kobayashi, I. Genome comparison and context analysis reveals putative mobile forms of restriction-modification systems and related rearrangements. Nucleic Acids Res. 38, 2428–2443 (2010).

    Article  CAS  Google Scholar 

  41. Travers, K.J., Chin, C.S., Rank, D.R., Eid, J.S. & Turner, S.W. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res. 38, e159 (2010).

    Article  Google Scholar 

  42. Chin, C.S. et al. The origin of the Haitian cholera outbreak strain. N. Engl. J. Med. 364, 33–42 (2011).

    Article  CAS  Google Scholar 

  43. Korlach, J. et al. Real-time DNA sequencing from single polymerase molecules. Methods Enzymol. 472, 431–455 (2010).

    Article  CAS  Google Scholar 

  44. Bentley, D.R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  Google Scholar 

  45. Robinson, M.D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

    Article  Google Scholar 

  46. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  47. Milton, D.L., O'Toole, R., Horstedt, P. & Wolf-Watz, H. Flagellin A is essential for the virulence of Vibrio anguillarum. J. Bacteriol. 178, 1310–1319 (1996).

    Article  CAS  Google Scholar 

  48. Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    Article  CAS  Google Scholar 

  49. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  50. Kaiser, A.D. & Jacob, F. Recombination between related temperate bacteriophages and the genetic control of immunity and prophage localization. Virology 4, 509–521 (1957).

    Article  CAS  Google Scholar 

  51. Dhillon, T.S. & Dhillon, E.K. Temperate coliphage HK022. Clear plaque mutants and preliminary vegetative map. Jpn. J. Microbiol. 20, 385–396 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a US National Science Foundation grant IIS0916439 (G.F. and V.K.) and NIH R37 AI-42347 and HHMI (M.K.W.).

Author information

Authors and Affiliations

Authors

Contributions

G.F., D.M., M.K.W. and E.E.S. designed the experiments; G.F., D.M., D.I.F., A.M., M.C.C., O.B., Z.F., I.A.M., A.K.-P., A.C., R.J.R., J.K., S.W.T., V.K., M.K.W. and E.E.S. designed the methods; D.M., D.I.F., A.M., M.C.C., M.C.M., O.J.J., G.D., T.A.C., K.L., I.A.M., A.K.-P. and A.C. carried out all sample-preparation experiments, all sequencing runs and all validation experiments; G.F., D.M., D.I.F., A.M., M.C.C., O.B., Z.F., B.L., I.A.M., B.M.D., A.K.-P., A.C., R.J.R., V.K., M.K.W. and E.E.S. jointly analyzed the data sets; and G.F., D.M., D.I.F., A.M., M.C.C., M.C.M., O.J.J., T.A.C., B.M.D., A.K.-P., A.C., R.J.R., J.K., M.K.W. and E.E.S. wrote the manuscript.

Corresponding authors

Correspondence to Matthew K Waldor or Eric E Schadt.

Ethics declarations

Competing interests

O.B., T.A.C., K.L., J.K., S.W.T. and E.E.S. are employees or consultants for and own stock in Pacific Biosciences.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–2 and Supplementary Figures 1–15 (PDF 1923 kb)

Supplementary Table 3

Genes annotated in the C227-11 genome (PDF 836 kb)

Supplementary Table 4

C227-11 versus C227-11-delRM gene expression signature (PDF 552 kb)

Supplementary Table 5

Pathway enrichments for signature genes for different comparisons between strains that contain the RM.EcoGIII system and strains that do not contain this system (PDF 198 kb)

Supplementary Table 6

C227-11 versus 55989 gene expression signature (PDF 637 kb)

Supplementary Table 7

K12/K37 versus k12+Stx104 phage gene expression signature (PDF 507 kb)

Supplementary Table 8

Genes from Supplementary Table 4 ordered in the way in which they occur in the heatmap in Figure 4b of the main text (PDF 94 kb)

Supplementary Table 9

Synthetic oligonucleotides used for PCR amplification and subcloning of E.coli KV methyltransferase genes (PDF 44 kb)

Supplementary Tables 3, 4, 6, 7 and 8 (XLSX 6398 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, G., Munera, D., Friedman, D. et al. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat Biotechnol 30, 1232–1239 (2012). https://doi.org/10.1038/nbt.2432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2432

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing