这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Quantum secret sharing scheme based on prime dimensional locally distinguishable states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we first study the maximally commutative set in prime dimensional systems, which is a set of generalized Pauli matrices, and it can be used to detect the local discrimination of generalized Bell states. We give a simple characterization of prime dimensional maximally commutative sets, that is, a subset of a set of generalized Bell states, whose second subscript is a multiple of the first subscript. Furthermore, some sets of generalized Bell states which can be locally distinguishable by one-way local operation and classical communication (LOCC) are constructed by using the structural characteristics of prime dimensional maximally commutative sets. Based on these distinguishable generalized Bell states, we propose a (tn)-threshold quantum secret sharing scheme. Compared with the existing quantum secret sharing scheme, it can be found that there are enough distinguishable states to encode classical information in our scheme, the dealer only needs to send entangled particles once to make the participants get their secret share, which makes the secret sharing process more efficient than the existing schemes. Finally, we prove that this protocol is secure under dishonest participant attack, interception-and-resend attack and entangle-and-measure attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Math. Struct. Computer Sci. 17(6), 1115–1115 (2002)

    MathSciNet  Google Scholar 

  2. Hashimoto, T., Horibe, M., Hayashi, A.: Simple criterion for local distinguishability of generalized Bell states in prime dimension. Phys. Rev. A 103, 052429 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  3. Li, M.S., Shi, F., Wang, Y.L.: Local discrimination of generalized Bell states via commutativity. Phys. Rev. A 105, 032455 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  4. Yang, Y.H., Yuan, J.T., Wang, C.T., Geng, S.J.: Locally distinguishable maximally entangled states by two-way locc. Quantum Inf. Process 20(18) (2021)

  5. Zaman, F., Hong, E., Shin, H.: Local distinguishability of bell-type states. Quantum Inf. Process 20, 174 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  6. Ghosh, Sibasish, Kar, Guruprasad, Roy, Anirban, Sen, Aditi, Sen(De), Ujjwal: Distinguishability of Bell States. Phys. Rev. Lett. 87, 277902 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  7. Owari, M., Hayashi, M.: Local copying and local discrimination as a study for nonlocality of a set of states. Phys. Rev. A 74(3), 032108–032108 (2005)

    Article  ADS  Google Scholar 

  8. Nathanson, M.: Distinguishing bipartitite orthogonal states using locc: Best and worst cases - art. no. 062103. J. Math. Physi. 46(6), 062103 (2005)

  9. Ghosh, S., Kar, G., Roy, A., Sarkar, D.: Distinguishability of maximally entangled states. Phys. Rev. A 70(2), 690–690 (2004)

    Article  MathSciNet  Google Scholar 

  10. Wang, Y.L., Li, M.S., Fei, S.M., Zheng, Z.J.: The local distinguishability of any three generalized bell states. Quantum Inf. Process. 16(5), 126 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. Tian, G.J., Yu, S.X., Gao, F., Wen, Q.Y.: Classification of locally distinguishable and indistinguishable sets of maximally entangled states. Phys. Rev. A 94, 052315 (2016)

    Article  ADS  Google Scholar 

  12. Singal, Tanmay, Rahaman, Ramij, Ghosh, Sibasish, Kar, Guruprasad: Necessary condition for local distinguishability of maximally entangled states: Beyond orthogonality preservation. Phys. Rev. A 96, 042314 (2017)

    Article  ADS  Google Scholar 

  13. Fan, Heng: Distinguishability and Indistinguishability by Local Operations and Classical Communication. Phys. Rev. Lett. 92, 177905 (2004)

    Article  ADS  Google Scholar 

  14. Tian, G.J., Yu, S.X., Gao, F., Wen, Q.Y., Oh, C.H.: Local discrimination of qudit lattice states via commutativity. Phys. Rev. A 92, 042320 (2015)

    Article  ADS  Google Scholar 

  15. Wang, Y.L., Li, M.S., Xiong, Z.X.: One-way local distinguishability of generalized Bell states in arbitrary dimension. Phys. Rev. A 99, 022307 (2019)

    Article  ADS  Google Scholar 

  16. Rahaman, Ramij, Parker, Matthew G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91, 022330 (2015)

    Article  ADS  Google Scholar 

  17. Bai, C.M., Zhang, S.J., Liu, L.: \((t, n)\) -Threshold quantum secret sharing based on one-way local distinguishability. IEEE Access 7, 147256–147265 (2019)

    Article  Google Scholar 

  18. Bai, C.M., Zhang, S., Liu, L.: Quantum secret sharing for a class of special hypergraph access structures. Quantum Inf. Process 21, 119 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  19. Li, L., Li, Z.: An efficient quantum secret sharing scheme based on restricted threshold access structure. Entropy 25(2), 265 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  20. Yan, C.H., Li, Z.H., Liu, L., Han, Z.L.: Layered quantum key distribution protocol with a small number of participants. J. Softw. 34(6), 2878–2891 (2023)

    Google Scholar 

  21. Wang, J.T., Pan, Y., Liu, W., Li, Z.Z.: Quantum sealed-bid auction protocol based on quantum secret sharing. Quantum Inf. Process 21, 278 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  22. Fan, Heng: Distinguishability and indistinguishability by local operations and classical communication. Phys. Rev. Lett. 92, 177905 (2004)

    Article  ADS  Google Scholar 

  23. Baumgartner, B., Hiesmayr, B.C., Narnhofer, H.: State space for two qutrits has a phase space structure in its core. Phys. Rev. A 74, 032327 (2006)

    Article  ADS  Google Scholar 

  24. Bertlmann, R.A., Krammer, P.: Bloch vectors for Qudits. J. Phys. A 41(23), 235303 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21(11), 2097–2097 (2004)

    Article  ADS  Google Scholar 

  26. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with bell states and local unitary operations. Chinese Phys. Lett. 22(5), 1049–1052 (2005)

    Article  ADS  Google Scholar 

  27. Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23, 2896–2899 (2006)

    Article  ADS  Google Scholar 

  28. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K., Li, Z., Wei, X. et al. Quantum secret sharing scheme based on prime dimensional locally distinguishable states. Quantum Inf Process 23, 307 (2024). https://doi.org/10.1007/s11128-024-04496-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11128-024-04496-6

Keywords