这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Surgical stent planning: simulation parameter study for models based on DICOM standards

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Endovascular Aneurysm Repair (EVAR) can be facilitated by a realistic simulation model of stent-vessel-interaction. Therefore, numerical feasibility and integrability in the clinical environment was evaluated.

Methods

The finite element method was used to determine necessary simulation parameters for stent-vessel-interaction in EVAR. Input variables and result data of the simulation model were examined for their standardization using DICOM supplements.

Results

The study identified four essential parameters for the stent-vessel simulation: blood pressure, intima constitution, plaque occurrence and the material properties of vessel and plaque. Output quantities such as radial force of the stent and contact pressure between stent/vessel can help the surgeon to evaluate implant fixation and sealing. The model geometry can be saved with DICOM “Surface Segmentation” objects and the upcoming “Implant Templates” supplement. Simulation results can be stored using the “Structured Report”.

Conclusions

A standards-based general simulation model for optimizing stent-graft selection may be feasible. At present, there are limitations due to specification of individual vessel material parameters and for simulating the proximal fixation of stent-grafts with hooks. Simulation data with clinical relevance for documentation and presentation can be stored using existing or new DICOM extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cinà D, Grant G, Peterson M, Campbell V, Garrido-Olivares L, Cinà C (2009) A study of pullout forces of the components of modular multi-manufacturer hybrid endografts used for aortic aneurysm repair. Eur J Vasc Endovasc Surg 37(6): 671–680. doi:10.1016/j.ejvs.2009.02.017

    Article  PubMed  Google Scholar 

  2. Bosman WMPF, van der Steenhoven TJ, Suárez DR, Hinnen JW, Valstar ER, Hamming JF (2010) The proximal fixation strength of modern EVAR grafts in a short aneurysm neck—an in vitro study. Eur J Vasc Endovasc Surg 39: 187–192. doi:10.1016/j.ejvs.2009.10.019 Elsevier Ltd

    Article  PubMed  CAS  Google Scholar 

  3. Gebert de Uhlenbrock A (2009) Designanalyse von endovaskulären Aortenprothesen. Dissertation, Technische Universität Hamburg-Harburg, urn:nbn:de:gbv:830-tubdok-7993

  4. Lambert AW, Williams DJ, Budd JS, Horrocks M (1999) Experimental assessment of proximal stent-graft (interVascular) fixation in human cadaveric infrarenal aortas. Eur J Vasc Endovasc Surg 17(1): 60–65

    Article  PubMed  CAS  Google Scholar 

  5. Malina M, Lindblad B, Ivancev K, Lindh M, Malina J, Brunkwall J (1998) Endovascular AAA exclusion: will stents with hooks and barbs prevent stent-graft migration?. J Endovasc Surg 5(4): 310–317

    Article  PubMed  CAS  Google Scholar 

  6. Andrews SM, Anson AW, Greenhalgh RM, Nott DM (1995) In vitro evaluation of endovascular stents to assess suitability for endovascular graft fixation. Eur J Vasc Endovasc Surg 9(4): 403–407

    Article  PubMed  CAS  Google Scholar 

  7. Waasdorp E, de Vries J, Sterkenburg A, Vos J, Kelder H, Moll F, Zarins C (2009) The association between iliac fixation and proximal stent-graft migration during EVAR follow-up: mid-term results of 154 talent devices. Eur J Vasc Endovasc Surg 37(6): 681–687. doi:10.1016/j.ejvs.2009.03.001

    Article  PubMed  CAS  Google Scholar 

  8. Murphy EH, Johnson ED, Arko FR (2007) Device-specific resistance to in vivo displacement of stent-grafts implanted with maximum iliac fixation. J Endovasc Ther 14: 585–592

    Article  PubMed  Google Scholar 

  9. Liffman K, Lawrence-Brown MM, Semmens JB, Bui A, Rudman M, Hartley DE (2001) Analytical modeling and numerical simulation of forces in an endoluminal graft. J Endovasc Ther 8: 358–371

    Article  PubMed  CAS  Google Scholar 

  10. Morris L, Delassus P, Walsh M, McGloughlin T (2004) A mathematical model to predict the in vivo pulsatile drag forces acting on bifurcated stent grafts used in endovascular treatment of abdominal aortic aneurysms (AAA). J Biomech 37: 1087–1095

    Article  PubMed  CAS  Google Scholar 

  11. Sina RA, Westt K, Rontala RS, Greenberg RK, Banerjee RK (2007) In vitro measurement and calculation of drag force on iliac limb stentgraft in a compliant arterial wall model. Mol Cell Biomech (MCB), Tech Science Press 4(4): 211–226

    Google Scholar 

  12. Okubo M, Ino T, Takahashi K, Kishiro M, Akimoto K, Yamashiro Y (2001) Age dependency of stiffness of the abdominal aorta and the mechanical properties of the aorta in Kawasaki disease in children. Pediatr Cardiol 22: 198–203. doi:10.1007/s002460010203 Springer

    Article  PubMed  CAS  Google Scholar 

  13. Gao F, Watanabe M, Matsuzawa T (2006) Stress analysis in a layered aortic arch model under pulsatile blood flow. BioMed Eng Online 5. doi:10.1186/1475-925X-5-25

  14. Doyle B, Callanan A, McGloughlin T (2007) A comparison of modeling techniques for computing wall stress in abdominal aortic aneurysms. BioMed Eng Online 6: 38. doi:10.1186/1475-925X-6-38

    Article  PubMed  Google Scholar 

  15. Holzapfel GA (2002) Biomechanics of soft tissues with application to arterial walls. In: Mathematical and computational modelling of biological systems, chap 1. Centro Internacional de Matemática CIM, Coimbra, pp 1–37

  16. Holzapfel GA, Sommer G, Regitnig P (2004) Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J Biomech Eng H 126: 657–665. doi:10.1115/1.1800557

    Article  Google Scholar 

  17. Stary HC (2003) Atlas of atherosclerosis progression and regression, 2nd edn (Encyclopedia of Visual Medicine). Informa Healthcare, ISBN-10:1842141538

  18. Holzapfel GA (2009) Arterial tissue in health and disease: experimental data, collagen-based modelling and simulation, including aortic dissection. In: Biomechanical modelling at the molecular, cellular and tissue levels, CISM Courses and Lectures No. 508. Springer, Vienna, pp 259–343

  19. Auricchio F, Loreto M, Sacco E (2001) Finite-element analysis of a stenotic artery revascularization through a stent insertion. Comput Methods Biomech Biomed Eng 4: 249–263. doi:10.1080/10255840108908007

    Article  Google Scholar 

  20. Migliavacca F, Petrini L, Massarotti Paolo, Schievano S, Auricchio F, Dubini G (2004) Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech Model Mechanobiol 2(4): 205–217. doi:10.1007/s10237-004-0039-6

    Article  PubMed  Google Scholar 

  21. Liang DK, Yang DZ, Qi M, Wang WQ (2005) Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery. Int J Cardiol 104(3): 314–318. doi:10.1016/j.ijcard.2004.12.033

    Article  PubMed  CAS  Google Scholar 

  22. Wu W, Wang WQ, Yang DZ, Qi M (2007) Stent expansion in curved vessel and their interactions: a finite element analysis. J Biomech 40(11): 2580–2585. doi:10.1016/j.jbiomech.2006.11.009

    Article  PubMed  Google Scholar 

  23. Pericevic I, Lally C, Toner D, Kelly D (2009) The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Med Eng Phys 31: 428–433

    Article  PubMed  Google Scholar 

  24. Early M, Lally C, Prendergast PJ, Kelly DJ (2009) Comput Methods Biomech Biomed Eng 12(1): 25–33 First published 2009

    Article  Google Scholar 

  25. Fuchs V (2008) Nichtlineare Finite Element Untersuchung mit der Finite Element Software ANSYS. Am Beispiel eines Nitinolstents und Humangewebe. Diploma thesis, Fachhochschule Frankfurt am Main, Diplomica Verlag GmbH, ISBN: 978-3-8366-1835-9

  26. National Electrical Manufacturers Association (2008) Digital imaging and communications in medicine (DICOM) NEMA, Rosslyn. http://medical.nema.org. Accessed 10 Jan 2010

  27. National Electrical Manufacturers Association (2008) Digital imaging and communications in medicine (DICOM), Supplement 131: Implant Templates. NEMA, Rosslyn. http://medical.nema.org. Accessed 10 Jan 2010

  28. National Electrical Manufacturers Association (2008) Digital imaging and communications in medicine (DICOM), Supplement 132: Surface Segmentation. NEMA, Rosslyn. http://medical.nema.org. Accessed 10 Jan 2010

  29. National Electrical Manufacturers Association (2008) Digital imaging and communications in medicine (DICOM), Supplement 134: Implantation Plan SR Document, NEMA, Rosslyn. http://medical.nema.org. Accessed 10 Jan 2010

  30. Migliavacca F, Petrini L, Auricchio F, Dubini G (2003) Deployment of an intravscular stent in coronary stenotic arteries: a computational study. In: Proccedings: summer bioengineering conference June 25–29, Florida

  31. Wang WQ, Liang DK, Yang DZ, Qi M (2006) Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. J Biomech 39(1): 21–32. doi:10.1016/j.jbiomech.2004.11.003

    Article  PubMed  Google Scholar 

  32. Takashima K, Kitou T, Mori K, Ikeuchi K (2007) Simulation and experimental observation of contact conditions between stents and artery models. Med Eng Phys 29(3): 326–335. doi:10.1016/j.medengphy.2006.04.003

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Scherer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherer, S., Treichel, T., Ritter, N. et al. Surgical stent planning: simulation parameter study for models based on DICOM standards. Int J CARS 6, 319–327 (2011). https://doi.org/10.1007/s11548-010-0511-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11548-010-0511-y

Keywords