Abstract
Purpose
Endovascular Aneurysm Repair (EVAR) can be facilitated by a realistic simulation model of stent-vessel-interaction. Therefore, numerical feasibility and integrability in the clinical environment was evaluated.
Methods
The finite element method was used to determine necessary simulation parameters for stent-vessel-interaction in EVAR. Input variables and result data of the simulation model were examined for their standardization using DICOM supplements.
Results
The study identified four essential parameters for the stent-vessel simulation: blood pressure, intima constitution, plaque occurrence and the material properties of vessel and plaque. Output quantities such as radial force of the stent and contact pressure between stent/vessel can help the surgeon to evaluate implant fixation and sealing. The model geometry can be saved with DICOM “Surface Segmentation” objects and the upcoming “Implant Templates” supplement. Simulation results can be stored using the “Structured Report”.
Conclusions
A standards-based general simulation model for optimizing stent-graft selection may be feasible. At present, there are limitations due to specification of individual vessel material parameters and for simulating the proximal fixation of stent-grafts with hooks. Simulation data with clinical relevance for documentation and presentation can be stored using existing or new DICOM extensions.
Similar content being viewed by others
References
Cinà D, Grant G, Peterson M, Campbell V, Garrido-Olivares L, Cinà C (2009) A study of pullout forces of the components of modular multi-manufacturer hybrid endografts used for aortic aneurysm repair. Eur J Vasc Endovasc Surg 37(6): 671–680. doi:10.1016/j.ejvs.2009.02.017
Bosman WMPF, van der Steenhoven TJ, Suárez DR, Hinnen JW, Valstar ER, Hamming JF (2010) The proximal fixation strength of modern EVAR grafts in a short aneurysm neck—an in vitro study. Eur J Vasc Endovasc Surg 39: 187–192. doi:10.1016/j.ejvs.2009.10.019 Elsevier Ltd
Gebert de Uhlenbrock A (2009) Designanalyse von endovaskulären Aortenprothesen. Dissertation, Technische Universität Hamburg-Harburg, urn:nbn:de:gbv:830-tubdok-7993
Lambert AW, Williams DJ, Budd JS, Horrocks M (1999) Experimental assessment of proximal stent-graft (interVascular) fixation in human cadaveric infrarenal aortas. Eur J Vasc Endovasc Surg 17(1): 60–65
Malina M, Lindblad B, Ivancev K, Lindh M, Malina J, Brunkwall J (1998) Endovascular AAA exclusion: will stents with hooks and barbs prevent stent-graft migration?. J Endovasc Surg 5(4): 310–317
Andrews SM, Anson AW, Greenhalgh RM, Nott DM (1995) In vitro evaluation of endovascular stents to assess suitability for endovascular graft fixation. Eur J Vasc Endovasc Surg 9(4): 403–407
Waasdorp E, de Vries J, Sterkenburg A, Vos J, Kelder H, Moll F, Zarins C (2009) The association between iliac fixation and proximal stent-graft migration during EVAR follow-up: mid-term results of 154 talent devices. Eur J Vasc Endovasc Surg 37(6): 681–687. doi:10.1016/j.ejvs.2009.03.001
Murphy EH, Johnson ED, Arko FR (2007) Device-specific resistance to in vivo displacement of stent-grafts implanted with maximum iliac fixation. J Endovasc Ther 14: 585–592
Liffman K, Lawrence-Brown MM, Semmens JB, Bui A, Rudman M, Hartley DE (2001) Analytical modeling and numerical simulation of forces in an endoluminal graft. J Endovasc Ther 8: 358–371
Morris L, Delassus P, Walsh M, McGloughlin T (2004) A mathematical model to predict the in vivo pulsatile drag forces acting on bifurcated stent grafts used in endovascular treatment of abdominal aortic aneurysms (AAA). J Biomech 37: 1087–1095
Sina RA, Westt K, Rontala RS, Greenberg RK, Banerjee RK (2007) In vitro measurement and calculation of drag force on iliac limb stentgraft in a compliant arterial wall model. Mol Cell Biomech (MCB), Tech Science Press 4(4): 211–226
Okubo M, Ino T, Takahashi K, Kishiro M, Akimoto K, Yamashiro Y (2001) Age dependency of stiffness of the abdominal aorta and the mechanical properties of the aorta in Kawasaki disease in children. Pediatr Cardiol 22: 198–203. doi:10.1007/s002460010203 Springer
Gao F, Watanabe M, Matsuzawa T (2006) Stress analysis in a layered aortic arch model under pulsatile blood flow. BioMed Eng Online 5. doi:10.1186/1475-925X-5-25
Doyle B, Callanan A, McGloughlin T (2007) A comparison of modeling techniques for computing wall stress in abdominal aortic aneurysms. BioMed Eng Online 6: 38. doi:10.1186/1475-925X-6-38
Holzapfel GA (2002) Biomechanics of soft tissues with application to arterial walls. In: Mathematical and computational modelling of biological systems, chap 1. Centro Internacional de Matemática CIM, Coimbra, pp 1–37
Holzapfel GA, Sommer G, Regitnig P (2004) Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J Biomech Eng H 126: 657–665. doi:10.1115/1.1800557
Stary HC (2003) Atlas of atherosclerosis progression and regression, 2nd edn (Encyclopedia of Visual Medicine). Informa Healthcare, ISBN-10:1842141538
Holzapfel GA (2009) Arterial tissue in health and disease: experimental data, collagen-based modelling and simulation, including aortic dissection. In: Biomechanical modelling at the molecular, cellular and tissue levels, CISM Courses and Lectures No. 508. Springer, Vienna, pp 259–343
Auricchio F, Loreto M, Sacco E (2001) Finite-element analysis of a stenotic artery revascularization through a stent insertion. Comput Methods Biomech Biomed Eng 4: 249–263. doi:10.1080/10255840108908007
Migliavacca F, Petrini L, Massarotti Paolo, Schievano S, Auricchio F, Dubini G (2004) Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech Model Mechanobiol 2(4): 205–217. doi:10.1007/s10237-004-0039-6
Liang DK, Yang DZ, Qi M, Wang WQ (2005) Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery. Int J Cardiol 104(3): 314–318. doi:10.1016/j.ijcard.2004.12.033
Wu W, Wang WQ, Yang DZ, Qi M (2007) Stent expansion in curved vessel and their interactions: a finite element analysis. J Biomech 40(11): 2580–2585. doi:10.1016/j.jbiomech.2006.11.009
Pericevic I, Lally C, Toner D, Kelly D (2009) The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Med Eng Phys 31: 428–433
Early M, Lally C, Prendergast PJ, Kelly DJ (2009) Comput Methods Biomech Biomed Eng 12(1): 25–33 First published 2009
Fuchs V (2008) Nichtlineare Finite Element Untersuchung mit der Finite Element Software ANSYS. Am Beispiel eines Nitinolstents und Humangewebe. Diploma thesis, Fachhochschule Frankfurt am Main, Diplomica Verlag GmbH, ISBN: 978-3-8366-1835-9
National Electrical Manufacturers Association (2008) Digital imaging and communications in medicine (DICOM) NEMA, Rosslyn. http://medical.nema.org. Accessed 10 Jan 2010
National Electrical Manufacturers Association (2008) Digital imaging and communications in medicine (DICOM), Supplement 131: Implant Templates. NEMA, Rosslyn. http://medical.nema.org. Accessed 10 Jan 2010
National Electrical Manufacturers Association (2008) Digital imaging and communications in medicine (DICOM), Supplement 132: Surface Segmentation. NEMA, Rosslyn. http://medical.nema.org. Accessed 10 Jan 2010
National Electrical Manufacturers Association (2008) Digital imaging and communications in medicine (DICOM), Supplement 134: Implantation Plan SR Document, NEMA, Rosslyn. http://medical.nema.org. Accessed 10 Jan 2010
Migliavacca F, Petrini L, Auricchio F, Dubini G (2003) Deployment of an intravscular stent in coronary stenotic arteries: a computational study. In: Proccedings: summer bioengineering conference June 25–29, Florida
Wang WQ, Liang DK, Yang DZ, Qi M (2006) Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. J Biomech 39(1): 21–32. doi:10.1016/j.jbiomech.2004.11.003
Takashima K, Kitou T, Mori K, Ikeuchi K (2007) Simulation and experimental observation of contact conditions between stents and artery models. Med Eng Phys 29(3): 326–335. doi:10.1016/j.medengphy.2006.04.003
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Scherer, S., Treichel, T., Ritter, N. et al. Surgical stent planning: simulation parameter study for models based on DICOM standards. Int J CARS 6, 319–327 (2011). https://doi.org/10.1007/s11548-010-0511-y
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s11548-010-0511-y