Abstract
Both iron metabolism and ferroptosis (an iron-dependent form of programmed cell death) have been connected to the development and progression of many currently incurable non-communicable diseases, including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, Huntington’s disease, metabolic dysfunction-associated steatohepatitis, heart failure, and both treatment-relapsed and refractory cancers, such as pancreatic ductal adenocarcinoma and triple-negative breast cancer. Thus, understanding the relationship between iron and these diseases can pave the way for the development of novel therapeutic strategies. Here, we summarize the latest evidence supporting the pathological roles of dysregulated iron metabolism and ferroptosis in a wide range of preclinical animal models of these currently incurable non-communicable diseases. We also summarize the feasibility of targeting iron metabolism and ferroptosis for the prevention and treatment of iron- and ferroptosis-related diseases that currently have limited treatment options. In addition, we provide our perspectives on the challenges and promises regarding the translational potential of targeting dysregulated iron metabolism and ferroptosis to treat diseases, highlighting the future roadmap for developing iron- and ferroptosis-targeted therapeutics.
Similar content being viewed by others
References
Agrawal, S., Fox, J., Thyagarajan, B., and Fox, J.H. (2018). Brain mitochondrial iron accumulates in Huntington’s disease, mediates mitochondrial dysfunction, and can be removed pharmacologically. Free Radic Biol Med 120, 317–329.
An, H., Zeng, X., Niu, T., Li, G., Yang, J., Zheng, L., Zhou, W., Liu, H., Zhang, M., Huang, D., et al. (2018). Quantifying iron deposition within the substantia nigra of Parkinson’s disease by quantitative susceptibility mapping. J Neurol Sci 386, 46–52.
Anandhan, A., Chen, W., Nguyen, N., Madhavan, M., Dodson, D., and Zhang, D.D. (2022). a-Syn overexpression, NRF2 suppression, and enhanced ferroptosis create a vicious cycle of neuronal loss in Parkinson’s disease. Free Radic Biol Med 192, 130–140.
Anker, S.D., Butler, J., Filippatos, G., Ferreira, J.P., Bocchi, E., Böhm, M., Brunner–La Rocca, H.P., Choi, D.J., Chopra, V., Chuquiure-Valenzuela, E., et al. (2021). Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 385, 1451–1461.
Antoszczak, M., Müller, S., Cañeque, T., Colombeau, L., Dusetti, N., Santofimia-Castaño, P., Gaillet, C., Puisieux, A., Iovanna, J.L., and Rodriguez, R. (2022). Iron-sensitive prodrugs that trigger active ferroptosis in drug-tolerant pancreatic cancer cells. J Am Chem Soc 144, 11536–11545.
Ashraf, A., Jeandriens, J., Parkes, H.G., and So, P.W. (2020). Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer’s disease: evidence of ferroptosis. Redox Biol 32, 101494.
Ates, G., Goldberg, J., Currais, A., and Maher, P. (2020). CMS121, a fatty acid synthase inhibitor, protects against excess lipid peroxidation and inflammation and alleviates cognitive loss in a transgenic mouse model of Alzheimer’s disease. Redox Biol 36, 101648.
Avci, B., Günaydin, C., Güvenç, T., Yavuz, C.K., Kuruca, N., and Bilge, S.S. (2021). Idebenone ameliorates rotenone-induced Parkinson’s disease in rats through decreasing lipid peroxidation. Neurochem Res 46, 513–522.
Ayton, S., Fazlollahi, A., Bourgeat, P., Raniga, P., Ng, A., Lim, Y.Y., Diouf, I., Farquharson, S., Fripp, J., Ames, D., et al. (2017). Cerebral quantitative susceptibility mapping predicts amyloid-β-related cognitive decline. Brain 140, 2112–2119.
Bayır, H., Dixon, S.J., Tyurina, Y.Y., Kellum, J.A., and Kagan, V.E. (2023). Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nat Rev Nephrol 19, 315–336.
Bell, H.N., Stockwell, B.R., and Zou, W. (2024). Ironing out the role of ferroptosis in immunity. Immunity 57, 941–956.
Bersuker, K., Hendricks, J.M., Li, Z., Magtanong, L., Ford, B., Tang, P.H., Roberts, M. A., Tong, B., Maimone, T.J., Zoncu, R., et al. (2019). The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692.
Bi, X., Wu, X., Chen, J., Li, X., Lin, Y., Yu, Y., Fang, X., Cheng, X., Cai, Z., Jin, T., et al. (2024). Characterization of ferroptosis-triggered pyroptotic signaling in heart failure. Sig Transduct Target Ther 9, 257.
Bozkurt, B., Coats, A.J.S., Tsutsui, H., Abdelhamid, C.M., Adamopoulos, S., Albert, N., Anker, S.D., Atherton, J., Böhm, M., Butler, J., et al. (2021). Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. Eur J Heart Fail 23, 352–380.
Brass, S.D., Chen, N., Mulkern, R.V., and Bakshi, R. (2006). Magnetic resonance imaging of iron deposition in neurological disorders. Top Magn Reson Imag 17, 31–40.
Buoso, C., Seifert, M., Lang, M., Griffith, C.M., Talavera Andújar, B., Castelo Rueda, M. P., Fischer, C., Doerrier, C., Talasz, H., Zanon, A., et al. (2024). Dopamine-iron homeostasis interaction rescues mitochondrial fitness in Parkinson’s disease. Neurobiol Dis 196, 106506.
Cao, Y., Wang, X., Liu, Y., Liu, P., Qin, J., Zhu, Y., Zhai, S., Jiang, Y., Liu, Y., Han, L., et al. (2024). BHLHE40 inhibits ferroptosis in pancreatic cancer cells via upregulating SREBF1. Adv Sci 11, e2306298.
Chen, H.C., Tang, H.H., Hsu, W.H., Wu, S.Y., Cheng, W.H., Wang, B.Y., and Su, C.L. (2022a). Vulnerability of triple-negative breast cancer to saponin formosanin C-induced ferroptosis. Antioxidants 11, 298.
Chen, J., Li, X., Ge, C., Min, J., and Wang, F. (2022b). The multifaceted role of ferroptosis in liver disease. Cell Death Differ 29, 467–480.
Chen, J., Marks, E., Lai, B., Zhang, Z., Duce, J.A., Lam, L.Q., Volitakis, I., Bush, A.I., Hersch, S., Fox, J.H., et al. (2013). Iron accumulates in Huntington’s disease neurons: protection by deferoxamine. PLoS One 8, e77023.
Chen, L., Dar, N.J., Na, R., McLane, K.D., Yoo, K., Han, X., and Ran, Q. (2022c). Enhanced defense against ferroptosis ameliorates cognitive impairment and reduces neurodegeneration in 5xFAD mice. Free Radic Biol Med 180, 1–12.
Chen, R., Jiang, Z., Cheng, Y., Ye, J., Li, S., Xu, Y., Ye, Z., Shi, Y., Ding, J., Zhao, Y., et al. (2024). Multifunctional iron-apigenin nanocomplex conducting photothermal therapy and triggering augmented immune response for triple negative breast cancer. Int J Pharm 655, 124016.
Chen, T., Leng, J., Tan, J., Zhao, Y., Xie, S., Zhao, S., Yan, X., Zhu, L., Luo, J., Kong, L., et al. (2023). Discovery of novel potent covalent glutathione peroxidase 4 inhibitors as highly selective ferroptosis inducers for the treatment of triple-negative breast cancer. J Med Chem 66, 10036–10059.
Chen, X., Xu, S., Zhao, C., and Liu, B. (2019). Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem Biophys Res Commun 516, 37–43.
Cho, H.H., Cahill, C.M., Vanderburg, C.R., Scherzer, C.R., Wang, B., Huang, X., and Rogers, J.T. (2010). Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. J Biol Chem 285, 31217–31232.
Conrad, M., and Pratt, D.A. (2019). The chemical basis of ferroptosis. Nat Chem Biol 15, 1137–1147.
Coppen, E.M., and Roos, R.A.C. (2017). Current pharmacological approaches to reduce chorea in Huntington’s disease. Drugs 77, 29–46.
Cummings, J.L., Tong, G., and Ballard, C. (2019). Treatment combinations for Alzheimer’s disease: current and future pharmacotherapy options. J Alzheimer Dis 67, 779–794.
Dichtl, S., Haschka, D., Nairz, M., Seifert, M., Volani, C., Lutz, O., and Weiss, G. (2018). Dopamine promotes cellular iron accumulation and oxidative stress responses in macrophages. Biochem Pharmacol 148, 193–201.
Ding, Y., Chen, X., Liu, C., Ge, W., Wang, Q., Hao, X., Wang, M., Chen, Y., and Zhang, Q. (2021). Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells. J Hematol Oncol 14, 19.
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., Patel, D.N., Bauer, A.J., Cantley, A.M., Yang, W.S., et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072.
Doll, S., Freitas, F.P., Shah, R., Aldrovandi, M., da Silva, M.C., Ingold, I., Goya Grocin, A., Xavier da Silva, T.N., Panzilius, E., Scheel, C.H., et al. (2019). FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698.
Doll, S., Proneth, B., Tyurina, Y.Y., Panzilius, E., Kobayashi, S., Ingold, I., Irmler, M., Beckers, J., Aichler, M., Walch, A., et al. (2017). ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13, 91–98.
Donovan, A., Lima, C.A., Pinkus, J.L., Pinkus, G.S., Zon, L.I., Robine, S., and Andrews, N.C. (2005). The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 1, 191–200.
Du, J., Wang, L., Huang, X., Zhang, N., Long, Z., Yang, Y., Zhong, F., Zheng, B., Lan, W., Lin, W., et al. (2021a). Shuganning injection, a traditional Chinese patent medicine, induces ferroptosis and suppresses tumor growth in triple-negative breast cancer cells. Phytomedicine 85, 153551.
Du, J., Wang, X., Li, Y., Ren, X., Zhou, Y., Hu, W., Zhou, C., Jing, Q., Yang, C., Wang, L., et al. (2021b). DHA exhibits synergistic therapeutic efficacy with cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via modulation of iron metabolism. Cell Death Dis 12, 705.
Eling, N., Reuter, L., Hazin, J., Hamacher-Brady, A., and Brady, N.R. (2015). Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2, 517–532.
Erwin, W. G. and Turco, T. F. (1986). Current concepts in clinical therapeutics: parkinson’s disease. Clin Pharm 5, 742–53.
Fan, X., Liu, F., Wang, X., Wang, Y., Chen, Y., Shi, C., Su, X., Tan, M., Yan, Q., Peng, J., et al. (2024). LncFASA promotes cancer ferroptosis via modulating PRDX1 phase separation. Sci China Life Sci 67, 488–503.
Fang, X., Ardehali, H., Min, J., and Wang, F. (2023). The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol 20, 7–23.
Fang, X., Cai, Z., Wang, H., Han, D., Cheng, Q., Zhang, P., Gao, F., Yu, Y., Song, Z., Wu, Q., et al. (2020). Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ Res 127, 486–501.
Fang, X., Wang, H., Han, D., Xie, E., Yang, X., Wei, J., Gu, S., Gao, F., Zhu, N., Yin, X., et al. (2019). Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA 116, 2672–2680.
Faraji, P., Kühn, H., and Ahmadian, S. (2024). Multiple roles of apolipoprotein E4 in oxidative lipid metabolism and ferroptosis during the pathogenesis of Alzheimer’s disease. J Mol Neurosci 74, 62.
Foster, J.A., Christopherson, P.L., and Levine, R.A. (2002). GTP cyclohydrolase I induction in striatal astrocytes following intrastriatal kainic acid lesion. J Chem Neuroanatomy 24, 173–179.
Frank, S., Testa, C., Edmondson, M.C., Goldstein, J., Kayson, E., Leavitt, B.R., Oakes, D., O’Neill, C., Vaughan, C., Whaley, J., et al. (2022). The safety of deutetrabenazine for chorea in huntington disease: an open-label extension study. CNS Drugs 36, 1207–1216.
Freitas, F.P., Alborzinia, H., dos Santos, A.F., Nepachalovich, P., Pedrera, L., Zilka, O., Inague, A., Klein, C., Aroua, N., Kaushal, K., et al. (2024). 7-Dehydrocholesterol is an endogenous suppressor of ferroptosis. Nature 626, 401–410.
Gal, S., Zheng, H., Fridkin, M., and Youdim, M.B.H. (2005). Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. in vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J Neurochem 95, 79–88.
Gálvez, N., Fernández, B., Sánchez, P., Cuesta, R., Ceolín, M., Clemente-León, M., Trasobares, S., López-Haro, M., Calvino, J.J., Stéphan, O., et al. (2008). Comparative structural and chemical studies of ferritin cores with gradual removal of their iron contents. J Am Chem Soc 130, 8062–8068.
Gao, G., and Chang, Y.Z. (2014). Mitochondrial ferritin in the regulation of brain iron homeostasis and neurodegenerative diseases. Front Pharmacol 5, 19.
Gao, G., Xie, Z., Li, E., Yuan, Y., Fu, Y., Wang, P., Zhang, X., Qiao, Y., Xu, J., Hölscher, C., et al. (2021a). Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis. J Nat Med 75, 540–552.
Gao, Y., Li, J., Wu, Q., Wang, S., Yang, S., Li, X., Chen, N., Li, L., and Zhang, L. (2021b). Tetrahydroxy stilbene glycoside ameliorates Alzheimer’s disease in APP/PS1 mice via glutathione peroxidase related ferroptosis. Int Immunopharmacol 99, 108002.
Gawargi, F.I., and Mishra, P.K. (2024). Regulation of cardiac ferroptosis in diabetic human heart failure: uncovering molecular pathways and key targets. Cell Death Discov 10, 268.
Goto, W., Kashiwagi, S., Asano, Y., Takada, K., Morisaki, T., Takahashi, K., Fujita, H., Shibutani, M., Amano, R., Takashima, T., et al. (2020). Inhibitory effects of iron depletion plus eribulin on the breast cancer microenvironment. BMC Cancer 20, 1215.
Graham, R.M., Chua, A.C., Herbison, C.E., Olynyk, J.K., and Trinder, D. (2007). Liver iron transport. World J Gastroenterol 13, 4725.
Guo, C., Zhang, Y.X., Wang, T., Zhong, M.L., Yang, Z.H., Hao, L.J., Chai, R., and Zhang, S. (2015). Intranasal deferoxamine attenuates synapse loss via up-regulating the P38/HIF-1α pathway on the brain of APP/PS1 transgenic mice. Front Aging Neurosci 7, 104.
Hametner, S., Wimmer, I., Haider, L., Pfeifenbring, S., Brück, W., and Lassmann, H. (2013). Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 74, 848–861.
Hao, X., Zheng, Z., Liu, H., Zhang, Y., Kang, J., Kong, X., Rong, D., Sun, G., Sun, G., Liu, L., et al. (2022). Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol 56, 102463.
Harima, H., Kaino, S., Takami, T., Shinoda, S., Matsumoto, T., Fujisawa, K., Yamamoto, N., Yamasaki, T., and Sakaida, I. (2016). Deferasirox, a novel oral iron chelator, shows antiproliferative activity against pancreatic cancer in vitro and in vivo. BMC Cancer 16, 702.
Howard, F.M., and Olopade, O.I. (2021). Epidemiology of triple-negative breast cancer. Cancer J 27, 8–16.
Hu, C., Nydes, M., Shanley, K.L., Morales Pantoja, I.E., Howard, T.A., and Bizzozero, O.A. (2019). Reduced expression of the ferroptosis inhibitor glutathione peroxidase-4 in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurochem 148, 426–439.
Huang, C., Santofimia-Castaño, P., Liu, X., Xia, Y., Peng, L., Gotorbe, C., Neira, J.L., Tang, D., Pouyssegur, J., and Iovanna, J. (2021a). NUPR1 inhibitor ZZW-115 induces ferroptosis in a mitochondria-dependent manner. Cell Death Discov 7, 269.
Huang, Z., Si, W., Li, X., Ye, S., Liu, X., Ji, Y., Hao, X., Chen, D., Zhu, M., and Fattahi, M. (2021b). Moxibustion protects dopaminergic neurons in Parkinson’s disease through antiferroptosis. Evid-Based Complement Alternat Med 2021, 1–11.
Ichinose, H., Suzuki, T., Inagaki, H., Ohye, T., and Nagatsu, T. (1999). Molecular genetics of dopa-responsive dystonia. Biol Chem 380, 1355–1364.
Jakaria, M., Belaidi, A.A., Bush, A.I., and Ayton, S. (2021). Ferroptosis as a mechanism of neurodegeneration in Alzheimer’s disease. J Neurochem 159, 804–825.
Jansen van Rensburg, Z., Abrahams, S., Bardien, S., and Kenyon, C. (2021). Toxic feedback loop involving iron, reactive oxygen species, α-synuclein and neuromelanin in Parkinson’s disease and intervention with turmeric. Mol Neurobiol 58, 5920–5936.
Jiang, L., Wang, J., Wang, K., Wang, H., Wu, Q., Yang, C., Yu, Y., Ni, P., Zhong, Y., Song, Z., et al. (2021a). RNF217 regulates iron homeostasis through its E3 ubiquitin ligase activity by modulating ferroportin degradation. Blood 138, 689–705.
Jiang, X., Guo, J., Lv, Y., Yao, C., Zhang, C., Mi, Z., Shi, Y., Gu, J., Zhou, T., Bai, R., et al. (2020). Rational design, synthesis and biological evaluation of novel multitargeting anti-AD iron chelators with potent MAO-B inhibitory and antioxidant activity. Bioorg Med Chem 28, 115550.
Jiang, X., Stockwell, B.R., and Conrad, M. (2021b). Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22, 266–282.
Jomova, K., Makova, M., Alomar, S.Y., Alwasel, S.H., Nepovimova, E., Kuca, K., Rhodes, C.J., and Valko, M. (2022). Essential metals in health and disease. Chem-Biol Interact 367, 110173.
Kaji, K., Yoshiji, H., Kitade, M., Ikenaka, Y., Noguchi, R., Shirai, Y., Aihara, Y., Namisaki, T., Yoshii, J., Yanase, K., et al. (2011). Combination treatment of angiotensin II type I receptor blocker and new oral iron chelator attenuates progression of nonalcoholic steatohepatitis in rats. Am J Physiol Gastrointest Liver Physiol 300, G1094–G1104.
Kasperova, B.J., Mraz, M., Svoboda, P., Hlavacek, D., Kratochvilova, H., Modos, I., Vrzackova, N., Ivak, P., Janovska, P., Kobets, T., et al. (2024). Sodium-glucose cotransporter 2 inhibitors induce anti-inflammatory and anti-ferroptotic shift in epicardial adipose tissue of subjects with severe heart failure. Cardiovasc Diabetol 23, 223.
Keam, J. (2024). Resmetirom: First Approval. Drugs 84, 729–735.
Kim, R., Hashimoto, A., Markosyan, N., Tyurin, V.A., Tyurina, Y.Y., Kar, G., Fu, S., Sehgal, M., Garcia-Gerique, L., Kossenkov, A., et al. (2022). Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 612, 338–346.
Kim, R., Taylor, D., Vonderheide, R.H., and Gabrilovich, D.I. (2023). Ferroptosis of immune cells in the tumor microenvironment. Trends Pharmacol Sci 44, 542–552.
Kitakata, H., Endo, J., Hashimoto, S., Mizuno, E., Moriyama, H., Shirakawa, K., Goto, S., Katsumata, Y., Fukuda, K., and Sano, M. (2021). Imeglimin prevents heart failure with preserved ejection fraction by recovering the impaired unfolded protein response in mice subjected to cardiometabolic stress. Biochem Biophys Res Commun 572, 185–190.
Kitsugi, K., Noritake, H., Matsumoto, M., Hanaoka, T., Umemura, M., Yamashita, M., Takatori, S., Ito, J., Ohta, K., Chida, T., et al. (2023). Simvastatin inhibits hepatic stellate cells activation by regulating the ferroptosis signaling pathway. Biochim Biophys Acta Mol Basis Dis 1869, 166750.
Kovacevic, Z., Chikhani, S., Lovejoy, D.B., and Richardson, D.R. (2011). Novel thiosemicarbazone iron chelators induce up-regulation and phosphorylation of the metastasis suppressor N-myc down-stream regulated gene 1: a new strategy for the treatment of pancreatic cancer. Mol Pharmacol 80, 598–609.
Kowdley, K.V., Belt, P., Wilson, L.A., Yeh, M.M., Neuschwander–Tetri, B.A., Chalasani, N., Sanyal, A.J., and Nelson, J.E. (2012). Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 55, 77–85.
Kraft, V.A.N., Bezjian, C.T., Pfeiffer, S., Ringelstetter, L., Müller, C., Zandkarimi, F., Merl-Pham, J., Bao, X., Anastasov, N., Kössl, J., et al. (2020). GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci 6, 41–53.
Kuang, F., Liu, J., Xie, Y., Tang, D., and Kang, R. (2021). MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells. Cell Chem Biol 28, 765–775.e5.
Kupershmidt, L., and Youdim, M.B.H. (2023). The neuroprotective activities of the novel multi-target iron-chelators in models of Alzheimer’s disease, amyotrophic lateral sclerosis and aging. Cells 12, 763.
Lebel, R.M., Eissa, A., Seres, P., Blevins, G., and Wilman, A.H. (2012). Quantitative high-field imaging of sub-cortical gray matter in multiple sclerosis. Mult Scler 18, 433–441.
Lee, J., Kosaras, B., Del Signore, S.J., Cormier, K., McKee, A., Ratan, R.R., Kowall, N. W., and Ryu, H. (2011). Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington’s disease mice. Acta Neuropathol 121, 487–498.
Li, C., Yin, X., Liu, Z., and Wang, J. (2022a). Emerging potential mechanism and therapeutic target of ferroptosis in PDAC: a promising future. Int J Mol Sci 23, 15031.
Li, C., Zhang, Y., Liu, J., Kang, R., Klionsky, D.J., and Tang, D. (2021). Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy 17, 948–960.
Li, G., Lin, S., Yu, Z., Wu, X., Liu, J., Tu, G., Liu, Q., Tang, Y., Jiang, Q., Xu, J., et al. (2022b). A PARP1 PROTAC as a novel strategy against PARP inhibitor resistance via promotion of ferroptosis in p53-positive breast cancer. Biochem Pharmacol 206, 115329.
Li, H., Yang, P., Wang, J.H., Zhang, J., Ma, Q., Jiang, Y., Wu, Y., Han, T., and Xiang, D. (2022c). HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk. J Hematol Oncol 15, 2.
Li, H., Zeng, Y., Luo, S., Li, Z., Huang, F., and Liu, Z. (2023a). GPX4 aggravates experimental autoimmune encephalomyelitis by inhibiting the functions of CD4+ T cells. Biochem Biophys Res Commun 642, 57–65.
Li, J., He, D., Li, S., Xiao, J., and Zhu, Z. (2023b). Ferroptosis: the emerging player in remodeling triple-negative breast cancer. Front Immunol 14, 1284057.
Li, J., Lama, R., Galster, S.L., Inigo, J.R., Wu, J., Chandra, D., Chemler, S.R., and Wang, X. (2022d). Small-molecule MMRi62 induces ferroptosis and inhibits metastasis in pancreatic cancer via degradation of ferritin heavy chain and mutant p53. Mol Cancer Ther 21, 535–545.
Li, J., Liu, J., Zhou, Z., Wu, R., Chen, X., Yu, C., Stockwell, B., Kroemer, G., Kang, R., and Tang, D. (2023c). Tumor-specific GPX4 degradation enhances ferroptosis-initiated antitumor immune response in mouse models of pancreatic cancer. Sci Transl Med 15, eadg3049.
Li, P., Lin, Q., Sun, S., Yang, N., Xia, Y., Cao, S., Zhang, W., Li, Q., Guo, H., Zhu, M., et al. (2022e). Inhibition of cannabinoid receptor type 1 sensitizes triple-negative breast cancer cells to ferroptosis via regulating fatty acid metabolism. Cell Death Dis 13, 808.
Li, X., Wang, T., Huang, X., Li, Y., Sun, T., Zang, S., Guan, K., Xiong, Y., Liu, J., and Yuan, H. (2020). Targeting ferroptosis alleviates methionine-choline deficient (MCD)-diet induced NASH by suppressing liver lipotoxicity. Liver Int 40, 1378–1394.
Li, Y., Ran, Q., Duan, Q., Jin, J., Wang, Y., Yu, L., Wang, C., Zhu, Z., Chen, X., Weng, L., et al. (2024). 7-Dehydrocholesterol dictates ferroptosis sensitivity. Nature 626, 411–418.
Liang, D., Feng, Y., Zandkarimi, F., Wang, H., Zhang, Z., Kim, J., Cai, Y., Gu, W., Stockwell, B.R., and Jiang, X. (2023). Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 186, 2748–2764.e22.
Liao, P., Wang, W., Wang, W., Kryczek, I., Li, X., Bian, Y., Sell, A., Wei, S., Grove, S., Johnson, J.K., et al. (2022). CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell 40, 365–378.e6.
Lin, Z.H., Liu, Y., Xue, N.J., Zheng, R., Yan, Y.Q., Wang, Z.X., Li, Y.L., Ying, C.Z., Song, Z., Tian, J., et al. (2022). Quercetin protects against MPP+/MPTP-induced dopaminergic neuron death in Parkinson’s disease by inhibiting ferroptosis. Oxid Med Cell Longev 2022, 1–17.
Liu, B., Yi, W., Mao, X., Yang, L., and Rao, C. (2021). Enoyl coenzyme A hydratase 1 alleviates nonalcoholic steatohepatitis in mice by suppressing hepatic ferroptosis. Am J Physiol-Endocrinol Metab 320, E925–E937.
Liu, H., Mo, H., Yang, C., Mei, X., Song, X., Lu, W., Xiao, H., Yan, J., Wang, X., Yan, J., et al. (2022). A novel function of ATF3 in suppression of ferroptosis in mouse heart suffered ischemia/reperfusion. Free Radic Biol Med 189, 122–135.
Luoqian, J., Yang, W., Ding, X., Tuo, Q., Xiang, Z., Zheng, Z., Guo, Y., Li, L., Guan, P., Ayton, S., et al. (2022). Ferroptosis promotes T-cell activation-induced neurodegeneration in multiple sclerosis. Cell Mol Immunol 19, 913–924.
Lv, Q., Tao, K., Yao, X., Pang, M., Cao, B., Liu, C., and Wang, F. (2024). Melatonin MT1 receptors regulate the Sirt1/Nrf2/Ho-1/Gpx4 pathway to prevent α-synuclein-induced ferroptosis in Parkinson’s disease. J Pineal Res 76, e12948.
Ma, J., Guo, Q., Shen, M.Q., Li, W., Zhong, Q.X., and Qian, Z.M. (2023). Apolipoprotein E is required for brain iron homeostasis in mice. Redox Biol 64, 102779.
Ma, S., He, L.L., Zhang, G.R., Zuo, Q.J., Wang, Z.L., Zhai, J.L., Zhang, T.T., Wang, Y., Ma, H.J., and Guo, Y.F. (2022). Canagliflozin mitigates ferroptosis and ameliorates heart failure in rats with preserved ejection fraction. Naunyn Schmiedebergs Arch Pharmacol 395, 945–962.
Ma, X., Xiao, L., Liu, L., Ye, L., Su, P., Bi, E., Wang, Q., Yang, M., Qian, J., and Yi, Q. (2021). CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab 33, 1001–1012.e5.
Mahoney-Sánchez, L., Bouchaoui, H., Ayton, S., Devos, D., Duce, J.A., and Devedjian, J.C. (2021). Ferroptosis and its potential role in the physiopathology of Parkinson’s disease. Prog Neurobiol 196, 101890.
Matak, P., Matak, A., Moustafa, S., Aryal, D.K., Benner, E.J., Wetsel, W., and Andrews, N.C. (2016). Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice. Proc Natl Acad Sci USA 113, 3428–3435.
McCarthy, R.C., Park, Y., and Kosman, D.J. (2014). sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin. EMBO Rep 15, 809–815.
McColgan, P., and Tabrizi, S.J. (2018). Huntington’s disease: a clinical review. Euro J Neurol 25, 24–34.
Mena, N.P., García-Beltrán, O., Lourido, F., Urrutia, P.J., Mena, R., Castro-Castillo, V., Cassels, B.K., and Núñez, M.T. (2015). The novel mitochondrial iron chelator 5-((methylamino)methyl)-8-hydroxyquinoline protects against mitochondrial-induced oxidative damage and neuronal death. Biochem Biophys Res Commun 463, 787–792.
Mentz, R.J., Garg, J., Rockhold, F.W., Butler, J., De Pasquale, C.G., Ezekowitz, J.A., Lewis, G.D., O’Meara, E., Ponikowski, P., Troughton, R.W., et al. (2023). Ferric carboxymaltose in heart failure with iron deficiency. N Engl J Med 389, 975–986.
Mitchell, K.M., Dotson, A.L., Cool, K.M., Chakrabarty, A., Benedict, S.H., and LeVine, S.M. (2007). Deferiprone, an orally deliverable iron chelator, ameliorates experimental autoimmune encephalomyelitis. Mult Scler 13, 1118–1126.
Miyamoto, H.D., Ikeda, M., Ide, T., Tadokoro, T., Furusawa, S., Abe, K., Ishimaru, K., Enzan, N., Sada, M., Yamamoto, T., et al. (2022). Iron overload via heme degradation in the endoplasmic reticulum triggers ferroptosis in myocardial ischemia-reperfusion injury. JACC-Basic Transl Sci 7, 800–819.
Mizrahi, J.D., Surana, R., Valle, J.W., and Shroff, R.T. (2020). Pancreatic cancer. Lancet 395, 2008–2020.
Mochizuki, H., Choong, C.J., and Baba, K. (2020). Parkinson’s disease and iron. J Neural Transm 127, 181–187.
Mu, Q., Chen, L., Gao, X., Shen, S., Sheng, W., Min, J., and Wang, F. (2021). The role of iron homeostasis in remodeling immune function and regulating inflammatory disease. Sci Bull 66, 1806–1816.
Muniraj, T., Jamidar, P.A., and Aslanian, H.R. (2013). Pancreatic cancer: a comprehensive review and update. Disease-a-Month 59, 368–402.
Neema, M., Arora, A., Healy, B.C., Guss, Z.D., Brass, S.D., Duan, Y., Buckle, G.J., Glanz, B.I., Stazzone, L., Khoury, S.J., et al. (2009). Deep gray matter involvement on brain mri scans is associated with clinical progression in multiple sclerosis. J NeuroImag 19, 3–8.
Nelson, J.E., Klintworth, H., and Kowdley, K.V. (2012). Iron metabolism in nonalcoholic fatty liver disease. Curr Gastroenterol Rep 14, 8–16.
Nemeth, E., Tuttle, M.S., Powelson, J., Vaughn, M.B., Donovan, A., Ward, D.M.V., Ganz, T., and Kaplan, J. (2004). Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093.
O’Brien, R.J., and Wong, P.C. (2011). Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34, 185–204.
Ohgami, R.S., Campagna, D.R., Greer, E.L., Antiochos, B., McDonald, A., Chen, J., Sharp, J.J., Fujiwara, Y., Barker, J.E., and Fleming, M.D. (2005). Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet 37, 1264–1269.
Okada, N., Nakamura, S., and Shimazawa, M. (2023). 3-Nitropropionic acid enhances ferroptotic cell death via NOX2-mediated ROS generation in STHdhQ111 striatal cells carrying mutant Huntingtin. Biol Pharm Bull 46, 177–186.
Okubadejo, N.U., Ojo, O.O., Wahab, K.W., Abubakar, S.A., Obiabo, O.Y., Salawu, F.K., Nwazor, E.O., Agabi, O.P., and Oshinaike, O.O. (2019). A nationwide survey of Parkinson’s disease medicines availability and affordability in Nigeria. Mov Disord Clin Pract 6, 27–33.
Park, M.W., Cha, H.W., Kim, J., Kim, J.H., Yang, H., Yoon, S., Boonpraman, N., Yi, S. S., Yoo, I.D., and Moon, J.S. (2021). NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol 41, 101947.
Pedchenko, T.V., and LeVine, S.M. (1998). Desferrioxamine suppresses experimental allergic encephalomyelitis induced by MBP in SJL mice. J Neuroimmunol 84, 188–197.
Peleman, C., Hellemans, S., Veeckmans, G., Arras, W., Zheng, H., Koeken, I., Van San, E., Hassannia, B., Walravens, M., Kayirangwa, E., et al. (2024). Ferroptosis is a targetable detrimental factor in metabolic dysfunction-associated steatotic liver disease. Cell Death Differ 31, 1113–1126.
Ping, Y., Shan, J., Qin, H., Li, F., Qu, J., Guo, R., Han, D., Jing, W., Liu, Y., Liu, J., et al. (2024). PD-1 signaling limits expression of phospholipid phosphatase 1 and promotes intratumoral CD8+ T cell ferroptosis. Immunity 57, 2122–2139.e9.
Pinnix, Z.K., Miller, L.D., Wang, W., D’Agostino Jr., R., Kute, T., Willingham, M.C., Hatcher, H., Tesfay, L., Sui, G., Di, X., et al. (2010). Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med 2, 43ra56.
Ponikowski, P., Mentz, R.J., Hernandez, A.F., Butler, J., Khan, M.S., van Veldhuisen, D.J., Roubert, B., Blackman, N., Friede, T., Jankowska, E.A., et al. (2023). Efficacy of ferric carboxymaltose in heart failure with iron deficiency: an individual patient data meta-analysis. Eur Heart J 44, 5077–5091.
Pyatigorskaya, N., Sharman, M., Corvol, J., Valabregue, R., Yahia-Cherif, L., Poupon, F., Cormier-Dequaire, F., Siebner, H., Klebe, S., Vidailhet, M., et al. (2015). High nigral iron deposition in LRRK2 and Parkin mutation carriers using R2* relaxometry. Mov Disord 30, 1077–1084.
Qi, L., Sun, B., Yang, B., and Lu, S. (2022). PGM5P3-AS1 regulates MAP1LC3C to promote cell ferroptosis and thus inhibiting the malignant progression of triple-negative breast cancer. Breast Cancer Res Treat 193, 305–318.
Qiu, B., Zandkarimi, F., Bezjian, C.T., Reznik, E., Soni, R.K., Gu, W., Jiang, X., and Stockwell, B.R. (2024). Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell 187, 1177–1190.e18.
Rademaker, G., Boumahd, Y., Peiffer, R., Anania, S., Wissocq, T., Liégeois, M., Luis, G., Sounni, N.E., Agirman, F., Maloujahmoum, N., et al. (2022). Myoferlin targeting triggers mitophagy and primes ferroptosis in pancreatic cancer cells. Redox Biol 53, 102324.
Ramachandran, A.K., Das, S., Joseph, A., Shenoy, G.G., Alex, A.T., and Mudgal, J. (2021). Neurodegenerative pathways in Alzheimer’s disease: a review. CN 19, 679–692.
Rauen, U., Springer, A., Weisheit, D., Petrat, F., Korth, H., de Groot, H., and Sustmann, R. (2007). Assessment of chelatable mitochondrial iron by using mitochondrion-selective fluorescent iron indicators with different iron-binding affinities. ChemBioChem 8, 341–352.
Raza, S., Rajak, S., Upadhyay, A., Tewari, A., and Sinha, A.R. (2021). Current treatment paradigms and emerging therapies for NAFLD/NASH. Front Biosci 26, 206–237.
Reich, S.G., and Savitt, J.M. (2019). Parkinson’s disease. Med Clin N Am 103, 337–350.
Rizzollo, F., More, S., Vangheluwe, P., and Agostinis, P. (2021). The lysosome as a master regulator of iron metabolism. Trends Biochem Sci 46, 960–975.
Rodríguez Murúa, S., Farez, M.F., and Quintana, F.J. (2022). The immune response in multiple sclerosis. Annu Rev Pathol Mech Dis 17, 121–139.
Rosas, H.D., Chen, Y.I., Doros, G., Salat, D.H., Chen, N., Kwong, K.K., Bush, A., Fox, J., and Hersch, S.M. (2012). Alterations in brain transition metals in huntington disease. Arch Neurol 69, 887–893.
Salim-Ur-Rehman, Huma, N., Tarar, O.M., and Shah, W.H. (2010). Efficacy of non-heme iron fortified diets: a review. Crit Rev Food Sci Nutr 50, 403–413.
Santana-Codina, N., Gikandi, A. and Mancias, J. D. (2021). The role of NCOA4-mediated ferritinophagy in ferroptosis. Adv Exp Med Biol 1301, 41–57.
Sarode, P., Zheng, X., Giotopoulou, G.A., Weigert, A., Kuenne, C., Günther, S., Friedrich, A., Gattenlöhner, S., Stiewe, T., Brüne, B., et al. (2020). Reprogramming of tumor-associated macrophages by targeting β-catenin/FOSL2/ARID5A signaling: a potential treatment of lung cancer. Sci Adv 6, eaaz6105.
Sato, H., Tamba, M., Ishii, T., and Bannai, S. (1999). Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274, 11455–11458.
Schneider, C., Hilbert, J., Genevaux, F., Höfer, S., Krauß, L., Schicktanz, F., Contreras, C.T., Jansari, S., Papargyriou, A., Richter, T., et al. (2024). A novel AMPK inhibitor sensitizes pancreatic cancer cells to ferroptosis induction. Adv Sci 11, 2307695.
Shang, M., Weng, L., Xu, G., Wu, S., Liu, B., Yin, X., Mao, A., Zou, X., and Wang, Z. (2021). TRIM11 suppresses ferritinophagy and gemcitabine sensitivity through UBE2N/TAX1BP1 signaling in pancreatic ductal adenocarcinoma. J Cell Physiol 236, 6868–6883.
Shi, L., Huang, C., Luo, Q., Rogers, E., Xia, Y., Liu, W., Ma, W., Zeng, W., Gong, L., Fang, J., et al. (2019). The association of iron and the pathologies of Parkinson’s diseases in MPTP/MPP+-induced neuronal degeneration in non-human primates and in cell culture. Front Aging Neurosci 11, 215.
Simmons, D.A., Casale, M., Alcon, B., Pham, N., Narayan, N., and Lynch, G. (2007). Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington’s disease. Glia 55, 1074–1084.
Skouta, R., Dixon, S.J., Wang, J., Dunn, D.E., Orman, M., Shimada, K., Rosenberg, P. A., Lo, D.C., Weinberg, J.M., Linkermann, A., et al. (2014). Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136, 4551–4556.
Song, S., Su, Z., Kon, N., Chu, B., Li, H., Jiang, X., Luo, J., Stockwell, B.R., and Gu, W. (2023). ALOX5-mediated ferroptosis acts as a distinct cell death pathway upon oxidative stress in Huntington’s disease. Genes Dev 37, 204–217.
Song, X., Liu, J., Kuang, F., Chen, X., Zeh Iii, H.J., Kang, R., Kroemer, G., Xie, Y., and Tang, D. (2021). PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell Rep 34, 108767.
Stephenson, E., Nathoo, N., Mahjoub, Y., Dunn, J.F., and Yong, V.W. (2014). Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat Rev Neurol 10, 459–468.
Sun, C., Liu, P., Pei, L., Zhao, M., and Huang, Y. (2022). Propofol inhibits proliferation and augments the anti-tumor effect of doxorubicin and paclitaxel partly through promoting ferroptosis in triple-negative breast cancer cells. Front Oncol 12, 837974.
Sun, S., Shen, J., Jiang, J., Wang, F., and Min, J. (2023). Targeting ferroptosis opens new avenues for the development of novel therapeutics. Sig Transduct Target Ther 8, 372.
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. (2021). Global cancer statistics 2020: gLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71, 209–249.
Tadokoro, T., Ikeda, M., Ide, T., Deguchi, H., Ikeda, S., Okabe, K., Ishikita, A., Matsushima, S., Koumura, T., Yamada, K., et al. (2020). Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight 5, e132747.
Tao, L., Yang, X., Ge, C., Zhang, P., He, W., Xu, X., Li, X., Chen, W., Yu, Y., Zhang, H., et al. (2024). Integrative clinical and preclinical studies identify FerroTerminator1 as a potent therapeutic drug for MASH. Cell Metab 36, 2190–2206.e5.
Terman, A., and Kurz, T. (2013). Lysosomal iron, iron chelation, and cell death. Antioxid Redox Signal 18, 888–898.
Tian, D.C., Zhang, C., Yuan, M., Yang, X., Gu, H., Li, Z., Wang, Y., and Shi, F.D. (2020). Incidence of multiple sclerosis in China: a nationwide hospital-based study. Lancet Regional Health-Western Pac 1, 100010.
Tsang, J.Y., and Tse, G.M. (2023). Update on triple-negative breast cancers – highlighting subtyping update and treatment implication. Histopathology 82, 17–35.
Tsatsanis, A., Dickens, S., Kwok, J.C.F., Wong, B.X., and Duce, J.A. (2019). Post translational modulation of β-amyloid precursor protein trafficking to the cell surface alters neuronal iron homeostasis. Neurochem Res 44, 1367–1374.
Tsurusaki, S., Tsuchiya, Y., Koumura, T., Nakasone, M., Sakamoto, T., Matsuoka, M., Imai, H., Yuet-Yin Kok, C., Okochi, H., Nakano, H., et al. (2019). Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis. Cell Death Dis 10, 449.
Tury, S., Assayag, F., Bonin, F., Chateau-Joubert, S., Servely, J., Vacher, S., Becette, V., Caly, M., Rapinat, A., Gentien, D., et al. (2018). The iron chelator deferasirox synergises with chemotherapy to treat triple-negative breast cancers. J Pathol 246, 103–114.
Ursini, F., and Maiorino, M. (2020). Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med 152, 175–185.
Van San, E., Debruyne, A.C., Veeckmans, G., Tyurina, Y.Y., Tyurin, V.A., Zheng, H., Choi, S.M., Augustyns, K., van Loo, G., Michalke, B., et al. (2023). Ferroptosis contributes to multiple sclerosis and its pharmacological targeting suppresses experimental disease progression. Cell Death Differ 30, 2092–2103.
Verma, N., Vinik, Y., Saroha, A., Nair, N.U., Ruppin, E., Mills, G., Karn, T., Dubey, V., Khera, L., Raj, H., et al. (2020). Synthetic lethal combination targeting BET uncovered intrinsic susceptibility of TNBC to ferroptosis. Sci Adv 6, eaba8968.
von Krusenstiern, A.N., Robson, R.N., Qian, N., Qiu, B., Hu, F., Reznik, E., Smith, N., Zandkarimi, F., Estes, V.M., Dupont, M., et al. (2023). Identification of essential sites of lipid peroxidation in ferroptosis. Nat Chem Biol 19, 719–730.
Walsh, A.J., Blevins, G., Lebel, R.M., Seres, P., Emery, D.J., and Wilman, A.H. (2014). Longitudinal Mr imaging of iron in multiple sclerosis: an imaging marker of disease. Radiology 270, 186–196.
Wan, W., Cao, L., Kalionis, B., Murthi, P., Xia, S., and Guan, Y. (2019). Iron deposition leads to hyperphosphorylation of tau and disruption of insulin signaling. Front Neurol 10, 607.
Wang, F. (2023a). Ferrology: a charming boundless iron-centric science. Sci Sin-Vitae 53, 1331–1344.
Wang, H., Liu, C., Zhao, Y., and Gao, G. (2020). Mitochondria regulation in ferroptosis. Eur J Cell Biol 99, 151058.
Wang, J., and Pantopoulos, K. (2011). Regulation of cellular iron metabolism. Biochem J 434, 365–381.
Wang, K., Zhang, Z., Wang, M., Cao, X., Qi, J., Wang, D., Gong, A., and Zhu, H. (2019a). Role of GRP78 inhibiting artesunate-induced ferroptosis in KRAS mutant pancreatic cancer cells. Drug Des Devel Ther Volume 13, 2135–2144.
Wang, M., Tang, G., Zhou, C., Guo, H., Hu, Z., Hu, Q., and Li, G. (2023b). Revisiting the intersection of microglial activation and neuroinflammation in Alzheimer’s disease from the perspective of ferroptosis. Chem-Biol Interact 375, 110387.
Wang, W., Green, M., Choi, J.E., Gijón, M., Kennedy, P.D., Johnson, J.K., Liao, P., Lang, X., Kryczek, I., Sell, A., et al. (2019b). CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270–274.
Wang, X., Wu, Q., Zhong, M., Chen, Y., Wang, Y., Li, X., Zhao, W., Ge, C., Wang, X., Yu, Y., et al. (2025). Adipocyte-derived ferroptotic signaling mitigates obesity. Cell Metab 37, 1–19.
Wang, Y., and Mandelkow, E. (2016). Tau in physiology and pathology. Nat Rev Neurosci 17, 22–35.
Wang, Y., Ohara, T., Chen, Y., Hamada, Y., Li, C., Fujisawa, M., Yoshimura, T., and Matsukawa, A. (2023c). Highly metastatic subpopulation of TNBC cells has limited iron metabolism and is a target of iron chelators. Cancers 15, 468.
Weber, R.A., Yen, F.S., Nicholson, S.P.V., Alwaseem, H., Bayraktar, E.C., Alam, M., Timson, R.C., La, K., Abu-Remaileh, M., Molina, H., et al. (2020). Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation. Mol Cell 77, 645–655.e7.
Wei, S., Qiu, T., Wang, N., Yao, X., Jiang, L., Jia, X., Tao, Y., Zhang, J., Zhu, Y., Yang, G., et al. (2020). Ferroptosis mediated by the interaction between Mfn2 and IREα promotes arsenic-induced nonalcoholic steatohepatitis. Environ Res 188, 109824.
Wei, Y., Zhu, Z., Hu, H., Guan, J., Yang, B., and Zhao, H. (2022). Eupaformosanin induces apoptosis and ferroptosis through ubiquitination of mutant p53 in triple-negative breast cancer. Eur J Pharmacol 924, 174970.
Wiernicki, B., Maschalidi, S., Pinney, J., Adjemian, S., Vanden Berghe, T., Ravichandran, K.S., and Vandenabeele, P. (2022). Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat Commun 13, 3676.
Woo, M.S., Mayer, C., Binkle-Ladisch, L., Sonner, J.K., Rosenkranz, S.C., Shaposhnykov, A., Rothammer, N., Tsvilovskyy, V., Lorenz, S.M., Raich, L., et al. (2024). STING orchestrates the neuronal inflammatory stress response in multiple sclerosis. Cell 187, 4043–4060.e30.
Wu, K., Yan, M., Liu, T., Wang, Z., Duan, Y., Xia, Y., Ji, G., Shen, Y., Wang, L., Li, L., et al. (2023). Creatine kinase B suppresses ferroptosis by phosphorylating GPX4 through a moonlighting function. Nat Cell Biol 25, 714–725.
Xu, S., Min, J., and Wang, F. (2021). Ferroptosis: an emerging player in immune cells. Sci Bull 66, 2257–2260.
Xue, H., Chen, D., Zhong, Y.K., Zhou, Z.D., Fang, S.X., Li, M.Y., and Guo, C. (2016). Deferoxamine ameliorates hepatosteatosis via several mechanisms in ob/ob mice. Ann New York Acad Sci 1375, 52–65.
Yambire, K.F., Rostosky, C., Watanabe, T., Pacheu-Grau, D., Torres-Odio, S., Sanchez-Guerrero, A., Senderovich, O., Meyron-Holtz, E.G., Milosevic, I., Frahm, J., et al. (2019). Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo. eLife 8, e51031.
Yan, B., Ai, Y., Sun, Q., Ma, Y., Cao, Y., Wang, J., Zhang, Z., and Wang, X. (2021). Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol Cell 81, 355–369.e10.
Yang, F., Xiao, Y., Ding, J.H., Jin, X., Ma, D., Li, D.Q., Shi, J.X., Huang, W., Wang, Y.P., Jiang, Y.Z., et al. (2023). Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy. Cell Metab 35, 84–100.e8.
Yang, J., Wei, X.H., Hu, F., Dong, W., and Sun, L. (2022a). Development and validation of a novel 3-gene prognostic model for pancreatic adenocarcinoma based on ferroptosis-related genes. Cancer Cell Int 22, 21.
Yang, S., Xie, Z., Pei, T., Zeng, Y., Xiong, Q., Wei, H., Wang, Y., and Cheng, W. (2022b). Salidroside attenuates neuronal ferroptosis by activating the Nrf2/HO1 signaling pathway in Aβ1–42-induced Alzheimer’s disease mice and glutamate-injured HT22 cells. Chin Med 17, 82.
Yang, W.S., Kim, K.J., Gaschler, M.M., Patel, M., Shchepinov, M.S., and Stockwell, B. R. (2016). Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA 113, E4966–E4975.
Yang, Y., Chen, J., Gao, Q., Shan, X., Wang, J., and Lv, Z. (2020). Study on the attenuated effect of Ginkgolide B on ferroptosis in high fat diet induced nonalcoholic fatty liver disease. Toxicology 445, 152599.
Yang, Y., Wang, Y., Guo, L., Gao, W., Tang, T.L., and Yan, M. (2022c). Interaction between macrophages and ferroptosis. Cell Death Dis 13, 355.
Ye, H., Robak, L.A., Yu, M., Cykowski, M., and Shulman, J.M. (2023). Genetics and pathogenesis of Parkinson’s syndrome. Annu Rev Pathol Mech Dis 18, 95–121.
Yi, S., Wang, L., Wang, H., Ho, M.S., and Zhang, S. (2022). Pathogenesis of α-synuclein in Parkinson’s disease: from a neuron-glia crosstalk perspective. Int J Mol Sci 23, 14753.
Yu, M., Gai, C., Li, Z., Ding, D., Zheng, J., Zhang, W., Lv, S., and Li, W. (2019). Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci 110, 3173–3182.
Zeng, X., An, H., Yu, F., Wang, K., Zheng, L., Zhou, W., Bao, Y., Yang, J., Shen, N., and Huang, D. (2021). Benefits of iron chelators in the treatment of Parkinson’s disease. Neurochem Res 46, 1239–1251.
Zhang, F., Li, F., Lu, G.H., Nie, W., Zhang, L., Lv, Y., Bao, W., Gao, X., Wei, W., Pu, K., et al. (2019). Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer. ACS Nano 13, 5662–5673.
Zhang, H.L., Hu, B.X., Li, Z.L., Du, T., Shan, J.L., Ye, Z.P., Peng, X.D., Li, X., Huang, Y., Zhu, X.Y., et al. (2022a). PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nat Cell Biol 24, 88–98.
Zhang, L., Chen, G., Tang, R., Xiong, Y., Pan, Q., Jiang, W., Gong, Z., Chen, C., Li, X., and Yang, Y. (2024a). Levosimendan reverses cardiac malfunction and cardiomyocyte ferroptosis during heart failure with preserved ejection fraction via connexin 43 signaling activation. Cardiovasc Drugs Ther 38, 705–718.
Zhang, S., Chen, Y., Guo, W., Yuan, L., Zhang, D., Xu, Y., Nemeth, E., Ganz, T., and Liu, S. (2014). Disordered hepcidin–ferroportin signaling promotes breast cancer growth. Cell Signal 26, 2539–2550.
Zhang, W., Jiang, B., Liu, Y., Xu, L., and Wan, M. (2022b). Bufotalin induces ferroptosis in non-small cell lung cancer cells by facilitating the ubiquitination and degradation of GPX4. Free Radic Biol Med 180, 75–84.
Zhang, X.J., Ji, Y.X., Cheng, X., Cheng, Y., Yang, H., Wang, J., Zhao, L.P., Huang, Y.P., Sun, D., Xiang, H., et al. (2021a). A small molecule targeting ALOX12-ACC1 ameliorates nonalcoholic steatohepatitis in mice and macaques. Sci Transl Med 13, eabg8116.
Zhang, Y., and He, M. (2017). Deferoxamine enhances alternative activation of microglia and inhibits amyloid beta deposits in APP/PS1 mice. Brain Res 1677, 86–92.
Zhang, Y., Huang, Z., Cheng, J., Pan, H., Lin, T., Shen, X., Chen, W., Chen, Q., Gu, C., Mao, Q., et al. (2022c). Platelet-vesicles-encapsulated RSL-3 enable anti-angiogenesis and induce ferroptosis to inhibit pancreatic cancer progress. Front Endocrinol 13, 865655.
Zhang, Z., Lu, M., Chen, C., Tong, X., Li, Y., Yang, K., Lv, H., Xu, J., and Qin, L. (2021b). Holo-lactoferrin: the link between ferroptosis and radiotherapy in triple-negative breast cancer. Theranostics 11, 3167–3182.
Zhang, Z., Zhou, H., Gu, W., Wei, Y., Mou, S., Wang, Y., Zhang, J., and Zhong, Q. (2024b). CGI1746 targets σ1R to modulate ferroptosis through mitochondria-associated membranes. Nat Chem Biol 20, 699–709.
Zhao, H., Zhang, M., Zhang, J., Sun, Z., Zhang, W., Dong, W., Cheng, C., Yao, Y., and Li, K. (2023). Hinokitiol-iron complex is a ferroptosis inducer to inhibit triple-negative breast tumor growth. Cell Biosci 13, 87.
Zheng, H., Shi, L., Tong, C., Liu, Y., and Hou, M. (2021). circSnx12 Is Involved in Ferroptosis During Heart Failure by Targeting miR-224-5p. Front Cardiovasc Med 8, 656093.
Zheng, Q., Ma, P., Yang, P., Zhai, S., He, M., Zhang, X., Tu, Q., Jiao, L., Ye, L., Feng, Z., et al. (2023). Alpha lipoic acid ameliorates motor deficits by inhibiting ferroptosis in Parkinson’s disease. Neurosci Lett 810, 137346.
Zhou, X., Li, Y., Zhang, X., Li, B., Jin, S., Wu, M., Zhou, X., Dong, Q., Du, J., Zhai, W., et al. (2024). Hemin blocks TIGIT/PVR interaction and induces ferroptosis to elicit synergistic effects of cancer immunotherapy. Sci China Life Sci 67, 996–1009.
Zhu, J., Dai, P., Liu, F., Li, Y., Qin, Y., Yang, Q., Tian, R., Fan, A., Medeiros, S.F., Wang, Z., et al. (2020). Upconverting nanocarriers enable triggered microtubule inhibition and concurrent ferroptosis induction for selective treatment of triple-negative breast cancer. Nano Lett 20, 6235–6245.
Zhu, S., Zhang, Q., Sun, X., Zeh Iii, H.J., Lotze, M.T., Kang, R., and Tang, D. (2017). HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res 77, 2064–2077.
Zhu, Z., Zhang, Y., Huang, X., Can, L., Zhao, X., Wang, Y., Xue, J., Cheng, M., and Zhu, L. (2021). Thymosin beta 4 alleviates non-alcoholic fatty liver by inhibiting ferroptosis via up-regulation of GPX4. Eur J Pharmacol 908, 174351.
Zou, Y., Li, H., Graham, E.T., Deik, A.A., Eaton, J.K., Wang, W., Sandoval-Gomez, G., Clish, C.B., Doench, J.G., and Schreiber, S.L. (2020). Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol 16, 302–309.
Acknowledgement
This work was supported by the National Natural Science Foundation of China (82471593 to J. M.; 32330047, 31930057 to F.W.).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Ni, R., Jiang, J., Wang, F. et al. Treating incurable non-communicable diseases by targeting iron metabolism and ferroptosis. Sci. China Life Sci. 68, 2243–2263 (2025). https://doi.org/10.1007/s11427-024-2787-y
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1007/s11427-024-2787-y