这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Complete weight enumerators of few-weight linear codes

  • Research
  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Few-weight linear codes have important applications in the construction of strongly regular graphs, authentication codes and secret sharing schemes. In this paper, some few-weight linear codes are constructed from proper defining sets over finite fields. Their complete weight enumerators are explicitly determined using Weil sums. As applications, we give two classes of new projective three-weight linear codes, which achieve the Griesmer bound. We construct some new strongly regular graphs and infinite families of minimal three-weight linear codes with \(\frac{w_{min}}{w_{max}}\le \frac{p-1}{p}\). Moreover, some new authentication codes are presented. Our results generalize and improve the work of Zhu and Liao (Finite Fields Appl. 75, 101897, 2021).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Ashikhmin, A., Barg, A.: Minimal vectors in linear codes. IEEE Trans. Inf. Theory 44(5), 2010–2017 (1998)

    Article  MathSciNet  Google Scholar 

  2. Bartoli, D., Bonini, M.: Minimal linear codes in odd characteristic. IEEE Trans. Inf. Theory 65(7), 4152–4155 (2019)

    Article  MathSciNet  Google Scholar 

  3. Chen, F., Heng, Z., Wang, X., Li, C.: Projective linear codes based on the quadratic multiplicative characters. Acta Electron. Sin. 51(1), 32–41 (2023)

    Google Scholar 

  4. Cohen, G., Mesnager, S., Patey, A.: On minimal and quasi-minimal linear codes. In: Stam, M. (ed.), Proceedings of IMACC. In: Lecture Notes in Computer Science, vol. 8308, pp. 85–98 (2003)

  5. Coulter, R.: Explicit evaluations of some Weil sums. Acta Arith. 83, 241–251 (1998)

    Article  MathSciNet  Google Scholar 

  6. Coulter, R.: Further evaluations of Weil sums. Acta Arith. 86, 217–226 (1998)

    Article  MathSciNet  Google Scholar 

  7. Calderbank, R., Kantor, W.: The geometry of two-weight codes. B. Lond. Math. Soc. 18(2), 97–122 (1986)

    Article  MathSciNet  Google Scholar 

  8. Ding, K., Ding, C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inf. Theory 61(11), 5835–5842 (2015)

    Article  MathSciNet  Google Scholar 

  9. Ding, C., Wang, X.: A coding theory construction of new systematic authentication codes. Theor. Comput. Sci. 330(1), 81–99 (2005)

    Article  MathSciNet  Google Scholar 

  10. Ding, C., Helleseth, T., Kløve, T., Wang, X.: A generic construction of Cartesian authentication codes. IEEE Trans. Inf. Theory 53(6), 2229–2235 (2007)

    Article  MathSciNet  Google Scholar 

  11. Ding, C., Heng, Z., Zhou, Z.: Minimal binary linear codes. IEEE Trans. Inf. Theory 64(10), 6536–6545 (2018)

    Article  MathSciNet  Google Scholar 

  12. Ding, C., Niederreiter, H.: Cyclotomic linear codes of order 3. IEEE Trans. Inf. Theory 53(6), 2274–2277 (2007)

    Article  MathSciNet  Google Scholar 

  13. Ding, C., Yin, J.: A construction of optimal constant composition codes. Des. Codes Cryptogr. 40, 157–165 (2006)

    Article  MathSciNet  Google Scholar 

  14. Gao, J., Meng, X., Fu, F.-W.: Weight distribution of double cyclic codes over Galois rings. Des. Codes Cryptogr. 90, 2529–2549 (2022)

    Article  MathSciNet  Google Scholar 

  15. Gao, J., Meng, X., Fu, F.-W.: Weight distributions of generalized quasi-cyclic codes over \(\mathbb{F} _q+u\mathbb{F} _q\). Finite Fields Appl. 88, 102181 (2023)

    Article  Google Scholar 

  16. Gao, J., Zhang, Y., Meng, X., Ma, F.: Weight distributions of some classes of irreducible quasi-cyclic codes of index 2. J. Electron. Inf. Techn. 44(12), 4312–4318 (2022)

    Google Scholar 

  17. Gao, J., Zhang, Y., Meng, X., Fu, F.-W.: Minimal linear codes from defining sets over \(\mathbb{F} _p+u\mathbb{F} _p\). Discrete Math. 346(10), 113584 (2023)

    Article  Google Scholar 

  18. Grassl, M.: Bounds on the minumum distance of linear codes. Avaiable online at http://www.codetables.de

  19. Helleseth, T., Kholosha, A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory 52(5), 2018–2032 (2006)

    Article  MathSciNet  Google Scholar 

  20. Heng, Z., Ding, C., Zhou, Z.: Minimal linear codes over finite fields. Finite Fields Appl. 54, 176–196 (2018)

    Article  MathSciNet  Google Scholar 

  21. Heng, Z., Li, D., Du, J., Chen, F.: A family of projective two-weight linear codes. Des. Codes Cryptogr. 89, 1993–2007 (2021)

    Article  MathSciNet  Google Scholar 

  22. Heng, Z., Yue, Q.: A construction of \(q\)-ary linear codes with two weights. Finite Fields Appl. 48, 20–42 (2017)

    Article  MathSciNet  Google Scholar 

  23. Jian, G., Lin, Z., Feng, R.: Two-weight and three-weight linear codes based on Weil sums. Finite Fields Appl. 57, 92–107 (2019)

    Article  MathSciNet  Google Scholar 

  24. Kong, X., Yang, S.: Complete weight enumerators of a class of linear codes with two or three weights. Discrete Math. 342(11), 3166–3176 (2019)

    Article  MathSciNet  Google Scholar 

  25. Liu, H., Liao, Q.: Several classes of linear codes with a few weights from defining sets over \(\mathbb{F} _p+u\mathbb{F} _p\). Des. Codes Cryptogr. 87, 15–29 (2019)

    Article  MathSciNet  Google Scholar 

  26. Liu, H., Liao, Q., Zhu, C.: Two constructions for minimal ternary linear codes. https://doi.org/10.48550/arXiv.2107.04992

  27. Liu, H., Liao, Q., Wang, X.: Complete weight enumerator for a class of linear codes from defining sets and their applications. J. Syst. Sci. Complex. 32, 947–969 (2019)

    Article  MathSciNet  Google Scholar 

  28. Lidl, R., Niederreiter, H., Cohn, F.M.: Finite Fields. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  29. Meng, X., Gao, J.: Complete weight enumerator of torsion codes. Adv. Math. Commun. 16(3), 571–596 (2022)

    Article  MathSciNet  Google Scholar 

  30. Meng, X., Gao, J., Fu, F.-W., Ma, F.: Weight distributions of Q2DC codes over finite fields. Des. Codes Cryptogr. 91, 807–830 (2023)

    Article  MathSciNet  Google Scholar 

  31. Mesnager, S., Qi, Y., Ru, H., Tang, C.: Minimal linear codes from characteristic functions. IEEE Trans. Inf. Theory 66(9), 5404–5413 (2020)

    Article  MathSciNet  Google Scholar 

  32. Rees, R.S., Stinson, D.R.: Combinatorial characterizations of authentication codes II. Des. Codes Cryptogr. 7, 239–259 (1996)

    Article  MathSciNet  Google Scholar 

  33. Simmons, G.J.: Authentication theory/coding theory. International Cryptology Conference, pp. 411–431 (1985)

  34. Shi, M.: SoléP, Wu B, Cyclic codes and weight enumerators of linear codes over \(\mathbb{F} _2+v\mathbb{F} _2+v^2\mathbb{F} _2\). Appl. Math. Comput. 12(2), 247–255 (2013)

    MathSciNet  Google Scholar 

  35. Tao, R., Feng, T., Li, W.: A construction of minimal linear codes from partial difference sets. IEEE Trans. Inf. Theory 67(6), 3724–3734 (2021)

    Article  MathSciNet  Google Scholar 

  36. Huffman, W., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press (2010)

  37. Wang, Q., Li, F., Ding, K., Lin, D.: Complete weight enumerators of two classes of linear codes. Discrete Math. 340(3), 467–480 (2017)

    Article  MathSciNet  Google Scholar 

  38. Wang, Y., Gao, J.: MacDonald codes over the ring \(\mathbb{F} _p+v\mathbb{F} _p+v^2\mathbb{F} _p\). Appl. Math. Comput. 38, 169 (2019)

    Article  Google Scholar 

  39. Xu, G., Qu, L.: Three classes of minimal linear codes over the finite fields of odd characteristic. IEEE Trans. Inf. Theory 65(11), 7067–7078 (2019)

    Article  MathSciNet  Google Scholar 

  40. Xu, G., Qu, L., Cao, X.: Minimal linear codes from Maiorana-McFarland functions. Finite Fields Appl. 65, 101688 (2020)

    Article  MathSciNet  Google Scholar 

  41. Xu, G., Qu, L., Luo, G.: Minimal linear codes from weakly regular bent functions. Cryptogr. Commun. 14, 415–431 (2022)

    Article  MathSciNet  Google Scholar 

  42. Yuan, J., Ding, C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 52(1), 206–212 (2006)

    Article  MathSciNet  Google Scholar 

  43. Yang, S., Yao, Z.: Complete weight enumerators of a family of three-weight linear codes. Des. Codes Cryptogr. 82, 663–674 (2017)

    Article  MathSciNet  Google Scholar 

  44. Zhu, C., Liao, Q.: Complete weight enumerators for several classes of two-weight and three-weight linear codes. Finite Fields Appl. 75, 101897 (2021)

    Article  MathSciNet  Google Scholar 

  45. Zhu, C., Liao, Q.: Several classes of projective few-weight linear codes and their applications. arXiv:2211.04519

  46. Zhu, C., Liao, Q.: Several classes of new projective three-weight or four-weight linear codes and their applications in \(s-\)sum sets. Adv. Math. Commun.

Download references

Acknowledgements

Jian Gao is supported by the Shandong Provincial Natural Science Foundation (Grant Nos. ZR2024YQ057, ZR2022MA024), the National Natural Science Foundation of China (Grant Nos. 12071264, 11701336) and the IC Program of Shandong Institutions of Higher Learning For Youth Innovative Talents. Fang-Wei Fu is supported by the National Key Research and Development Program of China (Grant No. 2018YFA0704703), the National Natural Science Foundation of China (Grant No. 61971243), the Natural Science Foundation of Tianjin (20JCZDJC00610), the Fundamental Research Funds for the Central Universities of China (Nankai University). The authors would like to thank the anonymous reviewers and the Editor Prof. Claude Carlet for their valuable suggestions and comments that helped to greatly improve the article.

Author information

Authors and Affiliations

Authors

Contributions

Jian Gao introduced the problem and gave the idea to solve it. Xiangdi Zeng and Xiangrui Meng solved the problem and wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jian Gao.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Meng, X., Gao, J. et al. Complete weight enumerators of few-weight linear codes. Cryptogr. Commun. 17, 1013–1050 (2025). https://doi.org/10.1007/s12095-025-00804-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12095-025-00804-8

Keywords

Mathematics Subject Classification (2010)