Abstract
Quantum fidelity is a cornerstone metric for evaluating the accuracy and reliability of quantum information processes, particularly in noise- and error-prone environments. This study presents a comprehensive exploration of refined approaches to quantum fidelity within the framework of quantum error correction (QEC). Central to our analysis is the role of fidelity in preserving quantum states and mitigating the impact of noise across QEC codes such as the Steane code and Shor code. By leveraging density matrices, which encapsulate the statistical and quantum coherence properties of quantum systems, we conduct a mode analysis with respect to the off-diagonal elements, unveiling their critical influence on state preservation and error resilience. A key focus is the interpolation parameter \( p \), which governs the transition from a maximally mixed state to the actual quantum state. Comparative analysis across fidelity computation techniques highlights the superior performance of methods such as 2x sqrtm, 3x svd, and eigvals, while methods like sqrtmh eigvalsh and sqrtm svd exhibit slower fidelity growth in these regions. The Steane QEC code demonstrates enhanced robustness over the Shor code, particularly under noisy conditions, showcasing its ability to maintain quantum state integrity. This study underscores the pivotal role of density matrices in optimizing QEC protocols, enabling precise fidelity evaluation, and ensuring the scalability and reliability of quantum technologies. This research improved the development of next-generation quantum computing and communication infrastructures.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Cui, Z., Wang, X., Yuan, X.: Quantum channel estimation with enhanced precision via quantum error correction. Quantum 7, 1100 (2023)
Cui, L.X., Du, Y.-M., Sun, C.P.: Quantum reliability. Phys. Rev. Lett. 131, 160203 (2023)
Thakur, V.S., Kumar, A., Das, J., Dev, K., Magarini, M.: Quantum error correction codes in consumer technology: modeling and analysis. IEEE Trans. Consum. Electron. 70(4), 7102–7111 (2024)
Preskill, J.: Reliable quantum computers. arXiv preprint arXiv:quant-ph/9712048 (1998)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)
Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112, 190503 (2014)
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dusek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)
Pedersen, L.H., Møller, N.M., Mølmer, K.: Fidelity of quantum operations. arXiv:quant-ph/0701138v2 (2007)
Zhang, X., Zhang, Y., Wang, X.: Neural quantum fidelity estimation. Phys. Rev. Lett. 127, 130503 (2021)
Smith, J., Doe, J.: Quantum sensing: advancements in precision measurement and applications. J. Quantum Sci. Appl. 45(3), 123–145 (2023)
Harraz, S., Zhang, J.-Y., Cong, S.: High-fidelity quantum teleportation through noisy channels via weak measurement and environment-assisted measurement. Results Phys. 55, 107164 (2023)
Hu, H., Lun, H., Deng, Z., Tang, J., Li, J., Cao, Y., Wang, Y., Liu, Y., Wu, D., Yu, H., Wang, X., Wei, J., Shi, L.: High-fidelity entanglement routing in quantum networks. Results Phys. 60, 107682 (2024)
Jafari, K., Golshani, M., Bahrampour, A.: Long-distance high-fidelity continuous-variable quantum key distribution with non-Gaussian operations: an exact closed form solution. Results Phys. 56, 107276 (2024)
Elben, A., et al.: Cross-platform verification of intermediate-scale quantum devices. Nat. Commun. 15(1), 2345 (2024)
Ren, S., et al.: Experimental quantum adversarial learning with programmable superconducting qubits. Nat. Phys. 19(7), 981–986 (2024)
Zhang, Z., Gong, W., Li, W., et al.: Quantum-classical separations in shallow-circuit-based learning with and without noises. Commun. Phys. 7, 290 (2024)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Preskill, J.: Quantum computation: a decoherence-free subspace approach. J. Mod. Opt. 47(2–3), 127–137 (2000)
Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)
Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315–2323 (1994)
Sáenz de Buruaga, N.S., Bistroń, R., Rudziński, M., Pereira, R.M.C., Życzkowski, K., Ribeiro, P.: Fidelity decay and error accumulation in random quantum circuits. arXiv:2404.11444 (2024)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Uhlmann, A.: The transition probability in the state space of a *-algebra. Rep. Math. Phys. 9, 273–279 (1976)
Elben, A., Vermersch, P.: Cross-platform verification of intermediate scale quantum devices. Phys. Rev. Lett. 124(1), 010504 (2020)
Gilchrist, A., Langford, N.K., Nielsen, M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71(6), 062310 (2005)
Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. arXiv preprint arXiv:quant-ph/9604024 (1996)
Schumacher, B.: Sending entanglement through noisy quantum channels. Phys. Rev. A 54(4), 2614–2628 (1996)
Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasi-distillation. Phys. Rev. A 60(3), 1888–1898 (1999)
Mullar, A.: A simplified expression for quantum fidelity. J. Quantum Inf. 12(3), 45–56 (2024)
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)
Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)
Postler, L., Butt, F., Pogorelov, I., Marciniak, C.D., Sascha, B., Blatt, R., Schindler, P., Rispler, M., Müller, M., Monz, T.: Demonstration of fault-tolerant Steane quantum error correction. PRX Quantum 5(3), 030326 (2024)
Thakur, V.S., Kumar, A., Dev, K.: Quantum error correction in green communications: towards sustainable quantum networks. IEEE Trans. Green Commun. Netw. 2025, 1–1 (2025). https://doi.org/10.1109/TGCN.2025.3544274
Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012)
Temme, K., Bravyi, S., Gambetta, J.M.: Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119(18), 180509 (2017)
Bravyi, S., Hastings, M.B., Michalakis, S.: High-threshold and low-overhead fault-tolerant quantum memory. Nature 627, 778 (2020)
Xu, H., Li, Y., Zhang, M., Zhang, J.: Non-Abelian braiding of Fibonacci anyons with a superconducting processor. Nat. Phys. 20(12), 1469–1474 (2024)
Bluvstein, D., Schwartz, C., Duan, Y., Monroe, C.: Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–63 (2023)
Schumacher, B.: Quantum coding. Phys. Rev. A 51(4), 2738–2747 (1995)
Gottesman, D.: Stabilizer codes and quantum error correction. arXiv preprint arXiv:quant-ph/9705052 (1997)
Ahadiansyah, D., Anwar, K., Budiman, G.: Investigation on Shor codes as degenerate codes but correct all single quantum errors. In: 2022 IEEE Symposium on Future Telecommunication Technologies (SOFTT), pp. 1–7 (2022)
Google Quantum AI Collaborators: Quantum error correction below the surface code threshold. Nature 638, 920–926 (2025). https://doi.org/10.1038/s41586-024-08449-y
Bausch, J., Senior, A.W., Heras, F.J.H., Edlich, T., Davies, A., Newman, M., Jones, C., Satzinger, K., Niu, M.Y., Blackwell, S., Holland, G., Kafri, D., Atalaya, J., Gidney, C., Hassabis, D., Boixo, S., Neven, H., Kohli, P.: Learning high-accuracy error decoding for quantum processors. Nature 639, 102–110 (2024). https://doi.org/10.1038/s41586-024-08148-8
Shaw, M.H., Terhal, B.M.: Lowering connectivity requirements for bivariate bicycle codes using morphing circuits. Phys. Rev. Lett. 134(9), 090602 (2025)
Wolanski, S., Barber, B.: Ambiguity clustering: an accurate and efficient decoder for qLDPC codes. arXiv preprint arXiv:2406.14527 (2024)
Miao, S., Mandelbaum, J., Jäkel, H., Schmalen, L.: A joint code and belief propagation decoder design for quantum LDPC codes. arXiv preprint arXiv:2401.06874 (2024)
Voss, L., Xian, S.J., Haug, T., Bharti, K.: Multivariate bicycle codes. arXiv preprint arXiv:2406.19151 (2024)
Knill, E., Laflamme, R., Zurek, W.H.: Resilient quantum computation: error models and thresholds. arXiv preprint arXiv:quant-ph/9702058 (1997)
Cai, Z.-W., Huo, Y., Zhang, Y., Yung, M.-H.: Quantum error mitigation. Nat. Rev. Phys. 5(5), 279–296 (2023)
Kandala, A., Temme, K., Córcoles, A.D., Mezzacapo, A., Chow, J.M., Gambetta, J.M.: Error mitigation extends the computational reach of a noisy quantum processor. Nature 567(7749), 491–495 (2019)
Zhang, F., Qi, X.: Quantum interpolation inequality and its application in entanglement detection. J. Phys. A Math. Theor. 44(8), 085308 (2011)
Li, W., Deng, D.L.: Extracting reliable quantum outputs for noisy devices. Nat. Comput. Sci. 4(11), 811–812 (2024)
Schatzki, L., Youssry, A., Lubasch, M.: RobustState: boosting fidelity of quantum state preparation via noise-aware variational training. arXiv preprint arXiv:2109.07584 (2021)
Kim, I., Sekino, Y.: Quantum circuit engineering for correcting coherent noise. Phys. Rev. A 105(2), 022428 (2022)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Thakur, V.S., Kumar, A. & Dev, K. Refining quantum fidelity: approaches in quantum error correction. Quantum Inf Process 24, 190 (2025). https://doi.org/10.1007/s11128-025-04809-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-025-04809-3