这是indexloc提供的服务,不要输入任何密码
Skip to main content

Advertisement

Log in

Unravelling the Role of Biomarker in Cancer Detection: An In-Depth Review

  • Review
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In healthcare, biomarkers are essential for personalised medicine, prognosis, therapy response, and disease diagnosis. They make it possible for better patient outcomes, early detection, and intervention. They support customised treatment programs, anticipate the progress of diseases, and direct treatment decisions. Different types of cancer biomarkers fordiagnosis, detection processes, challenges, and future perspectives are discussed in this review study. Preclinical studies of cancer biomarkers are also includedin the article with particular attention paid to developments in testing procedures, knowledge of the immune microenvironment, biological characterisation, and tumour profiling.

Recent Findings

A gene, gene product, etc. that is produced during cell division and genetic alteration can be a cancer biomarker. Numerous studies have identified unique biomarkers that allow for the early identification of a variety of cancer types, including colorectal, lung, breast, kidney, pancreatic, and oral malignancies. Examining human biological fluids such as blood, urine, plasma, serum, and tumor cells confirms their existence.Given the needs of point of care, cancer biomarkers have the potential to be utilized in both treatment monitoring and cancer prediction. Recent research has demonstrated that molecular biomarkers provide important information for the early identification of malignancies that could otherwise be difficult to identify. By presenting a comprehensive, interdisciplinary perspective on cancer biomarkers and integrating diagnostic and therapeutic concepts across a number of cancer types, this article stands out from earlier research. This review fills a significant gap by addressing a range of cancer types and addressing biomarkers in numerous biological matrices. Earlier research has often focused on single biomarkers or specific diseases. Most importantly, it considers advances in preclinical science, e.g., the improvements in test processes, biological characterisation, and immune microenvironment assessment. In doing so, this work provides an up-to-date overview that stresses the clinical importance of biomarkers along with their increasing role in the optimisation of clinical trials, precision medicine, and in-the-moment therapeutic decision-making. By using this approach, the study offers a forward-looking viewpoint on enhancing the therapeutic usefulness and repeatability of cancer biomarkers in addition to presenting the existing picture.

Summary

With an emphasis on their application in clinical research, therapeutic development, and patient care, the definitions of biomarkers outlined by the National Institutes of Health and the U.S. Food and Drug Administration. By identifying acceptable patients and accelerating approval procedures, biomarkers also improve clinical trials and drug development. In oncology, biomarkers are essential and required to be extensively assessed for screening, differential diagnosis, risk assessment and disease progression surveillance.

Graphical Abstract

Biomarker in cancer detection: an in-depth review

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

KRAS:

Kirsten rat sarcoma viral oncogene homologue

EGFR:

Estimated glomerular filtration rate

HER2:

Human epidermal growth factor receptor 2

beta-HCG:

Beta-human chorionic gonadotropin

CEA:

Carcinoembryonic antigen

PSA:

Prostate-specific antigen

CA125:

Cancer antigen 125

MUC-1:

Mucin 1

PET:

Positron emission tomography

CT:

Computed Tomography

MRI:

Magnetic Resonance Imaging

AFP:

Alpha-fetoprotein

BRCA:

BReastCAncer gene

CSCs:

Cancer stem cells

EBV DNA:

Epstein-Barr virus DNA

2D-PAGE:

Two-Dimensional Polyacrylamide Gel Electrophoresis

MALDI:

Matrix-Assisted Laser Desorption/Ionization

SELDI:

Surface-Enhanced Laser Desorption/Ionization

BRAF:

v-raf murine sarcoma viral oncogene homolog B1

PD-L1:

Programmed Death Ligand 1

References

  1. Tenchov R, Sapra AK, Sasso J, Ralhan K, Tummala A, Azoulay N, Zhou QA. Biomarkers for early cancer detection: A landscape view of recent advancements, spotlighting pancreatic and liver cancers. ACS Pharmacol Translational Sci. 2024;7(3):586–613.

    Article  CAS  Google Scholar 

  2. Califf RM. Biomarker definitions and their applications. Exp Biol Med (Maywood). 2018;243(3):213–21. https://doi.org/10.1177/1535370217750088.

    Article  CAS  PubMed  Google Scholar 

  3. WHO International Programme on Chemical Safety Biomarkers and Risk Assessment: Concepts and Principles. 1993 Retrieved from http://www.inchem.org/documents/ehc/ehc/ehc155.htm

  4. FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource. Silver Spring (MD): Food and Drug Administration (US); Bethesda (MD): National Institutes of Health (US). www.ncbi.nlm.nih.gov/books/NBK326791/ (2016, accessed 22 September 2017).

  5. Mukherjee S, Maity S, Ghosh A, Biswas P, Khamkat P. A review on biomarker and its potential application. World J Pharm Res. 2017;6(4):536–48.

    Article  CAS  Google Scholar 

  6. Walsh MF, Ritter DI, Kesserwan C, et al. Integrating somatic variant data and biomarkers for germline variant classification in cancer predisposition genes. Hum Mutat. 2018;39:1542–52.

    Article  PubMed  Google Scholar 

  7. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463–6. https://doi.org/10.1097/COH.0b013e32833ed177.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Karley D, Gupta D, Tiwari A. Biomarker for cancer: A great promise for future. World J Oncol. 2011;2(4):151–7. https://doi.org/10.4021/wjon352w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cho WC. Contribution of oncoproteomics to cancer biomarker discovery. Mol Cancer. 2007;6:25.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol. 2012;6:140–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wishart DS, Bartok B, Oler E, Liang KY, Budinski Z, Berjanskii M, Guo A, Cao X, Wilson M. MarkerDB: an online database of molecular biomarkers. Nucleic Acids Res. 2021;49:1259–67. https://doi.org/10.1093/nar/gkaa1067.

    Article  CAS  Google Scholar 

  12. Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo M, Bhatt P. Biomarkers in stress related diseases/disorders: diagnostic, prognostic, and therapeutic values. Front Mol Biosci. 2019;6:91. https://doi.org/10.3389/fmolb.2019.00091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kamel HFM, Al-Amodi HSB. Cancer biomarkers. Role of biomarkers.in medicine. InTech; 2016. https://doi.org/10.5772/62421

  14. Weigelt B, Peterse JL, Van’t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5:591–602.

    Article  CAS  PubMed  Google Scholar 

  15. Duffy MJ. Use of biomarkers in screening for cancer. Adv Exp Med Biol. 2015;867:27–39.

    Article  CAS  PubMed  Google Scholar 

  16. Catalona WJ, Smith DS, Ratliff TL, Dodds KM, Coplen DE, Yuan JJ. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med. 1991;324:1156–61.

    Article  CAS  PubMed  Google Scholar 

  17. Bodaghi A, Fattahi N, Ramazani A, Biomarkers. Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon. 2023;9(2):13323. https://doi.org/10.1016/j.heliyon.2023.e13323.

    Article  CAS  Google Scholar 

  18. Davis AA, Patel VG. The role of PD-L1 expression as a predictive biomarker: an analysis of all US food and drug administration (FDA) approvals of immune checkpoint inhibitors. J Immunother Cancer. 2019;7(1):278. https://doi.org/10.1186/s40425-019-0768-9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schienda J, Church AJ, Corson LB, Decker B, Clinton CM, Manning DK, et al. Germline sequencing improves tumor-Only sequencing interpretation in a precision genomic study of patients with pediatric solid tumor. JCO Precis Oncol. 2021;5:PO. 21.00281.

    PubMed Central  Google Scholar 

  20. Alaimo A, Vaira V, Sarhadi VK, Armengol G. Molecular biomarkers in Cancer. Biomolecules. 2022;12(8):1021. https://doi.org/10.3390/biom12081021.

    Article  CAS  Google Scholar 

  21. Cortés-Ciriano I, Lee JJK, Xi R, Jain D, Jung YL, Yang L, et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet. 2020;52(3):331–41. https://doi.org/10.1038/s41588-019-0576-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9. https://doi.org/10.1038/nature12634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. BiosensBioelectron. 2023;239:115611. https://doi.org/10.1016/j.bios.2023.115611.

    Article  CAS  Google Scholar 

  24. Luo XJ, Zhao Q, Liu J, Zheng JB, Qiu MZ, Ju HQ, et al. Novel genetic and epigenetic biomarkers of prognostic and predictive significance in stage II/III colorectal Cancer. Mol Ther. 2021;29(2):587–96. https://doi.org/10.1016/j.ymthe.2020.12.017.

    Article  CAS  PubMed  Google Scholar 

  25. Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. Annu Rev Pathol. 2015;10:473–510. https://doi.org/10.1146/annurev-pathol-012414-040438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuczynski EA, Sargent DJ, Grothey A, Kerbel RS. Drug Rechallenge and treatment beyond progression–implications for drug resistance. Nat Rev Clin Oncol. 2013;10(10):571–87. https://doi.org/10.1038/nrclinonc.2013.158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kwon YW, Jo HS, Bae S, Seo Y, Song P, Song M, et al. Application of proteomics in cancer: recent trends and approaches for biomarkers discovery. Front Med (Lausanne). 2021;8:747333. https://doi.org/10.3389/fmed.2021.747333.

    Article  PubMed  Google Scholar 

  28. Pai MGJ, Biswas D, Verma A, Srivastava S. A proteome-level view of brain tumors for a better Understanding of novel diagnosis, prognosis, and therapy. Expert Rev Proteom. 2023;20(12):381–95. https://doi.org/10.1080/14789450.2023.2283498.

    Article  CAS  Google Scholar 

  29. Shenoy A, Belugali Nataraj N, Perry G, Loayza Puch F, Nagel R, Marin I, et al. Proteomic patterns associated with response to breast cancer neoadjuvant treatment. Mol Syst Biol. 2020;16(9):e9443. https://doi.org/10.15252/msb.20209443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmidt DR, Patel R, Kirsch DG, Lewis CA, Heiden MG, Vander, Locasale JW. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin. 2021;71(4):333–58. https://doi.org/10.3322/caac.21670.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ringel AE, Drijvers JM, Baker GJ, Catozzi A, García-Cañaveras JC, Gassaway BM, et al. Obesity shapes metabolism in the tumor microenvironment to suppress Anti-Tumor immunity. Cell. 2020;183(7):1848–e6626. https://doi.org/10.1016/j.cell.2020.11.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khatami F, Aghamir SM, Tavangar SM, Oncometabolites. A new insight for oncology. Mol Genet Genom Med. 2019;7(9):e873.

    Article  Google Scholar 

  33. Booth TC, Williams M, Luis A, Cardoso J, Ashkan K, Shuaib H. Machine learning and glioma imaging biomarkers. Clin Radiol. 2020;75(1):20–32.

    Article  CAS  PubMed  Google Scholar 

  34. Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C, Forghani B. Radiomics and artificial intelligence for biomarker and prediction model development in oncology. Comput Struct Biotechnol J. 2019;17:995–1008.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xue H, Lu B, Lai M. The cancer secretome: a reservoir of biomarkers. J Translational Med. 2008;6:1–2.

    Article  Google Scholar 

  36. Filella X, Foj L. Emerging biomarkers in the detection and prognosis of prostate cancer. Clin Chem Lab Med. 2015;53(7):963–73. https://doi.org/10.1515/cclm-2014-0988.

    Article  CAS  PubMed  Google Scholar 

  37. Ouyang DL, Chen JJ, Getzenberg RH, Schoen RE. Noninvasive testing for colorectal cancer: a review. Am J Gastroenterol. 2005;100(6):1393–403. https://doi.org/10.1111/j.1572-0241.2005.41427.x.

    Article  CAS  PubMed  Google Scholar 

  38. Lee JW, Figeys D, Vasilescu J. Biomarker assay translation from discovery to clinical studies in Cancer drug development: quantification of emerging protein biomarkers. Adv Cancer Res. 2006;96:269–98. https://doi.org/10.1016/S0065-230X(06)96010-2.

    Article  CAS  Google Scholar 

  39. Nimse SB, Sonawane MD, Songb KS, Kim T. Biomarker detection technologies and future directions. Analyst. 2016;141:740–55. https://doi.org/10.1039/C5AN01790D.

    Article  CAS  PubMed  Google Scholar 

  40. Jiang L, Lin X, Chen F, Qin X, Yan Y, Ren L, et al. Current research status of tumor cell biomarker detection. MicrosystNanoeng. 2023;9:123. https://doi.org/10.1038/s41378-023-00581-5.

    Article  CAS  Google Scholar 

  41. Huang Z, Fu Y, Yang H, Zhou Y, Shi M, Li Q, et al. Liquid biopsy in T-cell lymphoma: biomarker detection techniques and clinical application. Mol Cancer. 2024;23:36. https://doi.org/10.1186/s12943-024-01947-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sanjay ST, Fu G, Dou M, Xu F, Liu R, Qi H, Li X. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst. 2015;140(21):7062–81. https://doi.org/10.1039/c5an00780a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Asci Erkocyigit B, Ozufuklar O, Yardim A, Guler Celik E, Timur S. Biomarker detection in early diagnosis of cancer: recent achievements in Point-of-Care devices based on paper microfluidics. Biosens (Basel). 2023;13(3):387. https://doi.org/10.3390/bios13030387.

    Article  CAS  Google Scholar 

  44. Schettini F, Chic N, Brasó-Maristany F, Paré L, Pascual T, Conte B, Martínez-Sáez O, Adamo B, Vidal M, Barnadas E, Fernández-Martinez A. Clinical, pathological, and PAM50 gene expression features of HER2-low breast cancer. NPJ Breast cancer. 2021;7(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bidard FC, Kaklamani VG, Neven P, Streich G, Montero AJ, Forget F, Mouret-Reynier MA, Sohn JH, Taylor D, Harnden KK, Khong H. Elacestrant (oral selective Estrogen receptor degrader) versus standard endocrine therapy for Estrogen receptor–positive, human epidermal growth factor receptor 2–negative advanced breast cancer: results from the randomized phase III EMERALD trial. J Clin Oncol. 2022;40(28):3246–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grossman DC, Curry SJ, Owens DK, Bibbins-Domingo K, Caughey AB, Davidson KW, Doubeni CA, Ebell M, Epling JW, Kemper AR, Krist AH. Screening for prostate cancer: US preventive services task force recommendation statement. JAMA. 2018;319(18):1901–13.

    Article  PubMed  Google Scholar 

  47. Loeb S, Sanda MG, Broyles DL, Shin SS, Bangma CH, Wei JT, Partin AW, Klee GG, Slawin KM, Marks LS, Van Schaik RH. The prostate health index selectively identifies clinically significant prostate cancer. J Urol. 2015;193(4):1163–9.

    Article  PubMed  Google Scholar 

  48. Imperiale TF, Ransohoff DF, Itzkowitz SH, Levin TR, Lavin P, Lidgard GP, Ahlquist DA, Berger BM. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med. 2014;370(14):1287–97.

    Article  CAS  PubMed  Google Scholar 

  49. Davidson KW, Barry MJ, Mangione CM, Cabana M, Caughey AB, Davis EM, Donahue KE, Doubeni CA, Krist AH, Kubik M, Li L. Screening for colorectal cancer: US preventive services task force recommendation statement. JAMA. 2021;325(19):1965–77.

    Article  PubMed  Google Scholar 

  50. Duffy MJ, Harbeck N, Nap M, Molina R, Nicolini A, Senkus E, Cardoso F. Clinical use of biomarkers in breast cancer: updated guidelines from the European group on tumor markers (EGTM). Eur J Cancer. 2017;75:284–98. https://doi.org/10.1016/j.ejca.2017.01.017.

    Article  CAS  PubMed  Google Scholar 

  51. Gamble P, Jaroensri R, Wang H, Tan F, Moran M, Brown T, et al. Determining breast cancer biomarker status and associated morphological features using deep learning. Commun Med. 2021;1:14. https://doi.org/10.1038/s43856-021-00013-3.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lopez-Gonzalez L, Sanchez Cendra A, Sanchez Cendra C, Roberts Cervantes ED, Espinosa JC, Pekarek T, et al. Exploring biomarkers in breast cancer: hallmarks of diagnosis, treatment, and Follow-Up in clinical practice. Med (Kaunas). 2024;60(1):168doi. https://doi.org/10.3390/medicina60010168.

    Article  Google Scholar 

  53. Colomer R, Aranda-López I, Albanell J, García-Caballero T, Ciruelos E, López-García MÁ, et al. Biomarkers in breast cancer: A consensus statement by the Spanish society of medical oncology and the Spanish society of pathology. Clin Transl Oncol. 2018;20(7):815–26. https://doi.org/10.1007/s12094-017-1800-5.

    Article  CAS  PubMed  Google Scholar 

  54. Yi ES, Boland JM, Maleszewski JJ, Roden AC, Oliveira AM, Aubry MC, et al. Correlation of IHC and FISH for ALK gene rearrangement in non-small cell lung carcinoma: IHC score algorithm for FISH. J Thorac Oncol. 2011;6(3):459–65. https://doi.org/10.1097/JTO.0b013e318209edb9.

    Article  PubMed  Google Scholar 

  55. Villalobos P, Wistuba II. Lung Cancer biomarkers. Hematol Oncol Clin North Am. 2017;31(1):13–29. https://doi.org/10.1016/j.hoc.2016.08.006.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Oh HJ, Imam-Aliagan AB, Kim YB, Kim HJ, Izaguirre IA, Sung CK, et al. Clinical applications of Circulating biomarkers in non-small cell lung cancer. Front Cell Dev Biol. 2024;12:1449232. https://doi.org/10.3389/fcell.2024.1449232.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Couñago F, López-Campos F, Díaz-Gavela AA, Almagro E, Fenández-Pascual E, Henríquez I, et al. Clinical applications of molecular biomarkers in prostate Cancer. Cancers (Basel). 2020;12(6):1550. https://doi.org/10.3390/cancers12061550.

    Article  CAS  PubMed  Google Scholar 

  58. Chen JY, Wang PY, Liu MZ, Lyu F, Ma MW, Ren XY, et al. Biomarkers for prostate cancer: from diagnosis to treatment. Diagnostics. 2023;13(21):3350. https://doi.org/10.3390/diagnostics13213350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vacante M, Borzì AM, Basile F, Biondi A. Biomarkers in colorectal cancer: current clinical utility and future perspectives. World J Clin Cases. 2018;6(15):869–81. https://doi.org/10.12998/wjcc.v6.i15.869.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mannucci A, Goel A. Stool and blood biomarkers for colorectal cancer management: an update on screening and disease monitoring. Mol Cancer. 2024;23:259. https://doi.org/10.1186/s12943-024-02174-w.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Atallah GA, Abd Aziz NH, Teik CK, Shafiee MN, Kampan NC. New predictive biomarkers for ovarian Cancer. Diagnostics (Basel). 2021;11(3):465. https://doi.org/10.3390/diagnostics11030465.

    Article  CAS  PubMed  Google Scholar 

  62. López-Portugués C, Montes-Bayón M, Díez P. Biomarkers in ovarian cancer: towards personalized medicine. Proteomes. 2024;12(1):8. https://doi.org/10.3390/proteomes12010008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Agnihotram R, Dhar R, Dhar D, Purushothaman K, Narasimhan AK, Devi A. Fusion of exosomes and nanotechnology: cutting-edge cancer theranostics. ACS Appl Nano Mater. 2024;7(8):8489–506.

    Article  CAS  Google Scholar 

  64. Lo YD, Chan WY, Ng EK, Chan LY, Lai PB, Tam JS, et al. Circulating Epstein-Barr virus DNA in the serum of patients with gastric carcinoma. Clin Cancer Res. 2001;7(7):1856–9.

    CAS  PubMed  Google Scholar 

  65. Ebert MP, Korc M, Malfertheiner P, Röcken C. Advances, challenges, and limitations in serum-proteome-based cancer diagnosis. J Proteome Res. 2006;5(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  66. Kim MS, Xu A, Haslam A, Prasad V. Quality of biomarker defined subgroups in FDA approvals of PD-1/PD-L1 inhibitors 2014 to 2020. Int J Cancer. 2022;150(11):1905–10. https://doi.org/10.1002/ijc.33968.

    Article  CAS  PubMed  Google Scholar 

  67. Aldred S, Grant MM, Griffiths HR. The use of proteomics for the assessment of clinical samples in research. Clin Biochem. 2004;37(11):943–52. https://doi.org/10.1016/j.clinbiochem.2004.09.002.

    Article  CAS  PubMed  Google Scholar 

  68. Wright ME, Han DK, Aebersold R. Mass spectrometry-based expression profiling of clinical prostate cancer. Mol Cell Proteom. 2005;4(4):545–54. https://doi.org/10.1074/mcp.R500008-MCP200.

    Article  CAS  Google Scholar 

  69. Jacobs IJ, Menon U. Progress and challenges in screening for early detection of ovarian cancer. Mol Cell Proteom. 2004;3(4):355–66. https://doi.org/10.1074/mcp.R400006-MCP200.

    Article  CAS  Google Scholar 

  70. Al-Tashi Q, Saad MB, Muneer A, Qureshi R, Mirjalili S, Sheshadri A, Le X, Vokes NI, Zhang J, Wu J. Machine learning models for the identification of prognostic and predictive cancer biomarkers: a systematic review. Int J Mol Sci. 2023;24(9):7781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chang E, Pelosof L, Lemery S, Gong Y, Goldberg KB, Farrell AT, et al. Systematic review of PD-1/PD-L1 inhibitors in oncology: from personalized medicine to public health. Oncologist. 2021;26(10):1786–99. https://doi.org/10.1002/onco.13887.

    Article  CAS  Google Scholar 

  72. Chandrasekharan S, McGuire AL, Van den Veyver IB. Do recent US supreme court rulings on Patenting of genes and genetic diagnostics affect the practice of genetic screening and diagnosis in prenatal and reproductive care? Prenat Diagn. 2014;34(10):921–6.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Taube SE, Clark GM, Dancey JE, McShane LM, Sigman CC, Gutman SI. A perspective on challenges and issues in biomarker development and drug and biomarker codevelopment. J Natl Cancer Inst. 2009;101(21):1453–63. https://doi.org/10.1093/jnci/djp334.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Duffy MJ, Crown J. A personalized approach to cancer treatment: how biomarkers can help. Clin Chem. 2008;54(11):1770–9. https://doi.org/10.1373/clinchem.2008.110056.

    Article  CAS  PubMed  Google Scholar 

  75. Gandara DR, Li T, Lara PN Jr, Mack PC, Kelly K, Miyamoto S, et al. Algorithm for codevelopment of new drug-predictive biomarker combinations: accounting for inter- and intrapatienttumor heterogeneity. Clin Lung Cancer. 2012;13(5):321–5. https://doi.org/10.1016/j.cllc.2012.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Haber DA, Gray NC, Baselga J. The evolving war on cancer. Cell. 2011;145(1):19–24. https://doi.org/10.1016/j.cell.2011.03.026.

    Article  CAS  PubMed  Google Scholar 

  77. Kalia M. Personalized oncology: recent advances and future challenges. Metabolism. 2013;62(1):11–4. https://doi.org/10.1016/j.metabol.2012.08.016.

    Article  CAS  Google Scholar 

  78. Li T, Kung HJ, Mack PC, Gandara DR. Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J Clin Oncol. 2013;31(8):1039–49. https://doi.org/10.1200/JCO.2012.45.3753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schilsky RL, Doroshow JH, Leblanc M, Conley BA. Development and use of integral assays in clinical trials. Clin Cancer Res. 2012;18(6):1540–6. https://doi.org/10.1158/1078-0432.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Berger B, Peng J, Singh M. Computational solutions for omics data. Nat Rev Genet. 2013;14(5):333–46. https://doi.org/10.1038/nrg3433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ekins S. The next era: deep learning in pharmaceutical research. Pharm Res. 2016;33(11):2594–603. https://doi.org/10.1007/s11095-016-2029-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang F, Wang JF, Wang Y, Liu B, Molina JR. Comparative analysis of predictive biomarkers for PD-1/PD-L1 inhibitors in cancers: developments and challenges. Cancers. 2022;14(1):109. https://doi.org/10.3390/cancers14010109.

    Article  CAS  Google Scholar 

  83. Zhang L, McHale CM, Greene N, Snyder RD, Rich IN, Aardema MJ, et al. Emerging approaches in predictive toxicology. Environ Mol Mutagen. 2014;55(9):679–88. https://doi.org/10.1002/em.21885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Koscielny G, An P, Carvalho-Silva D, Cham JA, Fumis L, Gasparyan R, et al. Open targets: a platform for therapeutic target identification and validation. Nucleic Acids Res. 2017;45(D1):985–4. https://doi.org/10.1093/nar/gkw1055.

    Article  CAS  Google Scholar 

  85. Alam I, Antunes A, Kamau AA, Ba Alawi W, Kalkatawi M, Stingl U, et al. INDIGO - INtegrated data warehouse of microbial genomes with examples from the red sea extremophiles. PLoS ONE. 2013;8(12):e82210. https://doi.org/10.1371/journal.pone.0082210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zeise L, Bois FY, Chiu WA, Hattis D, Rusyn I, Guyton KZ. Addressing human variability in next-generation human health risk assessments of environmental chemicals. Environ Health Perspect. 2013;121(1):23–31. https://doi.org/10.1289/ehp.1205687.

    Article  PubMed  Google Scholar 

  87. Johnson KB, Wei WQ, Weeraratne D, Frisse ME, Misulis K, Rhee K, et al. Precision medicine, AI, and the future of personalized health care. Clin Transl Sci. 2021;14(1):86–93. https://doi.org/10.1111/cts.12884.

    Article  PubMed  Google Scholar 

  88. Bhardwaj V, Sharma A, Parambath SV, Gul I, Zhang X, Lobie PE, Qin P, Pandey V. Machine learning for endometrial cancer prediction and prognostication. Front Oncol. 2022;12:852746.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ahmed Z, Mohamed K, Zeeshan S, Dong X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database (Oxford). 2020;2020:baaa010. https://doi.org/10.1093/database/baaa010.

    Article  PubMed  Google Scholar 

  90. Cortesi L, Rugo HS, Jackisch C. An overview of PARP inhibitors for the treatment of breast cancer. Target Oncol. 2021;16(3):255–82.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Dhani N, Siu LL. Clinical trials and biomarker development with molecularly targeted agents and radiotherapy. Cancer Metastasis Rev. 2008;27(3):339–49. https://doi.org/10.1007/s10555-008-9140-0.

    Article  CAS  PubMed  Google Scholar 

  92. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in Cancer immunotherapy. Mol Cancer Ther. 2015;14(4):847–56. https://doi.org/10.1158/1535-7163.

    Article  PubMed  Google Scholar 

  93. https://www.cancer.gov/about-cancer/diagnosis-staging/diagnosis/tumor-markers-list

  94. Dhandapani M, Goldman A. Preclinical Cancer models and biomarkers for drug development: new technologies and emerging tools. J Mol BiomarkDiagn. 2017;8(5):356. https://doi.org/10.4172/2155-9929.1000356.

    Article  CAS  Google Scholar 

  95. Majumder B, Baraneedharan U, Thiyagarajan S, Radhakrishnan P, Narasimhan H, Dhandapani M, et al. Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat Commun. 2015;6:6169. https://doi.org/10.1038/ncomms7169.

    Article  CAS  PubMed  Google Scholar 

  96. Bosserman LD, Rajurkar SP, Rogers K, Davidson DC, Chernick M, Hallquist A, et al. Correlation of drug-induced apoptosis assay results with oncologist treatment decisions and patient response and survival. Cancer. 2012;118:4877–83. https://doi.org/10.1002/cncr.27444.

    Article  PubMed  Google Scholar 

  97. Montero J, Sarosiek KA, DeAngelo JD, Maertens O, Ryan J, Ercan D, et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell. 2015;160:977–89. https://doi.org/10.1016/j.cell.2015.01.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

There was no funding for this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.W.M. and D.K. designed the concept. P.K., A.A., S.C., B.D., S.D. wrote the manuscript. S.W.M. supervised the work. D.K. edited and drafted the manuscript. All the authors checked and approved the final work.

Corresponding author

Correspondence to Swarupananda Mukherjee.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamkat, P., Adak, A., Chakraborty, S. et al. Unravelling the Role of Biomarker in Cancer Detection: An In-Depth Review. Curr. Pharmacol. Rep. 11, 31 (2025). https://doi.org/10.1007/s40495-025-00413-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40495-025-00413-2

Keywords

Profiles

  1. Bhaskar Das