这是indexloc提供的服务,不要输入任何密码
Skip to main content

Advertisement

Log in

Refining quantum fidelity: approaches in quantum error correction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum fidelity is a cornerstone metric for evaluating the accuracy and reliability of quantum information processes, particularly in noise- and error-prone environments. This study presents a comprehensive exploration of refined approaches to quantum fidelity within the framework of quantum error correction (QEC). Central to our analysis is the role of fidelity in preserving quantum states and mitigating the impact of noise across QEC codes such as the Steane code and Shor code. By leveraging density matrices, which encapsulate the statistical and quantum coherence properties of quantum systems, we conduct a mode analysis with respect to the off-diagonal elements, unveiling their critical influence on state preservation and error resilience. A key focus is the interpolation parameter \( p \), which governs the transition from a maximally mixed state to the actual quantum state. Comparative analysis across fidelity computation techniques highlights the superior performance of methods such as 2x sqrtm, 3x svd, and eigvals, while methods like sqrtmh eigvalsh and sqrtm svd exhibit slower fidelity growth in these regions. The Steane QEC code demonstrates enhanced robustness over the Shor code, particularly under noisy conditions, showcasing its ability to maintain quantum state integrity. This study underscores the pivotal role of density matrices in optimizing QEC protocols, enabling precise fidelity evaluation, and ensuring the scalability and reliability of quantum technologies. This research improved the development of next-generation quantum computing and communication infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Cui, Z., Wang, X., Yuan, X.: Quantum channel estimation with enhanced precision via quantum error correction. Quantum 7, 1100 (2023)

    Google Scholar 

  2. Cui, L.X., Du, Y.-M., Sun, C.P.: Quantum reliability. Phys. Rev. Lett. 131, 160203 (2023)

    ADS  MathSciNet  Google Scholar 

  3. Thakur, V.S., Kumar, A., Das, J., Dev, K., Magarini, M.: Quantum error correction codes in consumer technology: modeling and analysis. IEEE Trans. Consum. Electron. 70(4), 7102–7111 (2024)

    Google Scholar 

  4. Preskill, J.: Reliable quantum computers. arXiv preprint arXiv:quant-ph/9712048 (1998)

  5. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    ADS  Google Scholar 

  6. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112, 190503 (2014)

    Google Scholar 

  7. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dusek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)

    ADS  Google Scholar 

  8. Pedersen, L.H., Møller, N.M., Mølmer, K.: Fidelity of quantum operations. arXiv:quant-ph/0701138v2 (2007)

  9. Zhang, X., Zhang, Y., Wang, X.: Neural quantum fidelity estimation. Phys. Rev. Lett. 127, 130503 (2021)

    ADS  Google Scholar 

  10. Smith, J., Doe, J.: Quantum sensing: advancements in precision measurement and applications. J. Quantum Sci. Appl. 45(3), 123–145 (2023)

    Google Scholar 

  11. Harraz, S., Zhang, J.-Y., Cong, S.: High-fidelity quantum teleportation through noisy channels via weak measurement and environment-assisted measurement. Results Phys. 55, 107164 (2023)

    Google Scholar 

  12. Hu, H., Lun, H., Deng, Z., Tang, J., Li, J., Cao, Y., Wang, Y., Liu, Y., Wu, D., Yu, H., Wang, X., Wei, J., Shi, L.: High-fidelity entanglement routing in quantum networks. Results Phys. 60, 107682 (2024)

    Google Scholar 

  13. Jafari, K., Golshani, M., Bahrampour, A.: Long-distance high-fidelity continuous-variable quantum key distribution with non-Gaussian operations: an exact closed form solution. Results Phys. 56, 107276 (2024)

    Google Scholar 

  14. Elben, A., et al.: Cross-platform verification of intermediate-scale quantum devices. Nat. Commun. 15(1), 2345 (2024)

    Google Scholar 

  15. Ren, S., et al.: Experimental quantum adversarial learning with programmable superconducting qubits. Nat. Phys. 19(7), 981–986 (2024)

    Google Scholar 

  16. Zhang, Z., Gong, W., Li, W., et al.: Quantum-classical separations in shallow-circuit-based learning with and without noises. Commun. Phys. 7, 290 (2024)

    Google Scholar 

  17. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    ADS  Google Scholar 

  18. Preskill, J.: Quantum computation: a decoherence-free subspace approach. J. Mod. Opt. 47(2–3), 127–137 (2000)

    ADS  MathSciNet  Google Scholar 

  19. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    ADS  MathSciNet  Google Scholar 

  20. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315–2323 (1994)

    ADS  MathSciNet  Google Scholar 

  21. Sáenz de Buruaga, N.S., Bistroń, R., Rudziński, M., Pereira, R.M.C., Życzkowski, K., Ribeiro, P.: Fidelity decay and error accumulation in random quantum circuits. arXiv:2404.11444 (2024)

  22. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  23. Uhlmann, A.: The transition probability in the state space of a *-algebra. Rep. Math. Phys. 9, 273–279 (1976)

    ADS  MathSciNet  Google Scholar 

  24. Elben, A., Vermersch, P.: Cross-platform verification of intermediate scale quantum devices. Phys. Rev. Lett. 124(1), 010504 (2020)

    ADS  Google Scholar 

  25. Gilchrist, A., Langford, N.K., Nielsen, M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71(6), 062310 (2005)

    ADS  Google Scholar 

  26. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. arXiv preprint arXiv:quant-ph/9604024 (1996)

  27. Schumacher, B.: Sending entanglement through noisy quantum channels. Phys. Rev. A 54(4), 2614–2628 (1996)

    ADS  Google Scholar 

  28. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasi-distillation. Phys. Rev. A 60(3), 1888–1898 (1999)

    ADS  MathSciNet  Google Scholar 

  29. Mullar, A.: A simplified expression for quantum fidelity. J. Quantum Inf. 12(3), 45–56 (2024)

    Google Scholar 

  30. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)

    ADS  Google Scholar 

  31. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    ADS  MathSciNet  Google Scholar 

  32. Postler, L., Butt, F., Pogorelov, I., Marciniak, C.D., Sascha, B., Blatt, R., Schindler, P., Rispler, M., Müller, M., Monz, T.: Demonstration of fault-tolerant Steane quantum error correction. PRX Quantum 5(3), 030326 (2024)

    Google Scholar 

  33. Thakur, V.S., Kumar, A., Dev, K.: Quantum error correction in green communications: towards sustainable quantum networks. IEEE Trans. Green Commun. Netw. 2025, 1–1 (2025). https://doi.org/10.1109/TGCN.2025.3544274

    Article  Google Scholar 

  34. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012)

    ADS  Google Scholar 

  35. Temme, K., Bravyi, S., Gambetta, J.M.: Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119(18), 180509 (2017)

    ADS  MathSciNet  Google Scholar 

  36. Bravyi, S., Hastings, M.B., Michalakis, S.: High-threshold and low-overhead fault-tolerant quantum memory. Nature 627, 778 (2020)

    Google Scholar 

  37. Xu, H., Li, Y., Zhang, M., Zhang, J.: Non-Abelian braiding of Fibonacci anyons with a superconducting processor. Nat. Phys. 20(12), 1469–1474 (2024)

    Google Scholar 

  38. Bluvstein, D., Schwartz, C., Duan, Y., Monroe, C.: Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–63 (2023)

    Google Scholar 

  39. Schumacher, B.: Quantum coding. Phys. Rev. A 51(4), 2738–2747 (1995)

    ADS  MathSciNet  Google Scholar 

  40. Gottesman, D.: Stabilizer codes and quantum error correction. arXiv preprint arXiv:quant-ph/9705052 (1997)

  41. Ahadiansyah, D., Anwar, K., Budiman, G.: Investigation on Shor codes as degenerate codes but correct all single quantum errors. In: 2022 IEEE Symposium on Future Telecommunication Technologies (SOFTT), pp. 1–7 (2022)

  42. Google Quantum AI Collaborators: Quantum error correction below the surface code threshold. Nature 638, 920–926 (2025). https://doi.org/10.1038/s41586-024-08449-y

  43. Bausch, J., Senior, A.W., Heras, F.J.H., Edlich, T., Davies, A., Newman, M., Jones, C., Satzinger, K., Niu, M.Y., Blackwell, S., Holland, G., Kafri, D., Atalaya, J., Gidney, C., Hassabis, D., Boixo, S., Neven, H., Kohli, P.: Learning high-accuracy error decoding for quantum processors. Nature 639, 102–110 (2024). https://doi.org/10.1038/s41586-024-08148-8

    Article  Google Scholar 

  44. Shaw, M.H., Terhal, B.M.: Lowering connectivity requirements for bivariate bicycle codes using morphing circuits. Phys. Rev. Lett. 134(9), 090602 (2025)

    MathSciNet  Google Scholar 

  45. Wolanski, S., Barber, B.: Ambiguity clustering: an accurate and efficient decoder for qLDPC codes. arXiv preprint arXiv:2406.14527 (2024)

  46. Miao, S., Mandelbaum, J., Jäkel, H., Schmalen, L.: A joint code and belief propagation decoder design for quantum LDPC codes. arXiv preprint arXiv:2401.06874 (2024)

  47. Voss, L., Xian, S.J., Haug, T., Bharti, K.: Multivariate bicycle codes. arXiv preprint arXiv:2406.19151 (2024)

  48. Knill, E., Laflamme, R., Zurek, W.H.: Resilient quantum computation: error models and thresholds. arXiv preprint arXiv:quant-ph/9702058 (1997)

  49. Cai, Z.-W., Huo, Y., Zhang, Y., Yung, M.-H.: Quantum error mitigation. Nat. Rev. Phys. 5(5), 279–296 (2023)

    Google Scholar 

  50. Kandala, A., Temme, K., Córcoles, A.D., Mezzacapo, A., Chow, J.M., Gambetta, J.M.: Error mitigation extends the computational reach of a noisy quantum processor. Nature 567(7749), 491–495 (2019)

    ADS  Google Scholar 

  51. Zhang, F., Qi, X.: Quantum interpolation inequality and its application in entanglement detection. J. Phys. A Math. Theor. 44(8), 085308 (2011)

    ADS  Google Scholar 

  52. Li, W., Deng, D.L.: Extracting reliable quantum outputs for noisy devices. Nat. Comput. Sci. 4(11), 811–812 (2024)

    ADS  Google Scholar 

  53. Schatzki, L., Youssry, A., Lubasch, M.: RobustState: boosting fidelity of quantum state preparation via noise-aware variational training. arXiv preprint arXiv:2109.07584 (2021)

  54. Kim, I., Sekino, Y.: Quantum circuit engineering for correcting coherent noise. Phys. Rev. A 105(2), 022428 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Singh Thakur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, V.S., Kumar, A. & Dev, K. Refining quantum fidelity: approaches in quantum error correction. Quantum Inf Process 24, 190 (2025). https://doi.org/10.1007/s11128-025-04809-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-025-04809-3

Keywords