这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Feasibility of laser-guided percutaneous pedicle screw placement in the lumbar spine using a hybrid-OR

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Innovations in intraoperative imaging lead to major changes in orthopaedic surgery. In our setting, a 3D flat-panel c-arm (Artis zeego) is mounted on a robotic arm offering an integrated aiming tool (Syngo iGuide). Our aim was to investigate the feasibility of Syngo iGuide for pedicle screw placement in comparison with fluoroscopic screw implantation.

Methods

In 10 lumbar models, 100 screws were implanted. In 5 models, a standard fluoroscopic technique was used. Syngo iGuide was used in all other models. Afterwards, CT-scans were performed and screw accuracy was investigated.

Results

The procedure time for the new technique was significantly longer in comparison with the standard technique. The post-operative CT showed the same accuracy in both groups.

Conclusions

Syngo iGuide proofed feasible for percutaneous implantation of pedicle screws in anatomic models. Syngo iGuide can be a help for screw implantation in difficult anatomic regions without the need of an additional navigation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gautschi OP, Schatlo B, Schaller K, Tessitore E (2011) Clinically relevant complications related to pedicle screw placement in thoracolumbar surgery and their management: a literature review of 35,630 pedicle screws. Neurosurg Focus 31(4):E8

    Article  PubMed  Google Scholar 

  2. Abumi K, Shono Y, Ito M, Taneichi H, Kotani Y, Kaneda K (2000) Complications of pedicle screw fixation in reconstructive surgery of the cervical spine. Spine 25(8):962–969

    Article  CAS  PubMed  Google Scholar 

  3. Neo M, Sakamoto T, Fujibayashi S, Nakamura T (2005) The clinical risk of vertebral artery injury from cervical pedicle screws inserted in degenerative vertebrae. Spine 30(24):2800–2805

    Article  PubMed  Google Scholar 

  4. Tian NF, Huang QS, Zhou P, Zhou Y, Wu RK, Lou Y, Xu HZ (2011) Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J 20(6):846–59

    Article  PubMed  Google Scholar 

  5. Tian NF, Xu HZ (2009) Image-guided pedicle screw insertion accuracy: a meta-analysis. Int Orthop 33(4):895–903

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kosmopoulos V, Schizas C (2007) Pedicle screw placement accuracy: a meta-analysis. Spine 32(3):E111–E120

    Article  PubMed  Google Scholar 

  7. Shin BJ, James AR, Njoku IU, Hartl R (2012) Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine 17(2):113–22

    Article  PubMed  Google Scholar 

  8. Ferrari V, Parchi P, Condino S, Carbone M, Baluganti A, Ferrari M, Mosca F, Lisanti M (2013) An optimal design for patient-specific templates for pedicle spine screws placement. Int J Med Robot 9(3):298–304

    Article  CAS  PubMed  Google Scholar 

  9. Lu S, Xu YQ, Zhang YZ, Xie L, Guo H, Li DP (2009) A novel computer-assisted drill guide template for placement of C2 laminar screws. Eur Spine J 18(9):1379–85

    Article  PubMed  PubMed Central  Google Scholar 

  10. Radermacher K, Portheine F, Anton M, Zimolong A, Kaspers G, Rau G, Staudte HW (1998) Computer assisted orthopaedic surgery with image based individual templates. Clin Orthop Relat Res 354:28–38

    Article  Google Scholar 

  11. Farshad M, Betz M, Farshad-Amacker NA, Moser M (2016) Accuracy of patient-specific template-guided vs. free-hand fluoroscopically controlled pedicle screw placement in the thoracic and lumbar spine: a randomized cadaveric study. Eur Spine J. doi:10.1007/s00586-016-4728-5

  12. Kaneyama S, Sugawara T, Sumi M (2015) Safe and accurate midcervical pedicle screw insertion procedure with the patient-specific screw guide template system. Spine 40(6):E341–E348

    Article  PubMed  Google Scholar 

  13. Sugawara T, Higashiyama N, Kaneyama S, Takabatake M, Watanabe N, Uchida F, Sumi M, Mizoi K (2013) Multistep pedicle screw insertion procedure with patient-specific lamina fit-and-lock templates for the thoracic spine: clinical article. J Neurosurg Spine 19(2):185–90

    Article  PubMed  Google Scholar 

  14. Merc M, Drstvensek I, Vogrin M, Brajlih T, Recnik G (2013) A multi-level rapid prototyping drill guide template reduces the perforation risk of pedicle screw placement in the lumbar and sacral spine. Arch Orthop Trauma Surg 133(7):893–899

    Article  PubMed  Google Scholar 

  15. Hu X, Ohnmeiss DD, Lieberman IH (2013) Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients. Eur Spine J 22(3):661–666

    Article  PubMed  Google Scholar 

  16. Marcus HJ, Cundy TP, Nandi D, Yang GZ, Darzi A (2014) Robot-assisted and fluoroscopy-guided pedicle screw placement: a systematic review. Eur Spine J 23(2):291–297

    Article  PubMed  Google Scholar 

  17. Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V (2011) Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J 20(6):860–868

    Article  PubMed  PubMed Central  Google Scholar 

  18. Devito DP, Kaplan L, Dietl R, Pfeiffer M, Horne D, Silberstein B, Hardenbrook M, Kiriyanthan G, Barzilay Y, Bruskin A, Sackerer D, Alexandrovsky V, Stuer C, Burger R, Maeurer J, Donald GD, Schoenmayr R, Friedlander A, Knoller N, Schmieder K, Pechlivanis I, Kim IS, Meyer B, Shoham M (2010) Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine 35(24):2109–2115

    Article  PubMed  Google Scholar 

  19. Roser F, Tatagiba M, Maier G (2013) Spinal robotics: current applications and future perspectives. Neurosurgery 72(Suppl 1):12–18

    Article  PubMed  Google Scholar 

  20. Barzilay Y, Schroeder JE, Hiller N, Singer G, Hasharoni A, Safran O, Liebergall M, Itshayek E, Kaplan L (2014) Robot-assisted vertebral body augmentation: a radiation reduction tool. Spine 39(2):153–157

    Article  PubMed  Google Scholar 

  21. Onen MR, Simsek M, Naderi S (2014) Robotic spine surgery: a preliminary report. Turk Neurosurg 24(4):512–518

    PubMed  Google Scholar 

  22. Gebhard F, Riepl C, Richter P, Liebold A, Gorki H, Wirtz R, Konig R, Wilde F, Schramm A, Kraus M (2012) The hybrid operating room. Home of high-end intraoperative imaging. Unfallchirurg 115(2):107–120

    Article  CAS  PubMed  Google Scholar 

  23. Richter PH, Gebhard F (2013) The interdisciplinary hybrid operation theatre. Current experience and future. Chirurg 84(12):1036–1040

    Article  CAS  PubMed  Google Scholar 

  24. Richter PH, Yarboro S, Kraus M, Gebhard F (2015) One year orthopaedic trauma experience using an advanced interdisciplinary hybrid operating room. Injury 46(Suppl 4):S129–S134

    Article  PubMed  Google Scholar 

  25. Ritter M, Rassweiler MC, Hacker A, Michel MS (2013) Laser-guided percutaneous kidney access with the Uro Dyna-CT: first experience of three-dimensional puncture planning with an ex vivo model. World J Urol 31(5):1147–1151

    Article  CAS  PubMed  Google Scholar 

  26. Mabray MC, Datta S, Lillaney PV, Moore T, Gehrisch S, Talbott JF, Levitt MR, Ghodke BV, Larson PS, Cooke DL (2016) Accuracy of flat panel detector CT with integrated navigational software with and without MR fusion for single-pass needle placement. J Neurointerv Surg 8(7):731–735. doi:10.1136/neurintsurg-2015-011799

  27. Ritter M, Rassweiler MC, Michel MS (2015) The Uro Dyna-CT enables three-dimensional planned laser-guided complex punctures. Eur Urol 68(5):880–884

    Article  PubMed  Google Scholar 

  28. Freundt MI, Ritter M, Al-Zghloul M, Groden C, Kerl HU (2013) Laser-guided cervical selective nerve root block with the Dyna-CT: initial experience of three-dimensional puncture planning with an ex-vivo model. PLoS One 8(7):e69311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tam AL, Mohamed A, Pfister M, Chinndurai P, Rohm E, Hall AF, Wallace MJ (2010) C-arm cone beam computed tomography needle path overlay for fluoroscopic guided vertebroplasty. Spine 35(10):1095–1099

    Article  PubMed  Google Scholar 

  30. Czerny C, Eichler K, Croissant Y, Schulz B, Kronreif G, Schmidt R, von Roden M, Schomerus C, Vogl TJ, Marzi I, Zangos S (2015) Combining C-arm CT with a new remote operated positioning and guidance system for guidance of minimally invasive spine interventions. J Neurointerv Surg 7(4):303–308

    Article  PubMed  Google Scholar 

  31. Kathuria SE, Ehtiati T, Gandhi D (2010) E-040 Utility of Syngo iGuide needle guidance system for intraoperative navigation in percutaneous spine interventions: a cadaveric study. J NeuroIntervent Surg 2:A41

    Article  Google Scholar 

  32. Verhoeven E, Katsargyris A, Topel I, Steinbauer M (2013) Hybrid operating rooms: only for advanced endovascular procedures? Zentralbl Chir 138(5):516–520

    Article  CAS  PubMed  Google Scholar 

  33. Kleiman N (2012) Room considerations with TAVR. Methodist Debakey Cardiovasc J 8(2):19–21

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dea N, Fisher CG, Batke J, Strelzow J, Mendelsohn D, Paquette SJ, Kwon BK, Boyd MD, Dvorak MF, Street JT (2016) Economic evaluation comparing intraoperative cone beam CT-based navigation and conventional fluoroscopy for the placement of spinal pedicle screws: a patient-level data cost-effectiveness analysis. Spine J 16(1):23–31

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by Project no S-13-128K supported by AO Foundation, Switzerland

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. H. Richter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. Each author certifies that he/she has no commercial associations (e.g. consultancies, stock ownership, equity interest, patent/licensing arrangements) that might pose a conflict of interest in connection with the submitted article.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, P.H., Gebhard, F., Salameh, M. et al. Feasibility of laser-guided percutaneous pedicle screw placement in the lumbar spine using a hybrid-OR. Int J CARS 12, 873–879 (2017). https://doi.org/10.1007/s11548-017-1529-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11548-017-1529-1

Keywords