这是indexloc提供的服务,不要输入任何密码
Skip to main content

Advertisement

Log in

Feasibility of quantum-safe digital signature algorithms on cloud virtual machines

  • S.I.: Risks and Security of Internet and Systems
  • Published:
Innovations in Systems and Software Engineering Aims and scope Submit manuscript

Abstract

As Large and Fault-Tolerant (LFT) quantum computers preset in emerging, classical Digital Signature (DS) algorithms used in DS-enabled applications hosted on cloud Virtual Machines (VMs) are increasingly vulnerable to security threats. To safeguard these critical applications in the forthcoming quantum era, it is essential to explore Quantum-safe Digital Signature (QSDS) algorithms across various cloud VMs. To address this challenge, we propose a comprehensive feasibility framework that evaluates hardware and network capabilities for deploying the National Institute of Standards and Technology (NIST)’s Round Three QSDS algorithms. This framework specifically targets DS-enabled applications across diverse cloud VMs. Hence, we equip decision-makers with actionable insights to select the most suitable cloud VM for effective QSDS deployment, ensuring the resilience of these applications against the evolving threats posed by quantum advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Longmate K, Ball EM, Dable-Heath E, Young RJ (2020) Signing information in the quantum era. AVS Quantum Sci. https://doi.org/10.1116/5.0022519

    Article  Google Scholar 

  2. Dwivedi A, Saini GK, Musa UI et al. (2023) Cybersecurity and prevention in the quantum era. In 2023 2nd international conference for innovation in technology (INOCON) (IEEE), pp 1–6

  3. Joseph D, Misoczki R, Manzano M, Tricot J, Pinuaga FD, Lacombe O, Leichenauer S, Hidary J, Venables P, Hansen R (2022) Transitioning organizations to post-quantum cryptography. Nature 605(7909):237–243. https://doi.org/10.1038/s41586-022-04623-2

    Article  Google Scholar 

  4. Kaiiali M, Sezer S, Khalid A (2019) Cloud computing in the quantum era. In 2019 IEEE conference on communications and network security (CNS), (IEEE). https://doi.org/10.1109/cns44998.2019.8952589

  5. Donovan JJ, Madnick SE (1976) Virtual machine advantages in security, integrity, and decision support systems [authors’ response]. IBM Syst J 15(3):270–278. https://doi.org/10.1147/sj.1976.5388091

    Article  Google Scholar 

  6. Yesina M, Ostrianska Y, Gorbenko I (2022) Status report on the third round of the NIST post-quantum cryptography standardization process. Radiotekhnika 210:75–86. https://doi.org/10.30837/rt.2022.3.210.05

    Article  Google Scholar 

  7. Alagic G, Apon D, Cooper D, Dang Q, Dang T, Kelsey J, Lichtinger J, Miller C, Moody D, Peralta R et al (2022) Status report on the third round of the nist post-quantum cryptography standardization process. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  8. G AJ, A BK, A AO, A OS (2015) Post-quantum crystography based security framework for cloud computing. J Internet Technol Secur Trans 4(1):351–357. https://doi.org/10.20533/jitst.2046.3723.2015.0044

    Article  MathSciNet  Google Scholar 

  9. Kumar M (2022) Post-quantum cryptography algorithm’s standardization and performance analysis. Array 15:100242

    Article  MathSciNet  Google Scholar 

  10. Raavi M, Wuthier S, Zhou X, Chang SY (2023) Post-quantum QUIC protocol in cloud networking. In 2023 joint European conference on networks and communications & 6G summit (EuCNC/6G summit), (IEEE). https://doi.org/10.1109/eucnc/6gsummit58263.2023.10188358

  11. Tzinos I, Limniotis K, Kolokotronis N (2022) Evaluating the performance of post-quantum secure algorithms in the tls protocol. J Surveill Secur Saf 3(3):101–127. https://doi.org/10.20517/jsss.2022.15

    Article  Google Scholar 

  12. Paquin C, Stebila D, Tamvada G (2020) Benchmarking Post-quantum Cryptography in TLS. Springer International Publishing, pp 72–91. https://doi.org/10.1007/978-3-030-44223-1_5

    Book  Google Scholar 

  13. Kampanakis P, Sikeridis D (2019) Two post-quantum signature use-cases: non-issues, challenges and potential solutions. In Proceedings of the 7th ETSI/IQC quantum safe cryptography workshop, Seattle, WA, USA, vol 3

  14. Tan TG, Szalachowski P, Zhou J (2022) Challenges of post-quantum digital signing in real-world applications: a survey. Int J Inf Secur 21(4):937–952. https://doi.org/10.1007/s10207-022-00587-6

    Article  Google Scholar 

  15. Chamola V, Jolfaei A, Chanana V, Parashari P, Hassija V (2021) Information security in the post quantum era for 5g and beyond networks: threats to existing cryptography, and post-quantum cryptography. Comput Commun 176:99–118

    Article  Google Scholar 

  16. Shim KA (2022) A survey on post-quantum public-key signature schemes for secure vehicular communications. IEEE Trans Intell Transp Syst 23(9):14025–14042. https://doi.org/10.1109/tits.2021.3131668

    Article  Google Scholar 

  17. Xin X, Yang Q, Li F (2020) Quantum public-key signature scheme based on asymmetric quantum encryption with trapdoor information. Quantum Inf Process 19(8):233. https://doi.org/10.1007/s11128-020-02736-z

    Article  MathSciNet  Google Scholar 

  18. Goldwasser S, Micali S, Rivest RL (1988) A digital signature scheme secure against adaptive chosen-message attacks. SIAM J Comput 17(2):281–308. https://doi.org/10.1137/0217017

    Article  MathSciNet  Google Scholar 

  19. Buchmann J, Dahmen E, Szydlo M (2009) in Post-Quantum Cryptography. Springer Berlin Heidelberg, pp 35–93. https://doi.org/10.1007/978-3-540-88702-7_3

    Book  Google Scholar 

  20. Noel MD, Waziri VO, Abdulhamid SM, Ojeniyi JA (2021) Review and analysis of classical algorithms and hash-based post-quantum algorithm. J Reliab Intell Environ 8(4):397–414. https://doi.org/10.1007/s40860-021-00155-0

    Article  Google Scholar 

  21. Buchmann J, Lindner R, Rückert M, Schneider M (2009) Post-quantum cryptography: lattice signatures. Computing 85(1–2):105–125. https://doi.org/10.1007/s00607-009-0042-y

    Article  MathSciNet  Google Scholar 

  22. Sikeridis D, Kampanakis P, Devetsikiotis M (2020) Post-quantum authentication in TLS 1.3: a performance study. In Proceedings 2020 network and distributed system security symposium, (Internet Society). https://doi.org/10.14722/ndss.2020.24203

  23. Sun S, Zhang R, Ma H (2020) Efficient parallelism of post-quantum signature scheme SPHINCS. IEEE Trans Parallel Distrib Syst 31(11):2542–2555. https://doi.org/10.1109/tpds.2020.2995562

    Article  Google Scholar 

  24. Bernstein DJ, Dobraunig C, Eichlseder M, Fluhrer SR, Gazdag SL, Hülsing A, Kampanakis P, Kölbl S, Lange T, Lauridsen MM, Mendel F, Niederhagen R, Rechberger C, Rijneveld J, Schwabe P(2017) SPHINCS + Submission to the NIST post-quantum project

  25. Alter DM, Schwabe P, Daemen J (2021) Optimizing the nist post quantum candidate sphincs+ using avx-512

  26. Lee J, Kang TG, Cho K, Yum DH (2021) New parameter sets for sphincs+. IEICE Trans Inf Syst E104.D(6):890–892. https://doi.org/10.1587/transinf.2019EDL8223

    Article  Google Scholar 

  27. Nejatollahi H, Dutt N, Ray S, Regazzoni F, Banerjee I, Cammarota R (2019) Post-quantum lattice-based cryptography implementations: a survey. ACM Comput Surv (CSUR) 51(6):1–41

    Article  Google Scholar 

  28. Fouque PA, Hoffstein J, Kirchner P, Lyubashevsky V, Pornin T, Prest T, Ricosset T, Seiler G, Whyte W, Zhang Z et al (2018) Falcon: fast-fourier lattice-based compact signatures over ntru. Submiss NIST’s Post-Quantum Cryptogr Stand Process 36(5):1–75

    Google Scholar 

  29. Pornin T (2019) New efficient, constant-time implementations of falcon. Cryptology ePrint Archive

  30. Kim Y, Song J, Youn TY, Seo SC (2022) Crystals-dilithium on ARMv8. Secur Commun Networks 2022:1–12. https://doi.org/10.1155/2022/5226390

    Article  Google Scholar 

  31. Abiega-L’Eglisse AFD, Delgado-Vargas KA, Valencia-Rodriguez FQ, Gonzalez-Quiroga VG, Gallegos-Garcia G, Nakano-Miyatake M (2020) Performance of new hope and CRYSTALS-dilithium postquantum schemes in the transport layer security protocol. IEEE Access 8:213968–213980. https://doi.org/10.1109/access.2020.3040324

    Article  Google Scholar 

  32. Bartoletti D, Rymer J, Mines C, Tajima C (2016) The forrester waveTM: Global public cloud platforms for enterprise developers, q3 2016

  33. Sikeridis D, Papapanagiotou I, Rimal BP, Devetsikiotis M (2017) A comparative taxonomy and survey of public cloud infrastructure vendors. arXiv preprint arXiv:1710.01476

  34. McClellan K, Carmel L, Custer C, Miretskiy Y, Rosenberg S, Xing J (2022) Cockroach 2022 cloud report

  35. Services ESRIP (2009) Capacity planning and performance benchmark reference guide, v. 1.8. California

  36. Consortium EMB (2024) CoreMark Benchmark . https://www.eembc.org/coremark/index.php

  37. Kattepur A, Rath HK, Simha A (2017) A-priori estimation of computation times in fog networked robotics. In 2017 IEEE International Conference on Edge Computing (EDGE) (IEEE). https://doi.org/10.1109/ieee.edge.2017.11

  38. Singh P, Kaur A, Gupta P, Gill SS, Jyoti K (2020) RHAS: robust hybrid auto-scaling for web applications in cloud computing. Clust Comput 24(2):717–737. https://doi.org/10.1007/s10586-020-03148-5

    Article  Google Scholar 

  39. Popescu DA, Zilberman N, Moore A (2017) Characterizing the impact of network latency on cloud-based applications’ performance

  40. Fragiadakis G, Liagkou V, Filiopoulou E, Fragkakis D, Michalakelis C, Nikolaidou M (2023) Cloud services cost comparison: a clustering analysis framework. Computing 105(10):2061–2088. https://doi.org/10.1007/s00607-023-01173-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.K. provided the idea and the conception of the paper. H.K. and S.S. handled the structure, materials, and analysis of the manuscript. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Hanan Khaled.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaled, H., M. Saif, S., M. Nassar, S. et al. Feasibility of quantum-safe digital signature algorithms on cloud virtual machines. Innovations Syst Softw Eng 21, 437–451 (2025). https://doi.org/10.1007/s11334-025-00609-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11334-025-00609-1

Keywords