Abstract
Purpose
Today’s hospitals are designed as collections of individual departments, with limited communication and collaboration between medical sub-specialties. Patients are constantly being moved between different places, which is detrimental for patient experience, overall efficiency and capacity. Instead, we argue that care should be brought to the patient, not vice versa, and thus propose a novel hospital architecture concept that we refer to as Patient Hub. It envisions a truly patient-centered, department-less facility, in which all critical functions occur in the same building and on the same floor.
Methods
To demonstrate the feasibility and benefits of our concept, we selected an exemplary patient scenario and used 3D software to simulate resulting workflows for both the Patient Hub and a traditional hospital based on a generic hospital template by Kaiser-Permanente.
Results
According to our workflow simulations, the Patient Hub model effectively eliminates waiting and transfer times, drastically simplifies wayfinding, reduces overall traveling distances by 54%, reduces elevator runs by 78% and improves access to quality views from 67 to 100% for patient rooms, from 0 to 100% for exam rooms and from 0 to 38% for corridors. In addition, the interaction of related medical fields is improved while maintaining the quality of care and the relationship between patients and caregivers.
Conclusion
With the Patient Hub concept, we aim at rethinking traditional hospital layouts. We were able to demonstrate, alas on a proof-of-concept basis, that it is indeed feasible to place the patient at the very center of operations, while increasing overall efficiency and capacity at the same time and maintaining the quality of care.
Similar content being viewed by others
References
Hood L, Balling R, Auffray C (2012) Revolutionizing medicine in the 21st century through systems approaches. Biotechnol J 7(8):992–1001. https://doi.org/10.1002/biot.201100306
Evans S, Agnew E, Vynnycky E, Stimson J, Bhattacharya A, Rooney C, Warne B, Robotham J (2021) The impact of testing and infection prevention and control strategies on within-hospital transmission dynamics of COVID-19 in English hospitals. Philosophical transactions of the Royal Society of London. Series B Biol Sci 376(1829):20200268. https://doi.org/10.1098/rstb.2020.0268
Hußmann B, Waydhas C, Lendemans S (2013) Schockraummanagement beim Schwer- und Schwerstverletzten: Eine interdisziplinäre Aufgabe [Emergency trauma room management in severely and most severely injured patients: a multidisciplinary task]. In: Janssens U, Joannidis M, Mayer A (eds) Weiterbildung Intensivmedizin und Notfallmedizin. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 21–31
Saltman RB (ed) (2007) Decentralization in health care. Strategies and outcomes. European Observatory on Health Systems and Policies Series. Open University Press, Maidenhead
Ridgely MS, Ahluwalia SC, Tom A, Vaiana ME, Motala A, Silverman M, Kim A, Damberg CL, Shekelle PG (2020) What are the determinants of health system performance? findings from the literature and a technical expert panel. Jt Comm J Qual Patient Saf 46(2):87–98. https://doi.org/10.1016/j.jcjq.2019.11.003
Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen Y-J, Ciombor KK, Cohen S, Cooper HS, Deming D, Engstrom PF, Grem JL, Grothey A, Hochster HS, Hoffe S, Hunt S, Kamel A, Kirilcuk N, Krishnamurthi S, Messersmith WA, Meyerhardt J, Mulcahy MF, Murphy JD, Nurkin S, Saltz L, Sharma S, Shibata D, Skibber JM, Sofocleous CT, Stoffel EM, Stotsky-Himelfarb E, Willett CG, Wuthrick E, Gregory KM, Gurski L, Freedman-Cass DA (2018) Rectal cancer, version 2.2018, NCCN clinical practice guidelines in oncology. J National Compr Cancer Network JNCCN 16(7):874–901. https://doi.org/10.6004/jnccn.2018.0061
Building Design & Construction (2008) Kaiser Permanente’s Template for Success. https://www.bdcnetwork.com/kaiser-permanente%E2%80%99s-template-success. Accessed September 6th, 2021
Kaiser Permanente (2011) Creating the ultimate patient experience. https://about.kaiserpermanente.org/our-story/our-history/creating-the-ultimate-patient-experience. Accessed September 6th, 2021
de Almeida A, Hirzel S, Patrão C, Fong J, Dütschke E (2012) Energy-efficient elevators and escalators in Europe: an analysis of energy efficiency potentials and policy measures. Energy Build 47:151–158. https://doi.org/10.1016/j.enbuild.2011.11.053
Facility Guidelines Institute (2014) Guidelines for design and construction of hospitals and outpatient facilities. American hospital association. American society for healthcare engineering
Kaplan S (1995) The restorative benefits of nature: Toward an integrative framework. J Environ Psychol 15(3):169–182. https://doi.org/10.1016/0272-4944(95)90001-2
Ulrich RS (1984) View through a window may influence recovery from surgery. Science 224(4647):420–421. https://doi.org/10.1126/science.6143402
Funding
Not applicable.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or living animals performed by any of the authors.
Informed consent
This article does not contain patient data.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Amato, C., McCanne, L., Yang, C. et al. The hospital of the future: rethinking architectural design to enable new patient-centered treatment concepts. Int J CARS 17, 1177–1187 (2022). https://doi.org/10.1007/s11548-021-02540-9
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1007/s11548-021-02540-9