这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Bounds on Higgs and top quark masses from vacuum stability (degeneracy) with gravitational contributions

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Based on the two-loop RGE of standard model gauge, top-Yukawa as well as scalar quartic couplings with full one-loop gravitational contributions in harmonic gauge, we study the constraints on the Higgs and top quark mass from the requirement that the other degenerate vacua at the Planck-dominated region exists. Our numerical calculations show that nature will not develop the other degenerate vacua at the Planck-dominated region with current Higgs and top quark masses. On the other hand, requiring the existence of the other degenerate vacua at the Planck-dominated region will constrain the Higgs and top mass to lie at approximately 130 and 174 GeV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Aad, et al. (ATLAS Collaboration), Phys. Lett. B 710, 49 (2012), arXiv: 1202.1408.

    Article  ADS  Google Scholar 

  2. S. Chatrchyan, et al. (CMS Collaboration), Phys. Lett. B 710, 26 (2012), arXiv: 1202.1488.

    Article  ADS  Google Scholar 

  3. G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, and A. Strumia, J. High Energ. Phys. 2012, 98 (2012), arXiv: 1205.6497.

    Article  Google Scholar 

  4. D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio, and A. Strumia, arXiv: 1307.3536.

  5. M. Holthausen, K. S. Lim, and M. Lindner, J. High Energ. Phys. 2012, 37 (2012), arXiv: 1112.2415.

    Article  Google Scholar 

  6. J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Riotto, and A. Strumia, Phys. Lett. B 709, 222 (2012), arXiv: 1112.3022.

    Article  ADS  Google Scholar 

  7. C. D. Froggatt, and H. B. Nielsen, Phys. Lett. B 368, 96 (1996).

    Article  ADS  Google Scholar 

  8. M. Shaposhnikov, and C. Wetterich, Phys. Lett. B 683, 196 (2010), arXiv: 0912.0208.

    Article  ADS  Google Scholar 

  9. S. P. Robinson, and F. Wilczek, Phys. Rev. Lett. 96, 231601 (2006).

    Article  ADS  Google Scholar 

  10. A. R. Pietrykowski, Phys. Rev. Lett. 98, 061801 (2007).

    Article  ADS  Google Scholar 

  11. O. Zanusso, L. Zambelli, G. P. Vacca, and R. Percacci, Phys. Lett. B 689, 90 (2010), arXiv: 0904.0938

    Article  ADS  Google Scholar 

  12. D. J. Toms, Phys. Rev. D 76, 045015 (2007), arXiv: 0708.2990

    Article  ADS  MathSciNet  Google Scholar 

  13. D. Ebert, J. Plefka, and A. Rodigast, Phys. Lett. B 660, 579 (2008), arXiv: 0710.1002.

    Article  ADS  MathSciNet  Google Scholar 

  14. Y. Tang, and Y. L. Wu, Commun. Theor. Phys. 57, 629 (2012), arXiv: 1012.0626.

    Article  ADS  Google Scholar 

  15. D. J. Toms, Nature 468, 56 (2010), arXiv: 1010.0793

    Article  ADS  Google Scholar 

  16. P. T. Mackay, and D. J. Toms, Phys. Lett. B 684, 251 (2010), arXiv: 0910.1703.

    Article  ADS  MathSciNet  Google Scholar 

  17. H. J. He, X. F. Wang, and Z. Z. Xianyu, Phys. Rev. D 83, 125014 (2011), arXiv: 1008.1839.

    Article  ADS  Google Scholar 

  18. E. Kiritsis, and C. Kounnas, Nucl. Phys. B 442, 472 (1995).

    Article  ADS  Google Scholar 

  19. J. E. Daum, U. Harst, and M. Reuter, J. High Energ. Phys. 2010, 84 (2010), arXiv: 0910.4938.

    Article  Google Scholar 

  20. Y. Tang, and Y. L. Wu, J. High Energ. Phys. 2011, 73 (2011), arXiv: 1109.4001.

    Article  ADS  Google Scholar 

  21. V. Branchina, and E. Messina, Phys. Rev. Lett. 111, 241801 (2013), arXiv: 1307.5193.

    Article  ADS  Google Scholar 

  22. Z. Lalak, M. Lewicki, and P. Olszewski, arXiv: 1402.3826.

  23. N. Haba, K. Kaneta, R. Takahashi, and Y. Yamaguchi, Phys. Rev. D 91, 016004 (2015), arXiv: 1408.5548.

    Article  ADS  Google Scholar 

  24. Y. L. Wu, Int. J. Mod. Phys. A 18, 5363 (2003); Mod. Phys. Lett. A 19, 2191 (2004).

    Article  ADS  Google Scholar 

  25. G. Cynolter, and E. Lendvai, arXiv: 1002.4490.

  26. F. Wang, Nucl. Phys. B 884, 193 (2014), arXiv: 1312.1925.

    Article  ADS  Google Scholar 

  27. M. E. Machacek, and M. T. Vaughn, Nucl. Phys. B 222, 83 (1983); Nucl. Phys. B 236, 221 (1984); Nucl. Phys. B 249, 70 (1985).

    Article  ADS  Google Scholar 

  28. J. Beringer, et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).

    Article  ADS  Google Scholar 

  29. M. Luo, and Y. Xiao, Phys. Rev. Lett. 90, 011601 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liu, GL., Wang, F. et al. Bounds on Higgs and top quark masses from vacuum stability (degeneracy) with gravitational contributions. Sci. China Phys. Mech. Astron. 61, 91011 (2018). https://doi.org/10.1007/s11433-017-9179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11433-017-9179-1

Keywords