这是indexloc提供的服务,不要输入任何密码
Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Machine Intelligence Research
  3. Article

Anomaly Detection Based on Isolation Mechanisms: A Survey

  • Review
  • Open access
  • Published: 06 September 2025
  • Volume 22, pages 849–865, (2025)
  • Cite this article

You have full access to this open access article

Download PDF
Machine Intelligence Research Aims and scope Submit manuscript
Anomaly Detection Based on Isolation Mechanisms: A Survey
Download PDF
  • Yang Cao  ORCID: orcid.org/0000-0003-2184-44911,
  • Haolong Xiang  ORCID: orcid.org/0000-0003-4565-88292,
  • Hang Zhang  ORCID: orcid.org/0000-0003-0401-40663,4,
  • Ye Zhu  ORCID: orcid.org/0000-0003-4776-49321 &
  • …
  • Kai Ming Ting  ORCID: orcid.org/0000-0001-7892-61943,4 
  • 812 Accesses

  • 1 Citation

  • 1 Altmetric

  • Explore all metrics

Abstract

Anomaly detection is a longstanding and active research area that has many applications in domains such as finance, security and manufacturing. However, the efficiency and performance of anomaly detection algorithms are challenged by the large-scale, high-dimensional and heterogeneous data that are prevalent in the era of big data. Isolation-based unsupervised anomaly detection is a novel and effective approach for identifying anomalies in data. It relies on the idea that anomalies are few and different from normal instances, and thus can be easily isolated by random partitioning. Isolation-based methods have several advantages over existing methods, such as low computational complexity, low memory usage, high scalability, robustness to noise and irrelevant features, and no need for prior knowledge or heavy parameter tuning. In this survey, we review the state-of-the-art isolation-based anomaly detection methods, including their data partitioning strategies, anomaly score functions, and algorithmic details. We also discuss some extensions and applications of isolation-based methods in different scenarios, such as detecting anomalies in streaming data, time series, trajectory and image datasets. Finally, we identify some open challenges and future directions for isolation-based anomaly detection research.

Article PDF

Download to read the full article text

Similar content being viewed by others

A Comprehensive Survey of Anomaly Detection Algorithms

Article 26 November 2021

AnomalyDetect: An Online Distance-Based Anomaly Detection Algorithm

Chapter © 2019

A Survey of Statistical, Machine Learning, and Deep Learning-Based Anomaly Detection Techniques for Time Series

Chapter © 2023

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Data Mining and Knowledge Discovery
  • Data Mining
  • Functional clustering
  • Immune cell isolation
  • Immune Evasion
  • Stochastic Modelling in Statistics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. V. Chandola, A. Banerjee, V. Kumar. Anomaly detection: A survey. ACM Computing Surveys, vol. 41, no. 3, Article number 15, 2009. DOI: https://doi.org/10.1145/1541880.1541882.

  2. G. Pang, C. Shen, L. Cao, A. Van Den Hengel. Deep learning for anomaly detection: A review. ACM Computing Surveys, vol. 54, no. 2, Article number 38, 2022. DOI: https://doi.org/10.1145/3439950.

  3. F. Y. Edgeworth. XLI. On discordant observations. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 23, no. 143, pp. 364–375, 1887. DOI: https://doi.org/10.1080/14786448708628471.

    Article  Google Scholar 

  4. T. Fernando, H. Gammulle, S. Denman, S. Sridharan, C. Fookes. Deep learning for medical anomaly detection–A survey. ACM Computing Surveys, vol. 54, no. 7, Article number 141, 2022. DOI: https://doi.org/10.1145/3464423.

  5. B. Venkataramanaiah, J. Kamala. RETRACTED ARTICLE: ECG signal processing and KNN classifier-based abnormality detection by VH-doctor for remote cardiac healthcare monitoring. Soft Computing, vol. 24, no. 22, pp. 17457–17466, 2020. DOI: https://doi.org/10.1007/s00500-020-051911.

    Article  Google Scholar 

  6. X. Huang, Y. Yang, Y. Wang, C. Wang, Z. Zhang, J. Xu, L. Chen, M. Vazirgiannis. DGraph: A large-scale financial dataset for graph anomaly detection. In Proceedings of the 36th International Conference on Neural Information Processing Systems, New Orleans, USA, Article number 1654, 2022.

    Google Scholar 

  7. S. Kumar, L. Akoglu, N. Chawla, J. A. Rodriguez-Serrano, T. Faruquie, S. Nagrecha. Machine learning in finance. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore, pp. 4139–4140, 2021. DOI: https://doi.org/10.1145/3447548.3469456.

    Chapter  Google Scholar 

  8. L. Cui, Y. Qu, G. Xie, D. Zeng, R. Li, S. Shen, S. Yu. Security and privacy-enhanced federated learning for anomaly detection in IoT infrastructures. IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 3492–3500, 2022. DOI: https://doi.org/10.1109/TII.2021.3107783.

    Article  Google Scholar 

  9. M. Hosseinzadeh, A. M. Rahmani, B. Vo, M. Bidaki, M. Masdari, M. Zangakani. Improving security using SVM-based anomaly detection: Issues and challenges. Soft Computing, vol. 25, no. 4, pp. 3195–3223, 2021. DOI: https://doi.org/10.1007/s00500-020-05373-x.

    Article  Google Scholar 

  10. L. Erhan, M. Ndubuaku, M. Di Mauro, W. Song, M. Chen, G. Fortino, O. Bagdasar, A. Liotta. Smart anomaly detection in sensor systems: A multi-perspective review. Information Fusion, vol. 67, pp. 64–79, 2021. DOI: https://doi.org/10.1016/j.inffus.2020.10.001.

    Article  Google Scholar 

  11. T. Finke, M. Krämer, A. Morandini, A. Mück, I. Oleksiyuk. Autoencoders for unsupervised anomaly detection in high energy physics. Journal of High Energy Physics, vol. 2021, no. 6, Article number 161, 2021. DOI: https://doi.org/10.1007/JHEP06(2021)161.

  12. A. L. Alfeo, M. G. C. A. Cimino, G. Manco, E. Ritacco, G. Vaglini. Using an autoencoder in the design of an anomaly detector for smart manufacturing. Pattern Recognition Letters, vol. 136, pp. 272–278, 2020. DOI: https://doi.org/10.1016/j.patrec.2020.06.008.

    Article  Google Scholar 

  13. K. Pooja, S. Rekha. Anomaly detection for predictive maintenance in industry 4.0–A survey. E3S Web of Conferences, vol. 170, Article number 02007, 2020. DOI: https://doi.org/10.1051/e3sconf/202017002007.

  14. F. Pittino, M. Puggl, T. Moldaschl, C. Hirschl. Automatic anomaly detection on in-production manufacturing machines using statistical learning methods. Sensors, vol. 20, no. 8, Article number 2344, 2020. DOI: https://doi.org/10.3390/s20082344.

  15. L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek, M. Kloft, T. G. Dietterich, K. R. Müller. A unifying review of deep and shallow anomaly detection. Proceedings of the IEEE, vol. 109, no. 5, pp. 756–795, 2021. DOI: https://doi.org/10.1109/JPROC.2021.3052449.

    Article  Google Scholar 

  16. T. Chen, S. Kornblith, M. Norouzi, G. Hinton. A simple framework for contrastive learning of visual representations. In Proceedings of the 37th International Conference on Machine Learning, pp. 1597–1607, 2020.

    Google Scholar 

  17. Y. Liu, M. Jin, S. Pan, C. Zhou, Y. Zheng, F. Xia, P. S. Yu. Graph self-supervised learning: A survey. IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 6, pp. 5879–5900, 2023. DOI: https://doi.org/10.1109/TKDE.2022.3172903.

    Google Scholar 

  18. H. Xiang, X. Zhang, X. Xu, A. Beheshti, L. Qi, Y. Hong, W. Dou. Federated learning-based anomaly detection with isolation forest in the IoT-edge continuum. ACM Transactions on Multimedia Computing, Communications and Applications, to be published. DOI: https://doi.org/10.1145/3702995.

  19. F. T. Liu, K. M. Ting, Z. H. Zhou. Isolation forest. In Proceedings of the 8th IEEE International Conference on Data Mining, Pisa, Italy, pp. 413–422, 2008. DOI: https://doi.org/10.1109/ICDM.2008.17.

    Google Scholar 

  20. S. Hariri, M. C. Kind, R. J. Brunner. Extended isolation forest. IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 4, pp. 1479–1489, 2021. DOI: https://doi.org/10.1109/TKDE.2019.2947676.

    Article  Google Scholar 

  21. T. R. Bandaragoda, K. M. Ting, D. Albrecht, F. T. Liu, Y. Zhu, J. R. Wells. Isolation-based anomaly detection using nearest-neighbor ensembles. Computational Intelligence, vol. 34, no. 4, pp. 968–998, 2018. DOI: https://doi.org/10.1111/coin.12156.

    Article  MathSciNet  Google Scholar 

  22. H. Xiang, X. Zhang, H. Hu, L. Qi, W. Dou, M. Dras, A. Beheshti, X. Xu. OptiForest: Optimal isolation forest for anomaly detection. In Proceedings of the 32nd International Joint Conference on Artificial Intelligence, Macao, China, pp. 2379–2387, 2023.

    Google Scholar 

  23. K. M. Ting, B. C. Xu, T. Washio, Z. H. Zhou. Isolation distributional kernel: A new tool for point and group anomaly detections. IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 3, pp. 2697–2710, 2023. DOI: https://doi.org/10.1109/TKDE.2021.3120277.

    Google Scholar 

  24. D. M. Hawkins. Identification of Outliers, Dordrecht, The Netherlands: Springer, 1980. DOI: https://doi.org/10.1007/978-94-0153994-4.

    Book  Google Scholar 

  25. R. A. Fisher. Iris. UCI Machine Learning Repository, 1988. DOI: https://doi.org/10.24432/C56C76.

    Google Scholar 

  26. X. Song, M. Wu, C. Jermaine, S. Ranka. Conditional anomaly detection. IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 5, pp. 631–645, 2007. DOI: https://doi.org/10.1109/TKDE.2007.1009.

    Article  Google Scholar 

  27. M. Gupta, J. Gao, C. C. Aggarwal, J. Han. Outlier detection for temporal data: A survey. IEEE Transactions on Knowledge and data Engineering, vol. 26, no. 9, pp. 2250–2267, 2014. DOI: https://doi.org/10.1109/TKDE.2013.184.

    Article  Google Scholar 

  28. V. Chandola, A. Banerjee, V. Kumar. Anomaly detection for discrete sequences: A survey. IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 5, pp. 823–839, 2012. DOI: https://doi.org/10.1109/TKDE.2010.235.

    Article  Google Scholar 

  29. F. Ahmed, A. Courville. Detecting semantic anomalies. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, USA, pp. 3154–3162, 2020. DOI: https://doi.org/10.1609/aaai.v34i04.5712.

    Google Scholar 

  30. T. R. Laskar, J. X. Huang, V. Smetana, C. Stewart, K. Pouw, A. An, S. Chan, L. Liu. Extending isolation forest for anomaly detection in big data via K-means. ACM Transactions on Cyber-Physical Systems, vol. 5, no. 4, Article number 41, 2021. DOI: https://doi.org/10.1145/3460976.

  31. F. T. Liu, K. M. Ting, Z. H. Zhou. On detecting clustered anomalies using SCiForest. In Proceedings of European Conference on Machine Learning and Knowledge Discovery in Databases, Barcelona, Spain, pp. 274–290, 2010. DOI: https://doi.org/10.1007/978-3-642-15883-4_18.

    Chapter  Google Scholar 

  32. S. K. Murthy, S. Kasif, S. Salzberg. A system for induction of oblique decision trees. Journal of Artificial Intelligence Research, vol. 2, pp. 1–32, 1994. DOI: https://doi.org/10.1613/jair.63.

    Article  Google Scholar 

  33. X. Y. Qin, K. M. Ting, Y. Zhu, V. C. S. Lee. Nearest-neighbour-induced isolation similarity and its impact on density-based clustering. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, Honolulu, USA, pp. 4755–4762, 2019. DOI: https://doi.org/10.1609/aaai.v33i01.33014755.

    Google Scholar 

  34. F. Aurenhammer. Voronoi diagrams–a survey of a fundamental geometric data structure. ACM Computing Surveys, vol. 23, no. 3, pp. 345–405, 1991. DOI: https://doi.org/10.1145/116873.116880.

    Article  Google Scholar 

  35. X. Zhang, W. Dou, Q. He, R. Zhou, C. Leckie, R. Kotagiri, Z. Salcic. LSHiForest: A generic framework for fast tree isolation based ensemble anomaly analysis. In Proceedings of the 33rd International Conference on Data Engineering, San Diego, USA, pp. 983–994, 2017. DOI: https://doi.org/10.1109/ICDE.2017.145.

    Google Scholar 

  36. K. M. Ting, Y. Zhu, Z. H. Zhou. Isolation kernel and its effect on SVM. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, pp. 2329–2337, 2018. DOI: https://doi.org/10.1145/3219819.3219990.

    Chapter  Google Scholar 

  37. M. M. Breunig, H. P. Kriegel, R. T. Ng, J. Sander. LOF: Identifying density-based local outliers. In Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, USA, pp. 93–104, 2000. DOI: https://doi.org/10.1145/342009.335388.

    Google Scholar 

  38. J. Du, G. Han, C. Lin, M. Martínez-García. ITrust: An anomaly-resilient trust model based on isolation forest for underwater acoustic sensor networks. IEEE Transactions on Mobile Computing, vol. 21, no. 5, pp. 1684–1696, 2022. DOI: https://doi.org/10.1109/TMC.2020.3028369.

    Article  Google Scholar 

  39. Z. M. Wang, G. H. Song, C. Gao. An isolation-based distributed outlier detection framework using nearest neighbor ensembles for wireless sensor networks. IEEE Access, vol. 7, pp. 96319–96333, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2929581.

    Article  Google Scholar 

  40. W. Fang, Y. Shao, P. E. D. Love, T. Hartmann, W. Liu. Detecting anomalies and de-noising monitoring data from sensors: A smart data approach. Advanced Engineering Informatics, vol. 55, Article number 101870, 2023. DOI: https://doi.org/10.1016/j.aei.2022.101870.

  41. P. F. Marteau. Random partitioning forest for point-wise and collective anomaly detection–application to network intrusion detection. IEEE Transactions on Information Forensics and Security, vol. 16, pp. 2157–2172, 2021. DOI: https://doi.org/10.1109/TIFS.2021.3050605.

    Article  Google Scholar 

  42. Z. Chiba, N. Abghour, K. Moussaid, A. El Omri, M. Rida. Newest collaborative and hybrid network intrusion detection framework based on Suricata and isolation forest algorithm. In Proceedings of the 4th International Conference on Smart City Applications, Casablanca, Morocco, Article number 77, 2019. DOI: https://doi.org/10.1145/3368756.3369061.

    Google Scholar 

  43. W. Hilal, S. A. Gadsden, J. Yawney. Financial fraud: A review of anomaly detection techniques and recent advances. Expert Systems with Applications, vol. 193, Article number 116429, 2022. DOI: https://doi.org/10.1016/j.eswa.2021.116429.

  44. N. Islah, J. Koerner, R. Genov, T. A. Valiante, G. O’Leary. Machine learning with imbalanced EEG data-sets using outlier-based sampling. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Montreal, Canada, pp. 112–115, 2020. DOI: https://doi.org/10.1109/EMBC44109.2020.9175401.

    Google Scholar 

  45. Y. Guo, X. Jiang, L. Tao, L. Meng, C. Dai, X. Long, F. Wan, Y. Zhang, J. van Dijk, R. M. Aarts, W. Chen, C. Chen. Epileptic seizure detection by cascading isolation forest-based anomaly screening and easyEnsemble. IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, Article number 915–924, 2022. DOI: https://doi.org/10.1109/TNSRE.2022.3163503.

  46. S. Zhao, H. Gao, X. Li, H. Li, Y. Wang, R. Hu, J. Zhang, W. Yao, G. Li. An outlier detection based two-stage EEG artifact removal method using empirical wavelet transform and canonical correlation analysis. Biomedical Signal Processing and Control, vol. 92, Article number 106022, 2024. DOI: https://doi.org/10.1016/j.bspc.2024.106022.

  47. Y. Himeur, K. Ghanem, A. Alsalemi, F. Bensaali, A. Amira. Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives. Applied Energy, vol. 287, Article number 116601, 2021. DOI: https://doi.org/10.1016/j.apenergy.2021.116601.

  48. S. Ahmed, Y. Lee, S. H. Hyun, I. Koo. Unsupervised machine learning-based detection of covert data integrity assault in smart grid networks utilizing isolation forest. IEEE Transactions on Information Forensics and Security, vol. 14, no. 10, pp. 2765–2777, 2019. DOI: https://doi.org/10.1109/TIFS.2019.2902822.

    Article  Google Scholar 

  49. I. Goldenberg, G. I. Webb. Survey of distance measures for quantifying concept drift and shift in numeric data. Knowledge and Information Systems, vol. 60, no. 2, pp. 591–615, 2019. DOI: https://doi.org/10.1007/s10115-018-1257-z.

    Article  Google Scholar 

  50. J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia. A survey on concept drift adaptation. ACM Computing Surveys, vol. 46, no. 4, Article number 44, 2014. DOI: https://doi.org/10.1145/2523813.

  51. H. Xiang, X. Zhang. Edge computing empowered anomaly detection framework with dynamic insertion and deletion schemes on data streams. World Wide Web, vol. 25, no. 5, pp. 2163–2183, 2022. DOI: https://doi.org/10.1007/s11280-022-01052-z.

    Article  Google Scholar 

  52. Z. Ding, M. Fei. An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window. IFAC Proceedings Volumes, vol. 46, no. 20, pp. 12–17, 2013. DOI: https://doi.org/10.3182/20130902-3-CN-3020.00044.

    Article  Google Scholar 

  53. S. C. Tan, K. M. Ting, T. F. Liu. Fast anomaly detection for streaming data. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Spain, pp. 1511–1516, 2011. DOI: https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-254.

    Google Scholar 

  54. S. Guha, N. Mishra, G. Roy, O. Schrijvers. Robust random cut forest based anomaly detection on streams. In Proceedings of the 33rd International Conference on Machine Learning, New York, USA, pp. 2712–2721, 2016.

    Google Scholar 

  55. B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, H. Chen. Deep autoencoding Gaussian mixture model for unsupervised anomaly detection. In Proceedings of the 24th International Conference on Learning Representations, Vancouver, Canada, 2018.

    Google Scholar 

  56. M. Wang, Y. Zhu, G. Li, G. Liu, B. Yang. Image anomaly detection with semantic-enhanced augmentation and distributional kernel. In Proceedings of the 24th International Conference on High Performance Computing & Communications; the 8th International Conference on Data Science & Systems; the 20th International Conference on Smart City; the 8th International Conference on Dependability in Sensor, Cloud & Big Data Systems & Application, Hainan, China, pp. 163–170, 2022. DOI: https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00054.

    Google Scholar 

  57. L. Utkin, A. Ageev, A. Konstantinov, V. Muliukha. Improved anomaly detection by using the attention-based isolation forest. Algorithms, vol. 16, no. 1, Article number 19, 2023. DOI: https://doi.org/10.3390/a16010019.

  58. M. Zhao, W. Li, L. Li, A. Wang, J. Hu, R. Tao. Infrared small UAV target detection via isolation forest. IEEE Transactions on Geoscience and Remote Sensing, vol. 61, Article number 5004316, 2023. DOI: https://doi.org/10.1109/TGRS.2023.3321723.

  59. X. Li, Y. Lu, C. Desrosiers, X. Liu. Out-of-distribution detection for skin lesion images with deep isolation forest. In Proceedings of the 11th International Workshop on Machine Learning in Medical Imaging, Lima, Peru, pp. 91–100, 2020. DOI: https://doi.org/10.1007/978-3-030-59861-7_10.

    Google Scholar 

  60. X. Cheng, M. Zhang, S. Lin, K. Zhou, S. Zhao, H. Wang. Two-stream isolation forest based on deep features for hyperspectral anomaly detection. IEEE Geoscience and Remote Sensing Letters, vol. 20, Article number 5504205, 2023. DOI: https://doi.org/10.1109/LGRS.2023.3271899.

  61. X. Song, S. Aryal, K. M. Ting, Z. Liu, B. He. Spectral–spatial anomaly detection of hyperspectral data based on improved isolation forest. IEEE Transactions on Geoscience and Remote Sensing, vol. 60, Article number 5516016, 2022. DOI: https://doi.org/10.1109/TGRS.2021.3104998.

  62. R. Wang, F. Nie, Z. Wang, F. He, X. Li. Multiple features and isolation forest-based fast anomaly detector for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 9, pp. 6664–6676, 2020. DOI: https://doi.org/10.1109/TGRS.2020.2978491.

    Article  Google Scholar 

  63. A. Bhatt, A. Ganatra. Explosive weapons and arms detection with singular classification (WARDIC) on novel weapon dataset using deep learning: Enhanced OODA loop. Engineered Science, vol. 20, pp. 252–266, 2022. DOI: https://doi.org/10.30919/ES8E718.

    Google Scholar 

  64. A. Farzad, T. A. Gulliver. Unsupervised log message anomaly detection. ICT Express, vol. 6, no. 3, pp. 229–237, 2020. DOI: https://doi.org/10.1016/j.icte.2020.06.003.

    Article  Google Scholar 

  65. H. Xu, G. Pang, Y. Wang, Y. Wang. Deep isolation forest for anomaly detection. IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 12, pp. 12591–12604, 2023. DOI: https://doi.org/10.1109/TKDE.2023.3270293.

    Article  Google Scholar 

  66. K. Muandet, K. Fukumizu, B. Sriperumbudur, B. Schölkopf. Kernel mean embedding of distributions: A review and beyond. Foundations and Trends® in Machine Learning, vol. 10, no. 1–2, pp. 1–141, 2017. DOI: https://doi.org/10.1561/2200000060.

    Article  Google Scholar 

  67. A. Smola, A. Gretton, L. Song, B. Schölkopf. A hilbert space embedding for distributions. In Proceedings of the 18th International Conference on Algorithmic Learning Theory, Sendai, Japan, pp. 13–31, 2007. DOI: https://doi.org/10.1007/978-3-540-75225-7_5.

    Chapter  Google Scholar 

  68. Y. Wang, Z. Wang, K. M. Ting, Y. Shang. A principled distributional approach to trajectory similarity measurement and its application to anomaly detection. Journal of Artificial Intelligence Research, vol. 79, pp. 865–893, 2024. DOI: https://doi.org/10.1613/jair.1.15849.

    Article  MathSciNet  Google Scholar 

  69. K. M. Ting, Z. Liu, H. Zhang, Y. Zhu. A new distributional treatment for time series and an anomaly detection investigation. Proceedings of the VLDB Endowment, vol. 15, no. 11, pp. 2321–2333, 2022. DOI: https://doi.org/10.14778/3551793.3551796.

    Article  Google Scholar 

  70. K. M. Ting, Z. Liu, L. Gong, H. Zhang, Y. Zhu. A new distributional treatment for time series anomaly detection. The VLDB Journal, vol. 33, no. 3, pp. 753–780, 2024. DOI: https://doi.org/10.1007/s00778-023-00832-x.

    Article  Google Scholar 

  71. C. C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F. Silva, A. Mueen, E. Keogh. Matrix profile I: All pairs similarity joins for time series: A unifying view that includes motifs, discords and shapelets. In Proceedings of the 16th International Conference on Data Mining, Barcelona, Spain, pp. 1317–1322, 2016. DOI: https://doi.org/10.1109/ICDM.2016.0179.

    Google Scholar 

  72. S. Gharghabi, S. Imani, A. Bagnall, A. Darvishzadeh, E. Keogh. An ultra-fast time series distance measure to allow data mining in more complex real-world deployments. Data Mining and Knowledge Discovery, vol. 34, no. 4, pp. 1104–1135, 2020. DOI: https://doi.org/10.1007/s10618-020-00695-8.

    Article  MathSciNet  Google Scholar 

  73. Y. Zhu, Z. Zimmerman, N. S. Senobari, C. C. M. Yeh, G. Funning, A. Mueen, P. Brisk, E. Keogh. Matrix profile II: Exploiting a novel algorithm and GPUs to break the one hundred million barrier for time series motifs and joins. In Proceedings of the 16th International Conference on Data Mining, Barcelona, Spain, pp. 739–748, 2016. DOI: https://doi.org/10.1109/ICDM.2016.0085.

    Google Scholar 

  74. J. Paparrizos, L. Gravano. k-Shape: Efficient and accurate clustering of time series. In Proceedings of ACM SIG- MOD International Conference on Management of Data, Melbourne, Australia, pp. 1855–1870, 2015. DOI: https://doi.org/10.1145/2723372.2737793.

    Google Scholar 

  75. J. Paparrizos, M. J. Franklin. GRAIL: Efficient time-series representation learning. Proceedings of the VLDB Endowment, vol. 12, no. 11, pp. 1762–1777, 2019. DOI: https://doi.org/10.14778/3342263.3342648.

    Article  Google Scholar 

  76. E. Keogh, C. A. Ratanamahatana. Exact indexing of dynamic time warping. Knowledge and Information Systems, vol. 7, no. 3, pp. 358–386, 2005. DOI: https://doi.org/10.1007/s10115-004-0154-9.

    Article  Google Scholar 

  77. Y. Shen, Y. Chen, E. Keogh, H. Jin. Accelerating time series searching with large uniform scaling. In Proceedings of SIAM International Conference on Data Mining, San Diego, USA, pp. 234–242, 2018. DOI: https://doi.org/10.1137/1.9781611975321.27.

    Google Scholar 

  78. C. W. Tan, F. Petitjean, G. I. Webb. Elastic bands across the path: A new framework and method to lower bound DTW. In Proceedings of SIAM International Conference on Data Mining, Calgary, Canada, pp. 522–530, 2019. DOI: https://doi.org/10.1137/1.9781611975673.59.

    Google Scholar 

  79. O. Gold, M. Sharir. Dynamic time warping and geometric edit distance: Breaking the quadratic barrier. ACM Transactions on Algorithms, vol. 14, no. 4, Article number 50, 2018. DOI: https://doi.org/10.1145/3230734.

  80. M. Kelly, R. Longjohn, K. Nottingham. UCI Machine Learning Repository, [Online], Available, https://archive.ics.uci.edu/, 2017.

    Google Scholar 

  81. F. J. Provost, T. Fawcett, R. Kohavi. The case against accuracy estimation for comparing induction algorithms. In Proceedings of the 15th International Conference on Machine Learning, Madison, USA, pp. 445–453, 1998.

    Google Scholar 

  82. C. Manning, H. Schütze. Foundations of Statistical Natural Language Processing, Cambridge, USA: MIT Press, 1999.

    Google Scholar 

  83. B. C. Xu, K. M. Ting, Y. Jiang. Isolation graph kernel. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, pp. 10487–10495, 2021. DOI: https://doi.org/10.1609/aaai.v35i12.17255.

    Google Scholar 

  84. F. T. Liu, K. M. Ting, Z. H. Zhou. Isolation-based anomaly detection. ACM Transactions on Knowledge Discovery from Data, vol. 6, no. 1, Article number 3, 2012. DOI: https://doi.org/10.1145/2133360.2133363.

  85. H. Xiang, X. Zhang, M. Dras, A. Beheshti, W. Dou, X. Xu. Deep optimal isolation forest with genetic algorithm for anomaly detection. In Proceedings of IEEE International Conference on Data Mining, Shanghai, China, pp. 678–687, 2023. DOI: https://doi.org/10.1109/ICDM58522.2023.00077.

    Google Scholar 

  86. S. Han, X. Hu, H. Huang, M. Jiang, Y. Zhao. ADBench: Anomaly detection benchmark. In Proceedings of the 36th International Conference on Neural Information Processing Systems, New Orleans, USA, pp. 32142–32159, 2022.

    Google Scholar 

  87. Y. Cao, Y. Ma, Y. Zhu, K. M. Ting. Revisiting streaming anomaly detection: Benchmark and evaluation. Artificial Intelligence Review, vol. 58, no. 1, Article number 8, 2025. DOI: https://doi.org/10.1007/s10462-024-10995-w.

  88. D. Samariya, A. Thakkar. A comprehensive survey of anomaly detection algorithms. Annals of Data Science, vol. 10, no. 3, pp. 829–850, 2023. DOI: https://doi.org/10.1007/S40745-021-00362-9.

    Google Scholar 

  89. H. Paulheim, R. Meusel. A decomposition of the outlier detection problem into a set of supervised learning problems. Machine Learning, vol. 100, no. 2, pp. 509–531, 2015. DOI: https://doi.org/10.1007/s10994-015-5507-y.

    Article  MathSciNet  Google Scholar 

  90. K. Ouardini, H. Yang, B. Unnikrishnan, M. Romain, C. Garcin, H. Zenati, J. P. Campbell, M. F. Chiang, J. Kalpathy-Cramer, V. Chandrasekhar, P. Krishnaswamy, C. S. Foo. Towards practical unsupervised anomaly detection on retinal images. In Proceedings of the 1st MICCAI Workshop on Domain Adaptation and Representation Transfer, and the 1st International Workshop on Medical Image Learning with Less Labels and Imperfect Data, Shenzhen, China, pp. 225–234, 2019. DOI: https://doi.org/10.1007/978-3-030-33391-1_26.

    Google Scholar 

  91. T. Hayashi, H. Fujita, A. Hernandez-Matamoros. Less complexity one-class classification approach using construction error of convolutional image transformation network. Information Sciences, vol. 560, pp. 217–234, 2021. DOI: https://doi.org/10.1016/j.ins.2021.01.069.

    Article  MathSciNet  Google Scholar 

  92. C. Gini. On the measure of concentration with special reference to income and statistics. Colorado College Publication, General Series, no. 208, pp. 73–79, 1936.

  93. Y. Cao, Y. Zhu, K. M. Ting, F. D. Salim, H. X. Li, L. Yang, G. Li. Detecting change intervals with isolation distributional kernel. Journal of Artificial Intelligence Research, vol. 79, pp. 273–306, 2024. DOI: https://doi.org/10.1613/jair.1.15762.

    Article  MathSciNet  Google Scholar 

  94. D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952. DOI: https://doi.org/10.1109/JRPROC.1952.273898.

    Article  Google Scholar 

  95. K. M. Ting, J. R. Wells, Y. Zhu. Point-set kernel clustering. IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 5, pp. 5147–5158, 2023. DOI: https://doi.org/10.1109/TKDE.2022.3144914.

    Google Scholar 

  96. X. Han, Y. Zhu, K. M. Ting, D. C. Zhan, G. Li. Streaming hierarchical clustering based on point-set kernel. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington DC, USA, pp. 525–533, 2022. DOI: https://doi.org/10.1145/3534678.3539323.

    Chapter  Google Scholar 

  97. Z. J. Wang, Y. Zhu, K. M. Ting. Distribution-based trajectory clustering. In Proceedings of IEEE International Conference on Data Mining, Shanghai, China, pp. 1379–1384, 2023. DOI: https://doi.org/10.1109/ICDM58522.2023.00178.

    Google Scholar 

  98. Y. Zhu, K. M. Ting. Kernel-based clustering via isolation distributional kernel. Information Systems, vol. 117, Article number 102212, 2023. DOI: https://doi.org/10.1016/J.IS.2023.102212.

  99. X. Mu, K. M. Ting, Z. H. Zhou. Classification under streaming emerging new classes: A solution using completely-random trees. IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 8, pp. 1605–1618, 2017. DOI: https://doi.org/10.1109/TKDE.2017.2691702.

    Article  Google Scholar 

  100. X. Q. Cai, P. Zhao, K. M. Ting, X. Mu, Y. Jiang. Nearest neighbor ensembles: An effective method for difficult problems in streaming classification with emerging new classes. In Proceedings of IEEE International Conference on Data Mining, Beijing, China, pp. 970–975, 2019. DOI: https://doi.org/10.1109/ICDM.2019.00109.

    Google Scholar 

  101. B. C. Xu, K. M. Ting, Z. H. Zhou. Isolation set-kernel and its application to multi-instance learning. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, USA, pp. 941–949, 2019. DOI: https://doi.org/10.1145/3292500.3330830.

    Chapter  Google Scholar 

  102. K. M. Ting, T. Washio, J. R. Wells, H. Zhang. Isolation kernel density estimation. In Proceedings of IEEE International Conference on Data Mining, Auckland, New Zealand, pp. 619–628, 2021. DOI: https://doi.org/10.1109/ICDM51629.2021.00073.

    Google Scholar 

  103. K. M. Ting, T. Washio, J. Wells, H. Zhang, Y. Zhu. Isolation kernel estimators. Knowledge and Information Systems, vol. 65, no. 2, pp. 759–787, 2023. DOI: https://doi.org/10.1007/s10115-022-01765-7.

    Article  Google Scholar 

  104. H. Zhang, K. Zhang, K. M. Ting, Y. Zhu. Towards a persistence diagram that is robust to noise and varied densities. In Proceedings of the 40th International Conference on Machine Learning, Honolulu, USA, pp. 41952–41972, 2023.

    Google Scholar 

  105. C. Geng, S. J. Huang, S. Chen. Recent advances in open set recognition: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 10, pp. 3614–3631, 2021. DOI: https://doi.org/10.1109/TPAMI.2020.2981604.

    Article  Google Scholar 

  106. A. Mahdavi, M. Carvalho. A survey on open set recognition. In Proceedings of the 4th International Conference on Artificial Intelligence and Knowledge Engineering, Laguna Hills, USA, pp. 37–44, 2021. DOI: https://doi.org/10.1109/AIKE52691.2021.00013.

    Google Scholar 

  107. M. Salehi, H. Mirzaei, D. Hendrycks, Y. Li, M. H. Rohban, M. Sabokrou. A unified survey on anomaly, novelty, open-set, and out of-distribution detection: Solutions and future challenges. Transactions on Machine Learning Research, vol. 2022, Article number 234, 2022.

Download references

Acknowledgements

We appreciate the suggestions from Shuaibin Song, Zijing Wang and Zongyou Liu from Nanjing University, China, and Dr Xuyun Zhang from Macquarie University, Australia. Kai Ming Ting is supported by the National Natural Science Foundation of China (No. 62076120). This project is supported by the State Key Laboratory for Novel Software Technology at Nanjing University, China (No. KFKT2024A01). Open Access funding enabled and organized by CAUL and its Member Institutions.

Author information

Authors and Affiliations

  1. Deakin Cyber Research and Innovation Centre, Deakin University, Burwood, VIC, 3125, Australia

    Yang Cao & Ye Zhu

  2. School of Software, Nanjing University of Information Science and Technology, Nanjing, 210044, China

    Haolong Xiang

  3. National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China

    Hang Zhang & Kai Ming Ting

  4. School of Artificial Intelligence, Nanjing University, Nanjing, 210023, China

    Hang Zhang & Kai Ming Ting

Authors
  1. Yang Cao
    View author publications

    Search author on:PubMed Google Scholar

  2. Haolong Xiang
    View author publications

    Search author on:PubMed Google Scholar

  3. Hang Zhang
    View author publications

    Search author on:PubMed Google Scholar

  4. Ye Zhu
    View author publications

    Search author on:PubMed Google Scholar

  5. Kai Ming Ting
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Ye Zhu.

Ethics declarations

The authors declared that they have no conflicts of interest to this work.

Additional information

Colored figures are available in the online version at https://link.springer.com/journal/11633

Yang Cao received the B. Sc. degree in information technology from Monash University, Australia in 2020, the M. Sc. degree in data science and the Ph. D. degree in artificial intelligence from Deakin University, Australia in 2021 and 2025, respectively. He is currently a postdoctoral researcher at Great Bay University, China.

His research interests include clustering analysis, anomaly detection and their application in renewable energy.

Haolong Xiang received the Ph. D. degree in artificial intelligence in the School of Computing, Macquarie University, Australia in 2024. He is currently working in the School of Software of Nanjing University of Information Science and Technology, China.

His research interests include anomaly detection, data mining and machine learning.

Hang Zhang received the B. Sc. degree in computer science from Tongji University, China in 2020. Currently, he is a Ph. D. degree candidate in the School of Artificial Intelligence, Nanjing University, China. And he is a member of Learning and Mining from Data (LAMDA) Group, China.

His research interests include machine learning, data mining and topological data analysis.

Ye Zhu received the Ph. D. degree in artificial intelligence with a Mollie Holman Medal for the best doctoral thesis of the year from Monash University, Australia in 2017. He is a senior lecturer at the School of Information Technology, Deakin University, Australia. He has published more than 50 papers in AI-related top international conferences or journals, including SIGKDD, AAAI, IJCAI, VLDB, AIJ, TKDE, PRJ, JAIR, ISJ and MLJ. He is on the program committee of SIGKDD, AAAI, IJCAI, PAKDD and ADMA. He has also secured several large research grants for multi-disciplinary research. He is an IEEE Senior Member.

His research interests include clustering analysis, anomaly detection, and their applications for pattern recognition and information retrieval.

Kai Ming Ting received the Ph. D. degree in computer science from the University of Sydney, Australia in 1996, and has worked at various universities in Australia and New Zealand, including the University of Waikato, Deakin University, Monash University, and Federation University. He is a professor at Nanjing University, China since 2020. He is the principal driver of isolation-based methods, and a key originator of isolation forest, isolation kernel, isolation distributional kernel and mass-based similarity. He has received research grants from the National Natural Science Foundation of China, the Australian Research Council, the US Air Force of Scientific Research (AFOSR/AOARD), Toyota InfoTechnology Center, and the Australian Institute of Sports.

His research interests include data-dependent similarity measures, anomaly detection, ensemble approaches, data mining, and machine learning.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Xiang, H., Zhang, H. et al. Anomaly Detection Based on Isolation Mechanisms: A Survey. Mach. Intell. Res. 22, 849–865 (2025). https://doi.org/10.1007/s11633-025-1554-4

Download citation

  • Received: 30 May 2024

  • Accepted: 06 March 2025

  • Published: 06 September 2025

  • Version of record: 06 September 2025

  • Issue date: October 2025

  • DOI: https://doi.org/10.1007/s11633-025-1554-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Isolation forest
  • isolation kernel
  • anomaly detection
  • isolation-based methods
  • machine learning
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature