这是indexloc提供的服务,不要输入任何密码
Skip to main content

Advertisement

Log in

Advances in the Pharmacological Management of Parkinson’s Disease

  • Review
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Background

Parkinson’s disease (PD) is a complex, progressive neurodegenerative disorder with patients experiencing an increased number and severity of motor and non-motor symptoms over the course of their disease. Despite the exponentially increasing prevalence of PD worldwide, therapies for people with PD remain symptomatic in nature.

Purpose of Review

This review provides an update on the advances in the pharmacological management of both motor and non-motor symptoms in people with PD.

Recent Findings

It highlights several newly approved pharmacological options for ON/OFF motor fluctuations and levodopa-induced dyskinesia. This review details the novel device-aided therapies of intravenous levodopa/ carbidopa along with the unique delivery systems approved for PD rescue therapy. This review concludes with an update on the recent progress made in the treatment of a number of non-motor symptoms.

Conclusion

Although disease-modifying and neurorestorative therapies remain the Holy Grail in PD, the current advances in symptomatic pharmacological therapies are welcomed in the armamentarium of PD care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med. 2020;36(1):1–12. https://doi.org/10.1016/j.cger.2019.08.002.

    Article  PubMed  Google Scholar 

  2. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):1591–601. https://doi.org/10.1002/mds.26424.

    Article  PubMed  Google Scholar 

  3. Freitas ME, Hess CW, Fox SH. Motor complications of dopaminergic medications in Parkinson’s disease. Semin Neurol. 2017;37(2):147–57. https://doi.org/10.1055/s-0037-1602423.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease. JAMA. 2014;23(16):1670. https://doi.org/10.1001/jama.2014.3654.

    Article  CAS  Google Scholar 

  5. Hauser RA, Hsu A, Kell S, Espay AJ, Sethi K, Stacy M, et al. Extended-release carbidopa-levodopa (IPX066) compared with immediate-release carbidopa-levodopa in patients with Parkinson’s disease and motor fluctuations: a phase 3 randomised, double-blind trial. Lancet Neurol. 2013;12(4):346–56. https://doi.org/10.1016/s1474-4422(13)70025-5.

    Article  CAS  PubMed  Google Scholar 

  6. LeWitt P, Ellenbogen A, Burdick D, Gunzler S, Gil R, Dhall R, et al. Improving levodopa delivery: IPX203, a novel extended-release carbidopa-levodopa formulation. Clin Parkinsonism Relat Disord. 2023;8:100197. https://doi.org/10.1016/j.prdoa.2023.100197.

    Article  Google Scholar 

  7. Modi NB, Mittur A, Rubens R, Khanna S, Gupta S. Single-dose pharmacokinetics and pharmacodynamics of IPX203 in patients with advanced Parkinson disease: a comparison with immediate-release carbidopa-levodopa and with extended-release carbidopa-levodopa capsules. Clin Neuropharmacol. 2019;42(1):4–8. https://doi.org/10.1097/wnf.0000000000000314.

    Article  CAS  PubMed  Google Scholar 

  8. Hauser RA, Espay AJ, Ellenbogen AL, Fernandez HH, Isaacson SH, LeWitt PA, et al. IPX203 vs immediate-release carbidopa-levodopa for the treatment of motor fluctuations in Parkinson disease. JAMA Neurol. 2023;80(10):1062. https://doi.org/10.1001/jamaneurol.2023.2679.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bezard E, Gray D, Kozak R, Leoni M, Combs C, Duvvuri S. Rationale and development of Tavapadon, a D1/D5-selective partial dopamine agonist for the treatment of Parkinson’s disease. CNS Neurol Disord Drug Targets. 2024;23(4):476–87. https://doi.org/10.2174/1871527322666230331121028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kwak N, Park J, Kang H-Y, Lee M-J, Suh JK, Lee H. Efficacy and safety of opicapone for motor fluctuations as an adjuvant to levodopa therapy in patients with Parkinson’s disease: A systematic review and meta-analysis. J Parkinson’s Dis. 2022;12(3):773–83. https://doi.org/10.3233/jpd-213057.

    Article  CAS  Google Scholar 

  11. Ferreira JJ, Lees A, Rocha J-F, Poewe W, Rascol O, Soares-da-Silva P. Opicapone as an adjunct to levodopa in patients with Parkinson’s disease and end-of-dose motor fluctuations: A randomised, double-blind, controlled trial. Lancet Neurol. 2016;15(2):154–65. https://doi.org/10.1016/s1474-4422(15)00336-1.

    Article  CAS  PubMed  Google Scholar 

  12. Lees AJ, Ferreira J, Rascol O, Poewe W, Rocha J-F, McCrory M, et al. Opicapone as adjunct to levodopa therapy in patients with Parkinson disease and motor fluctuations. JAMA Neurol. 2017;74(2):197. https://doi.org/10.1001/jamaneurol.2016.4703.

    Article  PubMed  Google Scholar 

  13. Harrison-Jones G, Marston XL, Morgante F, Chaudhuri KR, Castilla-Fernández G, Di Foggia V. Opicapone versus entacapone: head-to-head retrospective data-based comparison of healthcare resource utilization in people with Parkinson’s disease new to catechol-o-methyltransferase (COMT) inhibitor treatment. Eur J Neurol. 2023;30(10):3132–41. https://doi.org/10.1111/ene.15990.

    Article  PubMed  Google Scholar 

  14. Schapira AH, Fox SH, Hauser RA, Jankovic J, Jost WH, Kenney C, et al. Assessment of safety and efficacy of safinamide as a levodopa adjunct in patients with Parkinson disease and motor fluctuations. JAMA Neurol. 2017;74(2):216. https://doi.org/10.1001/jamaneurol.2016.4467.

    Article  PubMed  Google Scholar 

  15. Cattaneo C, Sardina M, Bonizzoni E. Safinamide as add-on therapy to levodopa in mid- to late-stage Parkinson’s disease fluctuating patients: Post Hoc Analyses of Studies 016 and settle. J Parkinson’s Dis. 2016;6(1):165–73. https://doi.org/10.3233/jpd-150700.

    Article  CAS  Google Scholar 

  16. Peña E, Borrué C, Mata M, Martínez-Castrillo J, Alonso-Canovas A, Chico J, et al. Impact of safinamide on depressive symptoms in Parkinson’s disease patients (SADness-PD study): a multicenter retrospective study. Brain Sci. 2021;11(2):232. https://doi.org/10.3390/brainsci11020232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pauletti C, Locuratolo N, Mannarelli D, Maffucci A, Petritis A, Menini E, et al. Fatigue in fluctuating Parkinson’s disease patients: possible impact of safinamide. J Neural Transm. 2023;130(7):915–23. https://doi.org/10.1007/s00702-023-02654-1.

    Article  CAS  PubMed  Google Scholar 

  18. De Masi C, Liguori C, Spanetta M, Fernandes M, Cerroni R, Garasto E, et al. Non-motor symptoms burden in motor-fluctuating patients with Parkinson’s disease may be alleviated by safinamide: the vale-safi study. J Neural Transm. 2022;129(11):1331–8. https://doi.org/10.1007/s00702-022-02538-w.

    Article  CAS  PubMed  Google Scholar 

  19. Barone P, Cattaneo C, La Ferla R, Bonizzoni E, Sardina M. Significant reduction of pain treatments with safinamide administered as add-on therapy to levodopa in patients with Parkinson’s disease and fluctuation [abstract]. Mov Disord. 2015;22(Suppl 1):29.

    Google Scholar 

  20. Yang LPH, Perry CM. Zonisamide: in Parkinson’s disease. CNS Drugs. 2009;23(8):703–11. https://doi.org/10.2165/00023210-200923080-00007.

    Article  CAS  PubMed  Google Scholar 

  21. Murata M, Hasegawa K, Kanazawa I, Fukasaka J, Kochi K, Shimazu R. Zonisamide improves wearing-off in Parkinson’s disease: a randomized, double-blind study. Mov Disord. 2015;30(10):1343–50. https://doi.org/10.1002/mds.26286.

    Article  CAS  PubMed  Google Scholar 

  22. Wang X-L, Feng S-T, Chen B, Hu D, Wang Z-Z, Zhang Y. Efficacy and safety of istradefylline for Parkinson’s disease: a systematic review and meta-analysis. Neuroscience Letters. 2022;774:136515. https://doi.org/10.1016/j.neulet.2022.136515.

    Article  CAS  PubMed  Google Scholar 

  23. Hauser RA, Hattori N, Fernandez H, Isaacson SH, Mochizuki H, Rascol O, et al. Efficacy of istradefylline, an adenosine A2A receptor antagonist, as adjunctive therapy to levodopa in Parkinson’s disease: a pooled analysis of 8 phase 2B/3 trials. J Parkinson’s Dis. 2021;11(4):1663–75. https://doi.org/10.3233/jpd-212672.

    Article  CAS  Google Scholar 

  24. Nagayama H, Kano O, Murakami H, Ono K, Hamada M, Toda T, et al. Effect of istradefylline on mood disorders in Parkinson’s disease. J Neurol Sci. 2019;396:78–83. https://doi.org/10.1016/j.jns.2018.11.005.

    Article  CAS  PubMed  Google Scholar 

  25. Supernus Announces FDA Approval of ONAPGO™ (apomorphine hydrochloride) for Parkinson’s Disease [Internet]. (USA): Supernus Pharmaceuticals, Inc. New Release Details; 2025 [cited 2025 Mar 09]. Available from: https://ir.supernus.com/news-releases/news-release-details/supernus-announces-fda-approval-onapgotm-apomorphine

  26. Olanow CW, Kieburtz K, Odin P, Espay AJ, Standaert DG, Fernandez HH, et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol. 2014;13(2):141–9. https://doi.org/10.1016/s1474-4422(13)70293-x.

    Article  CAS  PubMed  Google Scholar 

  27. Trenkwalder C, Chaudhuri KR, García Ruiz PJ, LeWitt P, Katzenschlager R, Sixel-Döring F, et al. Expert consensus group report on the use of apomorphine in the treatment of parkinson’s disease – clinical practice recommendations. Parkinsonism Relat Disord. 2015;21(9):1023–30. https://doi.org/10.1016/j.parkreldis.2015.06.012.

    Article  PubMed  Google Scholar 

  28. Soileau MJ, Aldred J, Budur K, Fisseha N, Fung VS, Jeong A, et al. Safety and efficacy of continuous subcutaneous foslevodopa-FOSCARBIDOPA in patients with advanced Parkinson’s disease: a randomised, double-blind, active-controlled, phase 3 trial. Lancet Neurol. 2022;21(12):1099–109. https://doi.org/10.1016/s1474-4422(22)00400-8.

    Article  CAS  PubMed  Google Scholar 

  29. Espay AJ, Stocchi F, Pahwa R, Albanese A, Ellenbogen A, Ferreira JJ, et al. Safety and efficacy of continuous subcutaneous levodopa–carbidopa infusion (ND0612) for Parkinson’s disease with motor fluctuations (boundless): a phase 3, randomised, double-blind, double-dummy, multicentre trial. Lancet Neurol. 2024;23(5):465–76. https://doi.org/10.1016/s1474-4422(24)00052-8.

    Article  CAS  PubMed  Google Scholar 

  30. Poewe W, Stocchi F, Arkadir D, Ebersbach G, Ellenbogen AL, Giladi N, et al. Subcutaneous levodopa infusion for Parkinson’s disease: 1-year data from the open-label beyond study. Mov Disord. 2021;36(11):2687–92. https://doi.org/10.1002/mds.28758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Doggrell SA. Continuous subcutaneous levodopa-carbidopa for the treatment of advanced Parkinson’s disease: is it an improvement on other delivery? Expert Opin Drug Deliv. 2023;20(9):1189–99. https://doi.org/10.1080/17425247.2023.2253146.

    Article  CAS  PubMed  Google Scholar 

  32. Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, et al. Adaptive deep brain stimulation in advanced Parkinson’s disease. Ann Neurol. 2013;74(3):449–57. https://doi.org/10.1002/ana.23951.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stanslaski S, Summers Rebekah LS, Tonder L, Tan Y, Case M, Raike RS, et al. Sensing data and methodology from the adaptive DBS algorithm for personalised therapy in Parkinson’s disease (ADAPT-PD) clinical trial. npj Parkinson’s Dis. 2024;10(1):174. https://doi.org/10.1038/s41531-024-00772-5.

    Article  Google Scholar 

  34. LeWitt PA, Hauser RA, Pahwa R, Isaacson SH, Fernandez HH, Lew M, et al. Safety and efficacy of CVT-301 (levodopa inhalation powder) on motor function during off periods in patients with Parkinson’s disease: A randomised, double-blind, placebo-controlled phase 3 trial. Lancet Neurol. 2019;18(2):145–54. https://doi.org/10.1016/s1474-4422(18)30405-8.

    Article  CAS  PubMed  Google Scholar 

  35. Olanow CW, Factor SA, Espay AJ, Hauser RA, Shill HA, Isaacson S, et al. Apomorphine sublingual film for off episodes in Parkinson’s disease: a randomised, double-blind, placebo-controlled phase 3 study. Lancet Neurol. 2020;19(2):135–44. https://doi.org/10.1016/s1474-4422(19)30396-5.

    Article  CAS  PubMed  Google Scholar 

  36. Alexza Pharmaceuticals, Inc. Study to evaluate the efficacy and safety of staccato apomorphine (AZ-009) in patients with Parkinson’s disease experiencing OFF episodes. [NCT05979415]. Available from: https://clinicaltrials.gov/study/NCT05979415. Accessed 2024 Sep 29.

  37. Thijssen E, den Heijer J, Puibert D, Moss L, Lei M, Hasegawa D, et al. A randomized trial assessing the safety, pharmacokinetics, and efficacy during morning off of az-009. Mov Disord. 2022;37(4):790–8. https://doi.org/10.1002/mds.28926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gupta HV, Lenka A, Dhamija RK, Fasano A. A video-atlas of levodopa-induced dyskinesia in Parkinson’s disease: terminology matters. Neurol Sci. 2023;45(4):1389–97. https://doi.org/10.1007/s10072-023-07209-6.

    Article  PubMed  Google Scholar 

  39. Vijayakumar D, Jankovic J. Drug-induced dyskinesia, part 1: treatment of levodopa-induced dyskinesia. Drugs. 2016;76(7):759–77. https://doi.org/10.1007/s40265-016-0566-3.

    Article  CAS  PubMed  Google Scholar 

  40. Oertel W, Eggert K, Pahwa R, Tanner CM, Hauser RA, Trenkwalder C, et al. Randomized, placebo-controlled trial of ads-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson’s disease (ease lid 3). Mov Disord. 2017;32(12):1701–9. https://doi.org/10.1002/mds.27131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tanner CM, Pahwa R, Hauser RA, Oertel WH, Isaacson SH, Jankovic J, et al. Ease lid 2: a 2-year open-label trial of gocovri (amantadine) extended release for dyskinesia in Parkinson’s disease. Journal of Parkinson’s Disease. 2020;10(2):543–58. https://doi.org/10.3233/jpd-191841.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pahwa R, Tanner CM, Hauser RA, Isaacson SH, Nausieda PA, Truong DD, et al. Ads-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson disease (ease lid study). JAMA Neurol. 2017;74(8):941. https://doi.org/10.1001/jamaneurol.2017.0943.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hauser RA, Lytle J, Formella AE, Tanner CM. Amantadine delayed release/extended release capsules significantly reduce OFF time in Parkinson’s disease. NPJ Parkinson’s Dis. 2022;8(1):29. https://doi.org/10.1038/s41531-022-00291-1.

    Article  CAS  Google Scholar 

  44. Addex Pharma S.A. Dipraglurant (ADX48621) for the treatment of patients with Parkinson’s disease receiving levodopa-based therapy. [NCT04857359]. Available from: https://clinicaltrials.gov/study/NCT04857359. Accessed 2024 May 30.

  45. Tison F, Keywood C, Wakefield M, Durif F, Corvol J-C, Eggert K, et al. A phase 2A trial of the novel mglur5-negative allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson’s disease. Mov Disord. 2016;31(9):1373–80. https://doi.org/10.1002/mds.26659.

    Article  CAS  PubMed  Google Scholar 

  46. Bordia T, Perez XA. Cholinergic control of striatal neurons to modulate L-dopa-induced dyskinesias. Eur J Neurosci. 2018;49(6):859–68. https://doi.org/10.1111/ejn.14048.

    Article  PubMed  Google Scholar 

  47. Lieberman A, Lockhart TE, Olson MC, Smith Hussain VA, Frames CW, Sadreddin A, et al. Nicotine bitartrate reduces falls and freezing of gait in Parkinson disease: a reanalysis. Front Neurol. 2019;10:424. https://doi.org/10.3389/fneur.2019.00424.

    Article  PubMed  PubMed Central  Google Scholar 

  48. van der Meer F, Jorgensen J, Hiligsmann M. Burden of non-motor symptoms of Parkinson’s disease: cost-of-illness and quality-of-life estimates through a scoping review. Expert Rev Pharmacoecon Outcomes Res. 2024;19:1–11. https://doi.org/10.1080/14737167.2024.2390042.

    Article  Google Scholar 

  49. Janssen Daalen JM, van den Bergh R, Prins EM, Moghadam MS, van den Heuvel R, Veen J, et al. Digital biomarkers for non-motor symptoms in Parkinson’s disease: the state of the art. NPJ Digit Med. 2024;7(1):186. https://doi.org/10.1038/s41746-024-01144-2.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chendo I, Silva C, Duarte GS, Prada L, Vian J, Quintão A, et al. Frequency of depressive disorders in Parkinson’s disease: a systematic review and meta-analysis. J Parkinson’s Dis. 2022;12(5):1409–18. https://doi.org/10.3233/jpd-223207.

    Article  CAS  Google Scholar 

  51. Weintraub D. Management of psychiatric disorders in Parkinson’s disease. Neurotherapeutics. 2020;17(4):1511–24. https://doi.org/10.1007/s13311-020-00875-w.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Seppi K, Ray Chaudhuri K, Coelho M, Fox SH, Katzenschlager R, Perez Lloret S, et al. Update on treatments for nonmotor symptoms of Parkinson’s disease—an evidence-based medicine review. Mov Disord. 2019;34(2):180–98. https://doi.org/10.1002/mds.27602.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Barone P, Poewe W, Albrecht S, Debieuvre C, Massey D, Rascol O, et al. Pramipexole for the treatment of depressive symptoms in patients with Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9(6):573–80. https://doi.org/10.1016/s1474-4422(10)70106-x.

    Article  CAS  PubMed  Google Scholar 

  54. Santos García D, Cabo López I, Labandeira Guerra C, Yáñez Baña R, Cimas Hernando MI, Paz González JM, et al. Safinamide improves sleep and daytime sleepiness in Parkinson’s disease: results from the SAFINONMOTOR study. Neurol Sci. 2021;43(4):2537–44. https://doi.org/10.1007/s10072-021-05607-2.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Santos García D, Labandeira Guerra C, Yáñez Baña R, Cimas Hernando MI, Cabo López I, Paz Gonález JM, et al. Safinamide improves non-motor symptoms burden in Parkinson’s disease: an open-label prospective study. Brain Sci. 2021;11(3):316. https://doi.org/10.3390/brainsci11030316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. van Wegen EEH, van Balkom TD, Hirsch MA, Rutten S, van den Heuvel OA. Non-pharmacological interventions for depression and anxiety in Parkinson’s disease. J Parkinson’s Dis. 2024; 14(s1). https://doi.org/10.3233/jpd-230228

  57. Stang CD, Mullan AF, Camerucci E, Hajeb M, Turcano P, Martin P, et al. Incidence, prevalence, and mortality of psychosis associated with Parkinson’s disease (1991–2010). J Parkinson’s Dis. 2022;12(4):1319–27. https://doi.org/10.3233/JPD-213035.

    Article  CAS  Google Scholar 

  58. Srisurapanont M, Suradom C, Suttajit S, Kongsaengdao S, Maneeton B. Second-generation antipsychotics for Parkinson’s disease psychosis: a systematic review and network meta-analysis. Gen Hosp Psychiatry. 2024;87:124–33. https://doi.org/10.1016/j.genhosppsych.2024.02.008.

    Article  PubMed  Google Scholar 

  59. Durif F, Debilly B, Galitzky M, Morand D, Viallet F, Borg M, et al. Clozapine improves dyskinesias in Parkinson disease. Neurology. 2004;62(3):381–8. https://doi.org/10.1212/01.wnl.0000110317.52453.6c.

    Article  CAS  PubMed  Google Scholar 

  60. d’Angremont E, Begemann MJH, van Laar T. Cholinesterase inhibitors for treatment of psychotic symptoms in Alzheimer disease and Parkinson disease. JAMA Neurol. 2023;80(8):813–23. https://doi.org/10.1001/jamaneurol.2023.1835.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chendo I, Ferreira JJ. Pimavanserin for the treatment of Parkinson’s disease psychosis. Expert Opin Pharmacother. 2016;17(15):2115–24. https://doi.org/10.1080/14656566.2016.1234609.

    Article  CAS  PubMed  Google Scholar 

  62. Cummings J, Isaacson S, Mills R, Williams H, Chi-Burris K, Corbett A, et al. Pimavanserin for patients with Parkinson’s disease psychosis: a randomised, placebo-controlled phase 3 trial. Lancet. 2014;383(9916):533–40. https://doi.org/10.1016/S0140-6736(13)62106-6.

    Article  CAS  PubMed  Google Scholar 

  63. Yunusa I, El Helou ML, Alsahali S. Pimavaserin: a novel antipsychotic with potentials to address an unmet need of older adults with dementia-related psychosis. Front Pharmacol. 2020;11:87. https://doi.org/10.3389/fphar.2020.00087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yunusa I. Pimavanserin’s safety profile: insights from a phase 3b clinical trial. J Alzheimer’s Dis. 2024;99(4):1217–20. https://doi.org/10.3233/jad-240274.

    Article  Google Scholar 

  65. Kulkarni S, Jenkins D, Dhar A, Mir F. Treating lows: management of orthostatic hypotension. J Cardiovasc Pharmacol. 2024;84(3):303–15. https://doi.org/10.1097/fjc.0000000000001597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Biaggioni I, Arthur Hewitt L, Rowse GJ, Kaufmann H. Integrated analysis of DROXIDOPA trials for neurogenic orthostatic hypotension. BMC Neurol. 2017;17(1):90. https://doi.org/10.1186/s12883-017-0867-5.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kaufmann H, Vickery R, Wang W, Kanodia J, Shibao CA, Norcliffe-Kaufmann L, et al. Safety and efficacy of ampreloxetine in symptomatic neurogenic orthostatic hypotension: a phase 2 trial. Clin Auton Res. 2021;31(6):699–711. https://doi.org/10.1007/s10286-021-00827-0.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Theravance Biopharma. Clinical effect of ampreloxetine (TD-9855) for treating symptomatic nOH in subjects with primary autonomic failure (SEQUOIA). [NCT03750552]. Available from: https://clinicaltrials.gov/study/NCT03750552. Accessed 2024 Sep 26.

  69. Study 0170 (REDWOOD) ampreloxetine phase 3 results. Therevance Biopharma [Internet]. (USA). 2022 [cited 2025 May 09]. Available from: https://theravancebiopharma.gcs-web.com/static-files/fe1f57e1-5876-4a3f-9286-f2559d9aa623

  70. Theravance Biopharma. Phase 3 efficacy and durability of ampreloxetine for the treatment of symptomatic nOH in participants with multiple system atrophy (CYPRESS). [NCT05696717]. Available from: https://clinicaltrials.gov/study/NCT05696717. Accessed 2024 Sep 26.

  71. Wamelen DJ, Rukavina K, Podlewska AM, Chaudhuri KR. Advances in the pharmacological and non-pharmacological management of non-motor symptoms in Parkinson’s disease: an update since 2017. Curr Neuropharmacol. 2023;21(8):1786–805. https://doi.org/10.2174/1570159x20666220315163856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cheng Y-Q, Ge N-N, Zhu H-H, Sha Z-T, Jiang T, Zhang Y-D, et al. Dihydroergotoxine mesylate for the treatment of sialorrhea in parkinson’s disease. Parkinsonism Relat Disord. 2019;58:70–3. https://doi.org/10.1016/j.parkreldis.2018.08.022.

    Article  PubMed  Google Scholar 

  73. Quigley EM. Constipation in Parkinson’s disease. Semin Neurol. 2023;43(04):562–71. https://doi.org/10.1055/s-0043-1771457.

    Article  PubMed  Google Scholar 

  74. Safarpour D, Stover N, Shprecher DR, Hamedani AG, Pfeiffer RF, Parkman HP, et al. Consensus practice recommendations for management of gastrointestinal dysfunction in Parkinson disease. Parkinsonism Relat Disord. 2024;124:106982. https://doi.org/10.1016/j.parkreldis.2024.106982.

    Article  PubMed  Google Scholar 

  75. Hor JW, Toh TS, Lim S-Y, Tan AH. Advice to people with Parkinson’s in my clinic: probiotics and prebiotics. J Parkinson’s Dis. 2024; 1–12. https://doi.org/10.3233/jpd-240172

  76. Du Y, Li Y, Xu X, Li R, Zhang M, Cui Y, et al. Probiotics for constipation and gut microbiota in Parkinson’s disease. Parkinsonism Related Disord. 2022;103:92–7. https://doi.org/10.1016/j.parkreldis.2022.08.022.

    Article  CAS  Google Scholar 

  77. Ghalandari N, Assarzadegan F, Mahdavi H, Jamshidi E, Esmaily H. Evaluating the effectiveness of probiotics in relieving constipation in Parkinson’s disease: a systematic review and meta-analysis. Heliyon. 2023; 9(3). https://doi.org/10.1016/j.heliyon.2023.e14312

  78. Yin S, Zhu F. Probiotics for constipation in Parkinson’s: a systematic review and meta-analysis of randomized controlled trials. Front Cell Infect Microbiol. 2022; 12. https://doi.org/10.3389/fcimb.2022.1038928

  79. Hong C-T, Chen J-H, Huang T-W. Probiotics treatment for Parkinson disease: a systematic review and meta-analysis of clinical trials. Aging. 2022;14(17):7014–25. https://doi.org/10.18632/aging.204266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yin S, Zhu F. Probiotics for constipation in Parkinson’s: a systematic review and meta-analysis of randomized controlled trials. Front Cell Infect Microbiol. 2022;12:1038938. https://doi.org/10.3389/fcimb.2022.1038928.

    Article  Google Scholar 

Download references

Acknowledgements

GFC received funding support from the American Academy of Neurology Clinical Research Training Scholarship. The authors wish to thank Dr. Stephen Aradi for reviewing their manuscript.

Author information

Authors and Affiliations

Authors

Contributions

DP and GC made substantial contributions to the conception of the review; interpretation of available literature; drafted and critically revised the review; and approved the version to be published.

Corresponding author

Correspondence to Grace F. Crotty.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Power, D., Crotty, G.F. Advances in the Pharmacological Management of Parkinson’s Disease. Curr Treat Options Neurol 27, 22 (2025). https://doi.org/10.1007/s11940-025-00833-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11940-025-00833-x

Keywords