这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Orthogonal waveform design with fractional programming on the ambiguity suppression of SAR systems

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Waveform diversity (WD) represents a dynamic and transformative technology widely used in radar systems to enhance sensitivity and discrimination capabilities. Recently, WD techniques have been extensively explored for their potential ambiguity suppression within synthetic aperture radar (SAR) systems. Among these, the alternate transmitting mode combined with orthogonal waveforms emerges as a particularly promising solution. This study focuses on optimizing the power spectrum density (PSD) of signals to design and generate an orthogonal waveform pair that achieves both a low cross-correlation-to-autocorrelation ratio (CAR) and satisfactory imaging performance. Initially, we construct a fractional programming model with convex constraints to minimize the CAR. To address this challenge, we introduce an iterative optimization procedure for the PSD variable, which sequentially reduces the CAR. Each optimization step can be efficiently solved using a quadratically constrained quadratic program, ensuring that the resulting computational complexity remains low. Building on the optimized PSD, we established a parametric piecewise linear model to generate an orthogonal waveform pair. This model not only maintains a low CAR but achieves satisfactory imaging performance in real-time applications. Consequently, this orthogonal waveform pair effectively suppresses range ambiguity in SAR systems. Finally, we demonstrated the practicability and effectiveness of the proposed orthogonal waveforms through detailed simulation experiments, specifically targeting ambiguity suppression in conventional quad-polarization SAR systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cumming I G, Wong F H. Digital processing of synthetic aperture Radar data. Artech House, 2005, 1: 108–110

    Google Scholar 

  2. Deng Y-K, Zhao F-J, Wang Y. Brief analysis on the development and application of spaceborne SAR. J Radars, 2012, 1: 1–10

    Article  Google Scholar 

  3. Raney R K, Freeman A, Jordan R L. Improved range ambiguity performance in quad-pol SAR. IEEE Trans Geosci Remote Sens, 2011, 50: 349–356

    Article  Google Scholar 

  4. Villano M, Krieger G, Moreira A. New insights into ambiguities in quad-pol SAR. IEEE Trans Geosci Remote Sens, 2017, 55: 3287–3308

    Article  Google Scholar 

  5. Zhang Y, Wang W, Deng Y, et al. Ambiguity suppression of cross-pol signals by DPCA with DBF reflector for hybrid/±π/4 quad-pol SAR. IEEE Trans Geosci Remote Sens, 2022, 60: 1–13

    Google Scholar 

  6. Krieger G, Gebert N, Moreira A. Multidimensional waveform encoding: a new digital beamforming technique for synthetic aperture radar remote sensing. IEEE Trans Geosci Remote Sens, 2008, 46: 31–46

    Article  Google Scholar 

  7. Zhao Q, Zhang Y, Wang W, et al. On the frequency dispersion in DBF SAR and digital scalloped beamforming. IEEE Trans Geosci Remote Sens, 2020, 58: 3619–3632

    Article  Google Scholar 

  8. Younis M, de Almeida F Q, Villano M, et al. Digital beamforming for spaceborne reflector-based synthetic aperture radar, part 1: basic imaging modes. IEEE Geosci Remote Sens Mag, 2021, 9: 8–25

    Article  Google Scholar 

  9. Gebert N, Krieger G, Moreira A. Digital beamforming on receive: techniques and optimization strategies for high-resolution wide-swath SAR imaging. IEEE Trans Aerosp Electron Syst, 2009, 45: 564–592

    Article  Google Scholar 

  10. Zhang Y, Wang W, Deng Y, et al. Signal reconstruction algorithm for azimuth multichannel SAR system based on a multiobjective optimization model. IEEE Trans Geosci Remote Sens, 2020, 58: 3881–3893

    Article  Google Scholar 

  11. Dall J, Kusk A. Azimuth phase coding for range ambiguity suppression in SAR. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 2004. 3: 1734–1737

    Google Scholar 

  12. Jin G, Wang Y, Zhu D, et al. A reconfigurable MIMO-SAR transmission scheme based on inter-pulse and intra-pulse joint phase modulation. IEEE Trans Signal Process, 2022, 70: 4265–4276

    Article  MathSciNet  Google Scholar 

  13. Bordoni F, Younis M, Krieger G. Ambiguity suppression by azimuth phase coding in multichannel SAR systems. IEEE Trans Geosci Remote Sens, 2011, 50: 617–629

    Article  Google Scholar 

  14. Zhang Y, Wang W, Deng Y, et al. Quadratically constrained ambiguity suppression algorithm for APC/multichannel SAR systems with nonuniform spatial sampling. IEEE Trans Geosci Remote Sens, 2020, 59: 1319–1330

    Article  Google Scholar 

  15. Blunt S D, Mokole E L. Overview of radar waveform diversity. IEEE Aerosp Electron Syst Mag, 2016, 31: 2–42

    Article  Google Scholar 

  16. Wicks M, Mokole E, Blunt S, et al. Principles of Waveform Diversity and Design. SciTech, 2010. https://digital-library.theiet.org/content/books/ra/sbra023e

  17. Pillai U, Li K Y, Selesnick I, et al. Waveform Diversity: Theory and Applications. New York: McGraw-Hill, 2011

    Google Scholar 

  18. Gini F, Maio A D, Patton L. Waveform Design and Diversity for Advanced Radar Systems. London: Institution of Engineering and Technology, 2012

    Book  Google Scholar 

  19. Harger R O. Synthetic Aperture Radar Systems: Theory and Design. 1971. https://www.semanticscholar.org/paper/Synthetic-aperture-radar-systems-%3A-theory-and-Harger/daf5c29125b8ddba79e457561a34cf83e63e5fe4

  20. Mittermayer J, Martinez J M. Analysis of range ambiguity suppression in SAR by up and down chirp modulation for point and distributed targets. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 2003. 6: 4077–4079

    Google Scholar 

  21. Knapskog A O. Range ambiguity suppression in spaceborne SAR by up-and down-chirp modulation in combination with pseudo-random biphase coding. In: Proceedings of the 12th European Conference on Synthetic Aperture Radar, 2018. 1–4

    Google Scholar 

  22. Wang W Q. Mitigating range ambiguities in high-PRF SAR with OFDM waveform diversity. IEEE Geosci Remote Sens Lett, 2013, 10: 101–105

    Article  Google Scholar 

  23. Riche V, Meric S, Baudais J-Y, et al. Optimization of OFDM SAR signals for range ambiguity suppression. In: Proceedings of the 9th European Radar Conference, 2012. 278–281

    Google Scholar 

  24. Riche V, Meric S, Baudais J Y, et al. Investigations on OFDM signal for range ambiguity suppression in SAR configuration. IEEE Trans Geosci Remote Sens, 2013, 52: 4194–4197

    Article  Google Scholar 

  25. Xu Z, Wang R, Ye K, et al. Simultaneous range ambiguity mitigation and sidelobe reduction using orthogonal non-linear frequency modulated (ONLFM) signals for satellite SAR Imaging. Remote Sens Lett, 2018, 9: 829–838

    Article  Google Scholar 

  26. Krieger G. MIMO-SAR: opportunities and pitfalls. IEEE Trans Geosci Remote Sens, 2014, 52: 2628–2645

    Article  Google Scholar 

  27. Jin G, Deng Y, Wang R, et al. Mitigating range ambiguities with advanced nonlinear frequency modulation waveform. IEEE Geosci Remote Sens Lett, 2019, 16: 1230–1234

    Article  Google Scholar 

  28. Jin G, Zhu D, Yan H, et al. New insights into SAR alternate transmitting mode based on waveform diversity. IEEE Trans Geosci Remote Sens, 2022, 60: 1–9

    Google Scholar 

  29. Sampson J R. Adaptation in natural and artificial systems (John H. Holland). SIAM Rev, 1976, 18: 529–530

    Article  Google Scholar 

  30. Jin G, Deng Y, Wang R, et al. An advanced nonlinear frequency modulation waveform for radar imaging with low sidelobe. IEEE Trans Geosci Remote Sens, 2019, 57: 6155–6168

    Article  Google Scholar 

  31. Ugray Z, Lasdon L, Plummer J, et al. Scatter search and local NLP solvers: a multistart framework for global optimization. INFORMS J Computing, 2007, 19: 328–340

    Article  MathSciNet  Google Scholar 

  32. Jin G, Aubry A, de Maio A, et al. Quasi-orthogonal waveforms for ambiguity suppression in spaceborne quad-pol SAR. IEEE Trans Geosci Remote Sens, 2022, 60: 1–17

    Google Scholar 

  33. Jin G, Wang W, Deng Y, et al. A novel range-azimuth joint modulation scheme for range ambiguity suppression. IEEE Trans Geosci Remote Sens, 2022, 60: 1–10

    Google Scholar 

  34. Dinkelbach W. On nonlinear fractional programming. Manage Sci, 1967, 13: 492–498

    Article  MathSciNet  Google Scholar 

  35. Boyd S, Boyd S P, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004

    Book  Google Scholar 

  36. Levanon N, Mozeson E. Radar Signals. Hoboken: John Wiley & Sons, 2004

    Book  Google Scholar 

  37. Doerry A W. Generating Nonlinear FM Chirp Waveforms for Radar. Technical Report. Sandia National Laboratories, 2006

    Book  Google Scholar 

  38. Zhang Y, Wang W, Wang R, et al. A novel NLFM waveform with low sidelobes based on modified Chebyshev window. IEEE Geosci Remote Sens Lett, 2019, 17: 814–818

    Article  Google Scholar 

  39. Zhang Y, Deng Y, Zhang Z, et al. Analytic NLFM waveform design with harmonic decomposition for synthetic aperture radar. IEEE Geosci Remote Sens Lett, 2022, 19: 1–5

    Google Scholar 

  40. Jin G, Liu K, Deng Y, et al. Nonlinear frequency modulation signal generator in LT-1. IEEE Geosci Remote Sens Lett, 2019, 16: 1570–1574

    Article  Google Scholar 

  41. Zhang Y, Deng Y, Zhang Z, et al. Parametric NLFM waveform for spaceborne synthetic aperture radar. IEEE Trans Geosci Remote Sens, 2022, 60: 1–9

    Google Scholar 

  42. Saeedi J, Faez K. Synthetic aperture radar imaging using nonlinear frequency modulation signal. IEEE Trans Aerosp Electron Syst, 2016, 52: 99–110

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant No. 2023YFB3904901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongwei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Zhang, Y., Zhang, Z. et al. Orthogonal waveform design with fractional programming on the ambiguity suppression of SAR systems. Sci. China Inf. Sci. 67, 192305 (2024). https://doi.org/10.1007/s11432-023-4076-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11432-023-4076-7

Keywords