这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Efficient secure data publishing algorithms for supporting information sharing

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

Many data sharing applications require that publishing data should protect sensitive information pertaining to individuals, such as diseases of patients, the credit rating of a customer, and the salary of an employee. Meanwhile, certain information is required to be published. In this paper, we consider data-publishing applications where the publisher specifies both sensitive information and shared information. An adversary can infer the real value of a sensitive entry with a high confidence by using publishing data. The goal is to protect sensitive information in the presence of data inference using derived association rules on publishing data. We formulate the inference attack framework, and develop complexity results. We show that computing a safe partial table is an NP-hard problem. We classify the general problem into subcases based on the requirements of publishing information, and propose algorithms for finding a safe partial table to publish. We have conducted an empirical study to evaluate these algorithms on real data. The test results show that the proposed algorithms can produce approximate maximal published data and improve the performance of existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Byun J W, Bertino E. Micro-views, or on how to protect privacy while enhancing data usability—concepts and challenges. SIGMOD Record, 2006, 35(1): 9–13

    Article  Google Scholar 

  2. Sweeney L. Datafly: A system for providing anonymity in medical data. In: Lin T Y, Qian S, eds. Database Securty XI: Status and Prospects, IFIP TC11 WG11.3 Eleventh International Conference on Database Security (DBSec), IFIP Conference Proceedings, vol. 113. California: Chapman & Hall, 1997. 356–381

    Google Scholar 

  3. Yang X, Li C. Secure xml publishing without information leakage in the presence of data inference. In: Nascimento M A, Özsu M T, Kossmann D, et al., eds. Proceedings of the Thirtieth International Conference on Very Large Data Bases (VLDB), Toronto: Morgan Kaufmann, 2004. 96–107

    Google Scholar 

  4. Aggarwal G, Feder T, Kenthapadi K, et al. Anonymizing tables. In: Eiter T, Libkin L, eds. Database Theory (ICDT), Lect Notes in Computer Science, vol. 3363. Berlin: Springer-Verlag, 2005. 246–258

    Google Scholar 

  5. Meyerson A, Williams R. On the complexity of optimal k-anonymity. In: Deutsch A, ed. Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), Paris: ACM, 2004. 223–228

    Chapter  Google Scholar 

  6. Sweeney L. k-Anonymity: a model for protecting privacy. Int J Uncertain Fuzziness Knowl.-Based Syst, 2002, 10(5): 557–570

    Article  MATH  MathSciNet  Google Scholar 

  7. Agrawal R, Srikant R. Privacy-preserving data mining. In: Chen W, Naughton J F, Bernstein P A, eds. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, Texas: ACM, 2000. 439–450

    Chapter  Google Scholar 

  8. Atallah M, Bertino E, Elmagarmid A, et al. Disclosure limitation of sensitive rules. In: Proceedings of 1999 IEEE Knowledge and Data Engineering Exchange Workshop (KDEX’99), Chicago, IL., 1999. 45–52

  9. Saygin Y, Verykios V S, Clifton C. Using unknowns to prevent discovery of association rules. SIGMOD Record, 2001, 30(4): 45–54

    Article  Google Scholar 

  10. Verykios V S, Elmagarmid A K, Bertino E, et al. Association rule hiding. IEEE Trans Knowl Data Eng, 2004, 16(4): 434–447

    Article  Google Scholar 

  11. Damiani E, Vimercati S D C D, et al. Design and implementation of an access control processor for xml documents. Comput Netw, 2000, 33(1–6): 59–75

    Article  Google Scholar 

  12. Damiani E, Vimercati S D C D, Paraboschi S, et al. A fine-grained access control system for xml documents. ACM Trans Inf Syst Secur, 2001, 5(2): 169–202

    Article  Google Scholar 

  13. Miklau G, Suciu D. Controlling access to published data using cryptography. In: Freytag J C, Lockemann P C, Abiteboul S, et al., eds. Proceedings of 29th International Conference on Very Large Data Bases (VLDB). Berlin: Morgan Kaufmann, 2003. 898–909

    Google Scholar 

  14. Brodskyand A, Farkas C, Jajodia S. Secure databases: Constraints, inference channels, and monitoring disclosures. IEEE Trans Knowl Data Eng, 2000, 12(6): 900–919

    Article  Google Scholar 

  15. Dawson S, Vimercati S D C D, Lincoln P, et al. Minimal data upgrading to prevent inference and association attacks. In: Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), Philadelphia, Pennsylvania: ACM Press, 1999. 114–125

    Chapter  Google Scholar 

  16. Jajodia S, Meadows C. Inference problems in multilevel secure database management systems. In: Information Security: An Integrated Collection of Essays, 1995. 570–584

  17. Qian X, Lunt T. A semantic framework of the multilevel secure relational model. IEEE Trans Knowl Data Eng, 1997, 9(2): 292–301

    Article  Google Scholar 

  18. Bertino E, Carminati B, Ferrari E. A secure publishing service for digital libraries of xml documents. In: Davida G I, Frankel Y, eds. Information Security, Proceedings of 4th International Conference (ISC) Malaga, Spain, Lect Notes in Computer Science, vol. 2200. Berlin: Springer-Verlag, 2001. 347–362

    Google Scholar 

  19. Gabillon A, Bruno E. Regulating access to xml documents. In: Olivier M S, Spooner D L, eds. Database and Application Security XV, IFIP TC11/WG11.3 Fifteenth Annual Working Conference on Database and Application Security (DBSec), Ontario, Canada, vol. 215 of IFIP Conference Proceedings, Kluwer, 2001. 299–314

  20. Zhang H, He Y P, Shi Z G. A formal model for access control with supporting spatial context. Sci China Ser F-Inf Sci, 2007, 50(3): 419–439

    Article  MATH  Google Scholar 

  21. Agrawal R, Srikant R. Fast algorithms for mining association rules in large databases. In: Bocca J B, Jarke M, Zaniolo C, eds. Proceedings of 20th International Conference on Very Large Data Bases (VLDB), Santiago de Chile, Chile: Morgan Kaufmann, 1994. 487–499

    Google Scholar 

  22. Rajagopalan S, Vazirani V V. Primal-dual RNC approximation algorithms for set cover and covering integer programs. SIAM J Comput, 1999, 28(2): 525–540

    Article  MathSciNet  Google Scholar 

  23. Graham R L, Knuth D E, Patashnik O. Concrete mathematics: a foundation for computer science. Boston, MA: Addison-Wesley Longman Publishing Co., Inc. 1989

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoChun Yang.

Additional information

Supported by the Program for New Century Excellent Talents in Universities (Grant No. NCET-06-0290), the National Natural Science Foundation of China (Grant Nos. 60828004, 60503036), and the Fok Ying Tong Education Foundation Award (Grant No. 104027)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Wang, B. & Yu, G. Efficient secure data publishing algorithms for supporting information sharing. Sci. China Ser. F-Inf. Sci. 52, 627–644 (2009). https://doi.org/10.1007/s11432-009-0023-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11432-009-0023-y

Keywords