这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Automatic triangulated mesh generation of pulmonary airways from segmented lung 3DCTs for computational fluid dynamics

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Computational fluid dynamics (CFD) of lung airflow during normal and pathophysiological breathing provides insight into regional pulmonary ventilation. By integrating CFD methods with 4D lung imaging workflows, regions of normal pulmonary function can be spared during treatment planning. To facilitate the use of CFD simulations in a clinical setup, a robust, automated, and CFD-compliant airway mesh generation technique is necessary.

Methods

We define a CFD-compliant airway mesh to be devoid of blockages of airflow and leaks in the airway path, both of which are caused by airway meshing errors that occur when using conventional meshing techniques. We present an algorithm to create a CFD-compliant airway mesh in an automated manner. Beginning with a medial skeleton of the airway segmentation, the branches were tracked, and 3D points at which bifurcations occur were identified. Airway branches and bifurcation features were isolated to allow for automated and careful meshing that considered their anatomical nature.

Results

We present the meshing results from three state-of-the-art tools and compare them with the meshes generated by our algorithm. The results show that fully CFD-compliant meshes were automatically generated for an ideal geometry and patient-specific CT scans. Using an open-source smoothed-particle hydrodynamics CFD implementation, we compared the airflow using our approach and conventionally generated airway meshes.

Conclusion

Our meshing algorithm was able to successfully generate a CFD-compliant mesh from pre-segmented lung CT scans, providing an automatic meshing approach that enables interventional CFD simulations to guide lung procedures such as radiotherapy or lung volume reduction surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tian FB, Dai H, Luo H, Doyle JF, Rousseau B (2014) Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems. J Comput Phys 258:451–469

    Article  CAS  Google Scholar 

  2. Luo H, Mittal R, Zheng X, Bielamowicz SA, Walsh RJ, Hahn JK (2008) An immersed-boundary method for flow–structure interaction in biological systems with application to phonation. J Comput Phys 227(22):9303–9332

    Article  Google Scholar 

  3. Wall WA, Rabczuk T (2008) Fluid–structure interaction in lower airways of CT-based lung geometries. Int J Numer Methods Fluids 57(5):653–675

    Article  Google Scholar 

  4. Yin Y, Choi J, Hoffman EA, Tawhai MH, Lin CL (2010) Simulation of pulmonary air flow with a subject-specific boundary condition. J Biomech 43(11):2159–2163

    Article  Google Scholar 

  5. Qi S, Li Z, Yue Y, van Triest HJ, Kang Y (2014) Computational fluid dynamics simulation of airflow in the trachea and main bronchi for the subjects with left pulmonary artery sling. Biomed Eng Online 13(1):85

    Article  Google Scholar 

  6. Thomas D, Lamb J, White B, Jani S, Gaudio S, Lee P, Ruan D, McNitt-Gray M, Low D (2014) A novel fast helical 4D-CT acquisition technique to generate low-noise sorting artifact–free images at user-selected breathing phases. Int J Radiat Oncol Biol Phys 89(1):191–198

    Article  Google Scholar 

  7. Neylon J, Santhanam AP (2017) Feasibility and quantitative analysis of a biomechanical model-guided lung elastography for radiotherapy. Biomed Phys Eng Express 3(2):025006

    Article  Google Scholar 

  8. Ilegbusi O, Seyfi B, Neylon J, Santhanam AP (2015) Analytic intermodel consistent modeling of volumetric human lung dynamics. J Biomech Eng 137(10)

  9. Seyfi B, Santhanam AP, Ilegbusi OJ (2016) A biomechanical model of human lung deformation utilizing patient-specific elastic property. J Cancer Ther 7(6):402–415

    Article  Google Scholar 

  10. Seyfi B, Santhanam AP, Ilegbusi OJ (2018) Effect of gravity on subject-specific human lung deformation. Math Comput Model Dyn Syst 24(1):87–101

    Article  Google Scholar 

  11. Nowak N, Kakade PP, Annapragada AV (2003) Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann Biomed Eng 31(4):374–390

    Article  Google Scholar 

  12. Lin CL, Tawhai MH, McLennan G, Hoffman EA (2007) Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir Physiol Neurobiol 157(2–3):295–309

    Article  Google Scholar 

  13. Walters DK, Burgreen GW, Lavallee DM, Thompson DS, Hester RL (2011) Efficient, physiologically realistic lung airflow simulations. IEEE Trans Biomed Eng 58(10):3016–3019

    Article  Google Scholar 

  14. Isaacs KK, Schlesinger R, Martonen TB (2006) Three-dimensional computational fluid dynamics simulations of particle deposition in the tracheobronchial tree. J Aerosol Med 19(3):344–352

    Article  Google Scholar 

  15. Ilegbusi OJ, Li Z, Seyfi B, Min Y, Meeks S, Kupelian P, Santhanam AP (2012) Modeling airflow using subject-specific 4DCT-based deformable volumetric lung models. Int J Biomed Imaging 2012.

  16. Pieper S, Halle M, Kikinis R (2004) 3D Slicer. In: 2004 2nd IEEE international symposium on biomed imaging: nano to macro (IEEE Cat No. 04EX821), pp 632–635.

  17. Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G (2008) Meshlab: an open-source mesh processing tool. In: Eurographics ital chapter conf, pp 129–136

  18. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM Siggraph Comput Graph 21(4):163–169

    Article  Google Scholar 

  19. Weibel ER, Cournand AF, Richards DW (1963) Morphometry of the human lung, vol 1. Springer, Berlin

    Book  Google Scholar 

  20. Soni B, Aliabadi S (2013) Large-scale CFD simulations of airflow and particle deposition in lung airway. Comput Fluids 88:804–812

    Article  Google Scholar 

  21. Walters DK, Luke WH (2011) Computational fluid dynamics simulations of particle deposition in large-scale, multigenerational lung models. J Biomech Eng 133(1)

  22. Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 13(6):819–845

    Article  Google Scholar 

  23. Miyawaki S, Tawhai MH, Hoffman EA, Wenzel SE, Lin C-L (2017) Automatic construction of subject-specific human airway geometry including trifurcations based on a CT-segmented airway skeleton and surface. Biomech Model Mechanobiol 16(2):583–596

    Article  Google Scholar 

  24. Sazonov I, Nithiarasu P (2012) Semi-automatic surface and volume mesh generation for subject-specific biomedical geometries. Int J Numer Methods Biomed Eng 28(1):133–157

    Article  Google Scholar 

  25. Marchandise E, Crosetto P, Geuzaine C, Remacle J-F, Sauvage E (2012) Quality open source mesh generation for cardiovascular flow simulations. Model of Physiol Flows. Springer, Berlin, pp 395–414

    Google Scholar 

  26. Marchandise E, Geuzaine C, Remacle J-F (2013) Cardiovascular and lung mesh generation based on centerlines. Int J Numer Methods in Biomed Eng 29(6):665–682

    Article  CAS  Google Scholar 

  27. Rasband WS (1997) ImageJ. https://rsb.info.nih.gov/ij/. Accessed 15 Nov 2020

  28. Doel T (2017) Pulmonary toolkit. https://github.com/tomdoel/pulmonarytoolkit. Accessed 15 Nov 2020

  29. Lee TC, Kashyap RL, Chu CN (1994) Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP Graph Model Image Process 56(6):462–478

    Article  Google Scholar 

  30. Huang H, Wu S, Cohen-Or D, Gong M, Zhang H, Li G, Chen B (2013) L1-medial skeleton of point cloud. ACM Trans Graph 32 (4):65:61–65:68

  31. Crespo AJ, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O (2015) DualSPHysics: Open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204–216

    Article  CAS  Google Scholar 

  32. Lind S, Stansby P, Rogers B, Lloyd P (2015) Numerical predictions of water–air wave slam using incompressible–compressible smoothed particle hydrodynamics. Appl Ocean Res 49:57–71

    Article  Google Scholar 

  33. Caballero A, Mao W, Liang L, Oshinski J, Primiano C, McKay R, Kodali S, Sun W (2017) Modeling left ventricular blood flow using smoothed particle hydrodynamics. Cardiovasc Eng and Technol 8(4):465–479

    Article  Google Scholar 

  34. Mittleman FBJ, Silva HRC, Taubin G (1999) The ball-pivoting algorithm for surface reconstruction. IEEE Trans on Vis and Comput Graph 5(4)

  35. Guennebaud G, Gross M (2007) Algebraic point set surfaces. ACM SIGGRAPH 2007 papers 23-es

  36. Fang Q, Boas DA (2009) Tetrahedral mesh generation from volumetric binary and grayscale images. IEEE Int Symp Biomed Imaging Nano Macro 2009:1142–1145

    Google Scholar 

  37. Fabri A, Pion S (2009) CGAL: the computational geometry algorithms library. In: Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems, pp 538–539

  38. Eslami P, Hartman EM, Albaghadai M, Karady J, Jin Z, Thondapu V, Cefalo NV, Lu MT, Coskun A, Stone PH (2021) Validation of wall shear stress assessment in non-invasive coronary CTA versus invasive imaging: a patient-specific computational study. Ann Biomed Eng 49(4):1151–1168

    Article  Google Scholar 

  39. Nousias S, Zacharaki EI, Moustakas K (2020) AVATREE: an open-source computational modelling framework modelling anatomically valid airway TREE conformations. PLoS ONE 15(4):e0230259

    Article  CAS  Google Scholar 

  40. Faizal W, Ghazali N, Khor C, Badruddin IA, Zainon M, Yazid AA, Ibrahim NB, Razi RM (2020) Computational fluid dynamics modelling of human upper airway: a review. Comput Methods Programs Biomed 196:105627

    Article  CAS  Google Scholar 

  41. Molony D, Park J, Zhou L, Fleischer C, Sun HY, Hu X, Oshinski J, Samady H, Giddens DP, Rezvan A (2019) Bulk flow and near wall hemodynamics of the rabbit aortic arch and descending thoracic aorta: A 4D PC-MRI derived computational fluid dynamics study. J Biomech Eng 141(1):011003

    Article  Google Scholar 

  42. Foteinos PA, Chrisochoides NP (2014) High quality real-time image-to-mesh conversion for finite element simulations. J Parallel Distrib Comput 74(2):2123–2140

    Article  Google Scholar 

  43. Gerig G, Koller T, Székely G, Brechbühler C, Kübler O (1993) Symbolic description of 3-D structures applied to cerebral vessel tree obtained from MR angiography volume data. In: Bienn international conference on information processing in medical imaging, pp 94–111

  44. Ghaffari M, Tangen K, Alaraj A, Du X, Charbel FT, Linninger AA (2017) Large-scale subject-specific cerebral arterial tree modeling using automated parametric mesh generation for blood flow simulation. Comput Biol Med 91:353–365

    Article  Google Scholar 

  45. Schumann C, Neugebauer M, Bade R, Preim B, Peitgen H-O (2008) Implicit vessel surface reconstruction for visualization and CFD simulation. Int J Comput Assist Radiol Surg 2(5):275–286

    Article  Google Scholar 

  46. Bernhardt A, Barthe L, Cani MP, Wyvill B (2010) Implicit blending revisited. Comput Graph Forum 29(2):367–375

    Article  Google Scholar 

  47. Mohan V, Sundaramoorthi G, Tannenbaum A (2010) Tubular surface segmentation for extracting anatomical structures from medical imagery. IEEE Trans Med Imaging 29(12):1945–1958

    Article  Google Scholar 

  48. Wang Y, Narayanaswamy A, Roysam B (2011) Novel 4-D open-curve active contour and curve completion approach for automated tree structure extraction. In: CVPR IEEE, pp 1105–1112

  49. Vida J, Martin RR, Varady T (1994) A survey of blending methods that use parametric surfaces. Comput-Aided Des 26(5):341–365

    Article  Google Scholar 

  50. Xu G, Zhang Q (2007) G2 surface modeling using minimal mean-curvature-variation flow. Comput-Aided Des 39(5):342–351

    Article  Google Scholar 

  51. Yuan X, Hongfan J, Yu W (2002) A neural network approach to surface blending based on digitized points. J Mater Process Technol 120(1–3):76–79

    Article  Google Scholar 

Download references

Funding

This work is supported by the Tobacco Related Disease Research Program 27IR‐0056, NIH R56 1R56HL139767‐01A1, Ken and Wendy Ruby Foundation, and the UCLA Department of Radiation Oncology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lauria.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauria, M., Singhrao, K., Stiehl, B. et al. Automatic triangulated mesh generation of pulmonary airways from segmented lung 3DCTs for computational fluid dynamics. Int J CARS 17, 185–197 (2022). https://doi.org/10.1007/s11548-021-02465-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11548-021-02465-3

Keywords

Profiles

  1. Michael Lauria