这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Graph knowledge distillation-guided few-shot learning for hyperspectral image classification

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Hyperspectral image classification focuses on accurately classifying each pixel in hyperspectral images using partially labeled data, which is crucial for the precise identification and differentiation of various land cover types. In recent years, Graph Neural Networks (GNNs)-based hyperspectral image classification have exhibited exceptional performance when a substantial number of labeled samples are available. However, the acquisition of annotation data is often a labor-intensive and time-consuming process in practical scenarios. When the number of available labeled samples is limited, the model’s performance can easily degrade. To tackle the above issue, a Graph Knowledge Distillation-guided Few-Shot Learning method (GKDFSL) is proposed for hyperspectral image classification. Specifically, for a comprehensive modeling of hyperspectral image features, a graph structure is first constructed from segmented superpixels. Subsequently, graph augmentation is performed to generate two separate graph perspectives. Teacher and student GNNs are then applied to each perspective to extract superpixel features. Knowledge distillation techniques are then utilized to transmit diverse knowledge learned by the teacher GNNs to the student GNNs, thereby enabling the student model to effectively capture the latent associations between unlabeled superpixels. To further enhance the model’s understanding and learning capabilities, GNNs are integrated with the mean teacher framework to improve generalization. Moreover, ensemble learning is introduced to bolster the robustness of the method. Extensive experiments conducted on four benchmark datasets have demonstrated that the proposed method surpasses other competitive approaches in both classification accuracy and generalization capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated and analyzed in this study are available at: https://www.ehu.eus/ccwintco/index.php/Hyperspectral Remote Sensing Scenes.

References

  1. Bedini E (2017) The use of hyperspectral remote sensing for mineral exploration: a review. J Hyperspectr Remote Sens 7(4):189–211

    Article  Google Scholar 

  2. Stuart MB, McGonigle AJ, Willmott JR (2019) Hyperspectral imaging in environmental monitoring: a review of recent developments and technological advances in compact field deployable systems. Sensors 19(14):3071

    Article  Google Scholar 

  3. Rao NR, Garg PK, Ghosh SK (2007) Development of an agricultural crops spectral library and classification of crops at cultivar level using hyperspectral data. Precis Agric 8:173–185

    Article  Google Scholar 

  4. Hu W, Huang Y, Wei L, Zhang F, Li H (2015) Deep convolutional neural networks for hyperspectral image classification. J Sensors 2015(1):258619

    Google Scholar 

  5. Leng J, Li T, Bai G, Dong Q, Dong H (2016) Cube-cnn-svm: a novel hyperspectral image classification method. In: 2016 IEEE 28th International conference on tools with Artificial Intelligence (ICTAI), pp. 1027–1034. IEEE, New York

  6. Li T, Zhang J, Zhang Y (2014) Classification of hyperspectral image based on deep belief networks. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 5132–5136. IEEE, New York

  7. Zhong P, Gong Z, Schönlieb C (2016) A diversified deep belief network for hyperspectral image classification. Int Arch Photogramm Remote Sens Spat Inf Sci 41:443–449

    Article  Google Scholar 

  8. He W, Huang W, Liao S, Xu Z, Yan J (2022) Csit: a multiscale vision transformer for hyperspectral image classification. IEEE J Select Topics Appl Earth Observat Remote Sens 15:9266–9277

    Article  Google Scholar 

  9. Scheibenreif L, Mommert M, Borth D (2023) Masked vision transformers for hyperspectral image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2166–2176

  10. Mou L, Ghamisi P, Zhu XX (2017) Deep recurrent neural networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 55(7):3639–3655

    Article  Google Scholar 

  11. Zhang X, Sun Y, Jiang K, Li C, Jiao L, Zhou H (2018) Spatial sequential recurrent neural network for hyperspectral image classification. IEEE J Selected Topics Appl Earth Observat Remote Sens 11(11):4141–4155

    Article  Google Scholar 

  12. Zhu L, Chen Y, Ghamisi P, Benediktsson JA (2018) Generative adversarial networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 56(9):5046–5063

    Article  Google Scholar 

  13. Wang X, Tan K, Du Q, Chen Y, Du P (2019) Caps-triplegan: Gan-assisted capsnet for hyperspectral image classification. IEEE Trans Geosci Remote Sens 57(9):7232–7245

    Article  Google Scholar 

  14. Preethi M, Velayutham C, Arumugaperumal S (2023) A novel rgb channel assimilation for hyperspectral image classification using 3d-convolutional neural network with bi-long short-term memory. Int J Comp Sci Netw Security 23(3):177–186

    Google Scholar 

  15. Mei S, Li X, Liu X, Cai H, Du Q (2021) Hyperspectral image classification using attention-based bidirectional long short-term memory network. IEEE Trans Geosci Remote Sens 60:1–12

    Google Scholar 

  16. Mei X, Pan E, Ma Y, Dai X, Huang J, Fan F, Du Q, Zheng H, Ma J (2019) Spectral-spatial attention networks for hyperspectral image classification. Remote Sens 11(8):963

    Article  Google Scholar 

  17. Sun H, Zheng X, Lu X, Wu S (2019) Spectral-spatial attention network for hyperspectral image classification. IEEE Trans Geosci Remote Sens 58(5):3232–3245

    Article  Google Scholar 

  18. Zhang H, Meng L, Wei X, Tang X, Tang X, Wang X, Jin B, Yao W (2019) 1d-convolutional capsule network for hyperspectral image classification. arXiv preprint arXiv:1903.09834

  19. Wang Q, Yuan Z, Du Q, Li X (2018) Getnet: a general end-to-end 2-d cnn framework for hyperspectral image change detection. IEEE Trans Geosci Remote Sens 57(1):3–13

    Article  Google Scholar 

  20. Hamida AB, Benoit A, Lambert P, Amar CB (2018) 3-d deep learning approach for remote sensing image classification. IEEE Trans Geosci Remote Sens 56(8):4420–4434

    Article  Google Scholar 

  21. Zhong Z, Li J, Luo Z, Chapman M (2017) Spectral-spatial residual network for hyperspectral image classification: a 3-d deep learning framework. IEEE Trans Geosci Remote Sens 56(2):847–858

    Article  Google Scholar 

  22. Li Y, Yang X, Tang D, Zhou Z (2024) Rdtn: residual densely transformer network for hyperspectral image classification. Expert Syst Appl 250:123939

    Article  Google Scholar 

  23. Li Z, Xue Z, Xu Q, Zhang L, Zhu T, Zhang M (2023) SPFormer: Self-pooling transformer for few-shot hyperspectral image classification. IEEE Trans Geosci Remote Sens 62:1–19

    Google Scholar 

  24. Zhang Z, Ding Y, Zhao X, Siye L, Yang N, Cai Y, Zhan Y (2023) Multireceptive field: an adaptive path aggregation graph neural framework for hyperspectral image classification. Expert Syst Appl 217:119508

    Article  Google Scholar 

  25. Wang D, Du B, Zhang L (2023) Spectral-spatial global graph reasoning for hyperspectral image classification. IEEE Trans Neural Netw Learn Syst 35(9):12924–12937

    Article  Google Scholar 

  26. Liu Q, Xiao L, Yang J, Wei Z (2020) Cnn-enhanced graph convolutional network with pixel-and superpixel-level feature fusion for hyperspectral image classification. IEEE Trans Geosci Remote Sens 59(10):8657–8671

    Article  Google Scholar 

  27. Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, He Q (2020) A comprehensive survey on transfer learning. Proc IEEE 109(1):43–76

    Article  Google Scholar 

  28. Yang J, Zhao Y, Chan JC-W, Yi C (2016) Hyperspectral image classification using two-channel deep convolutional neural network. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5079–5082. IEEE, New York

  29. Liu B, Yu X, Yu A, Zhang P, Wan G, Wang R (2018) Deep few-shot learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 57(4):2290–2304

    Article  Google Scholar 

  30. Hu L, He W, Zhang L, Zhang H (2023) Cross-domain meta-learning under dual adjustment mode for few-shot hyperspectral image classification. IEEE Trans Geosci Remote Sens

  31. Liu H, Zhang M, Di Z, Gong M, Gao T, Qin AK (2024) A hybrid multitask learning network for hyperspectral image classification with few labels. IEEE Trans Geosci Remote Sens 62:1–16

    Google Scholar 

  32. Makantasis K, Karantzalos K, Doulamis A, Doulamis N (2015) Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4959–4962. IEEE, New York

  33. Liu B, Yu X, Zhang P, Yu A, Fu Q, Wei X (2017) Supervised deep feature extraction for hyperspectral image classification. IEEE Trans Geosci Remote Sens 56(4):1909–1921

    Article  Google Scholar 

  34. Li S, Song W, Fang L, Chen Y, Ghamisi P, Benediktsson JA (2019) Deep learning for hyperspectral image classification: an overview. IEEE Trans Geosci Remote Sens 57(9):6690–6709

    Article  Google Scholar 

  35. Pal D, Bundele V, Banerjee B, Jeppu Y (2021) Spn: stable prototypical network for few-shot learning-based hyperspectral image classification. IEEE Geosci Remote Sens Lett 19:1–5

    Article  Google Scholar 

  36. Xi B, Li J, Li Y, Song R, Hong D, Chanussot J (2022) Few-shot learning with class-covariance metric for hyperspectral image classification. IEEE Trans Image Process 31:5079–5092

    Article  Google Scholar 

  37. Li Y, He J, Liu H, Zhang Y, Li Z (2025) Semantic guided prototype learning for cross-domain few-shot hyperspectral image classification. Expert Syst Appl 260:125453

    Article  Google Scholar 

  38. Zhang C, Yue J, Qin Q (2020) Global prototypical network for few-shot hyperspectral image classification. IEEE J Selected Topics Appl Earth Observat Remote Sens 13:4748–4759

    Article  Google Scholar 

  39. Xi B, Li J, Li Y, Song R, Shi Y, Liu S, Du Q (2020) Deep prototypical networks with hybrid residual attention for hyperspectral image classification. IEEE J Selected Topics Appl Earth Observat Remote Sens 13:3683–3700

    Article  Google Scholar 

  40. Gao K, Liu B, Yu X, Qin J, Zhang P, Tan X (2020) Deep relation network for hyperspectral image few-shot classification. Remote Sens 12(6):923

    Article  Google Scholar 

  41. Cao M, Zhao G, Dong A, Lv G, Guo Y, Dong X (2023) Few-shot hyperspectral image classification based on cross-domain spectral semantic relation transformer. In: 2023 IEEE International Conference on Image Processing (ICIP), pp. 1375–1379. IEEE, New York

  42. Miao J, Wang B, Wu X, Zhang L, Hu B, Zhang JQ (2019) Deep feature extraction based on siamese network and auto-encoder for hyperspectral image classification. In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 397–400. IEEE, New York

  43. Xia M, Yuan G, Yang L, Xia K, Ren Y, Shi Z, Zhou H (2023) Few-shot hyperspectral image classification based on convolutional residuals and sam siamese networks. Electronics 12(16):3415

    Article  Google Scholar 

  44. Wang W, Chen Y, He X, Li Z (2021) Soft augmentation-based siamese cnn for hyperspectral image classification with limited training samples. IEEE Geosci Remote Sens Lett 19:1–5

    Google Scholar 

  45. Gao H, Zhang J, Cao X, Chen Z, Zhang Y, Li C (2021) Dynamic data augmentation method for hyperspectral image classification based on siamese structure. IEEE J Selected Topics Appl Earth Observat Remote Sens 14:8063–8076

    Article  Google Scholar 

  46. Huang L, Chen Y (2020) Dual-path siamese cnn for hyperspectral image classification with limited training samples. IEEE Geosci Remote Sens Lett 18(3):518–522

    Article  Google Scholar 

  47. Jia S, Jiang S, Lin Z, Xu M, Sun W, Huang Q, Zhu J, Jia X (2021) A semisupervised siamese network for hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–17

    Google Scholar 

  48. Xue Z, Zhou Y, Du P (2022) S3net: spectral-spatial siamese network for few-shot hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–19

    Google Scholar 

  49. Li Z, Xia S, Yue J, Fang L (2025) HyperKD: Lifelong hyperspectral image classification with cross-spectral-spatial knowledge distillation. IEEE Trans Geosci Remote Sens 63:1–17

    Google Scholar 

  50. Feng S, Zhang H, Xi B, Zhao C, Li Y, Chanussot J (2024) Cross-domain few-shot learning based on decoupled knowledge distillation for hyperspectral image classification. IEEE Trans Geosci Remote Sens 62:1–14

    Google Scholar 

  51. Wu H, Xue Z, Zhou S, Su H (2025) Overcoming granularity mismatch in knowledge distillation for few-shot hyperspectral image classification. IEEE Trans Geosci Remote Sens 63:1–17

    Google Scholar 

  52. Tarvainen A, Valpola H (2017) Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. Adv Neural Inform Process Syst, p. 30

  53. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012) Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

    Article  Google Scholar 

  54. Hinton G (2015) Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531

  55. Ma Y, Chen Y, Akata Z (2022) Distilling knowledge from self-supervised teacher by embedding graph alignment. arXiv preprint arXiv:2211.13264

  56. Jia S, Jiang S, Zhang S, Xu M, Jia X (2022) Graph-in-graph convolutional network for hyperspectral image classification. IEEE Trans Neural Netw Learn Syst 35(1):1157–1171

    Article  Google Scholar 

  57. Zhao Z, Qian P, Yang X, Zeng Z, Guan C, Tam WL, Li X (2023) Semignn-ppi: self-ensembling multi-graph neural network for efficient and generalizable protein–protein interaction prediction. arXiv preprint arXiv:2305.08316

Download references

Acknowledgements

This study is supported by National Natural Science Foundation of China (62441701), Natural Science Foundation of Gansu Province (23JRRA683), Northwest Normal University Young Teachers Research Capacity Promotion Plan (NWNU-LKQN2023-12) and Graduate Research Support Project of Northwest Normal University (2025CXZX407).

Author information

Authors and Affiliations

Authors

Contributions

Xiaolong Li drafted the manuscript and developed the methodology. Huifang Ma conceptualized the study, acquired funding, and contributed to manuscript review and editing. Shuheng Guo, Di Zhang, and Zhixin Li supervised the research and validated the results. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Huifang Ma.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ma, H., Guo, S. et al. Graph knowledge distillation-guided few-shot learning for hyperspectral image classification. J Supercomput 81, 1181 (2025). https://doi.org/10.1007/s11227-025-07653-5

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11227-025-07653-5

Keywords