这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Spectral radius and k-factor-critical graphs

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

For a nonnegative integer k, a graph G is said to be k-factor-critical if \(G-Q\) admits a perfect matching for any \(Q\subseteq V(G)\) with \(|Q|=k\). In this article, we prove spectral radius conditions for the existence of k-factor-critical graphs. Our result generalizes one previous result on perfect matchings of graphs. Furthermore, we claim that the bounds on spectral radius in Theorem 3.1 are sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

My manuscript has no associated data.

References

  1. Ananchuen N, Plummer M (2007) 3-Factor-criticality in domination critical graphs. Discrete Math 307:3006–3015

    Article  MathSciNet  MATH  Google Scholar 

  2. Ananchuen N, Saito A (2003) Factor criticality and complete closure of graphs. Discrete Math 265:13–21

    Article  MathSciNet  MATH  Google Scholar 

  3. Bapat R (2018) Graphs and matrices, 2nd edn. Hindustan Book Agency, New Delhi

    MATH  Google Scholar 

  4. Brouwer A, Haemers W (2005) Eigenvalues and perfect matchings. Linear Algebra Appl 395:155–162

    Article  MathSciNet  MATH  Google Scholar 

  5. Dai G, Hu Z (2020) \(P_3\)-factors in the square of a tree. Graphs Combin 36:1913–1925

    Article  MathSciNet  MATH  Google Scholar 

  6. Egawa Y, Furuya M (2016) Perfect matchings avoiding several independent edges in a star-free graph. J Graph Theory 82:33–44

    Article  MathSciNet  MATH  Google Scholar 

  7. Enomoto H, Plummer M, Saito A (1999) Neighborhood unions and factor critical graphs. Discrete Math 205:217–220

    Article  MathSciNet  MATH  Google Scholar 

  8. Favaron O (1996) On \(k\)-factor-critical graphs. Discuss Math Graph Theory 16:41–51

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao W, Chen Y, Wang Y (2021) Network vulnerability parameter and results on two surfaces. Int J Intell Syst 36:4392–4414

    Article  MATH  Google Scholar 

  10. Gao W, Wang W (2021) Tight binding number bound for \(P_{\ge 3}\)-factor uniform graphs. Inform Process Lett 172:106162

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao W, Wang W, Chen Y (2022) Tight isolated toughness bound for fractional \((k, n)\)-critical graphs. Discrete Appl Math 322:194–202

    Article  MathSciNet  MATH  Google Scholar 

  12. Gu X, Liu M (2022) A tight lower bound on the matching number of graphs via Laplacian eigenvalues. Eur J Combin 101:103468

    Article  MathSciNet  MATH  Google Scholar 

  13. Johansson R (1998) An El-Zahár type condition ensuring path-factors. J Graph Theory 28:39–42

    Article  MathSciNet  MATH  Google Scholar 

  14. Li S, Miao S (2021) Characterizing \(P_{\ge 2}\)-factor and \(P_{\ge 2}\)-factor covered graphs with respect to the size or the spectral radius. Discrete Math 344:112588

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu H (2022) Binding number for path-factor uniform graphs. Proc Rom Acad Ser A Math Phys Tech Sci Inf Sci 23(1):25–32

    MathSciNet  MATH  Google Scholar 

  16. Liu H, Pan X (2024) Independence number and minimum degree for path-factor critical uniform graphs. Discrete Appl Math 359:153–158

    Article  MathSciNet  MATH  Google Scholar 

  17. Lv X (2023) A degree condition for graphs being fractional \((a, b, k)\)-critical covered. Filomat 37(10):3315–3320

    Article  MathSciNet  MATH  Google Scholar 

  18. Suil O (2021) Spectral radius and matchings in graphs. Linear Algebra Appl 614:316–324

    Article  MathSciNet  MATH  Google Scholar 

  19. Plummer M, Saito A (2000) Closure and factor-critical graphs. Discrete Math 215:171–179

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang T, Yu Q (2010) A conjecture on \(k\)-factor-critical and 3-\(\gamma\)-critical graphs. Sci China Math 53(5):1385–1391

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu J (2024) A sufficient condition for the existence of fractional \((g, f, n)\)-critical covered graphs. Filomat 38(6):2177–2183

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu J (2024) Characterizing spanning trees via the size or the spectral radius of graphs. Aequationes Math 98(6):1441–1455

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu J (2022) Path-factor critical covered graphs and path-factor uniform graphs. RAIRO Oper Res 56(6):4317–4325

    Article  MathSciNet  MATH  Google Scholar 

  24. You L, Yang M, So W, Xi W (2019) On the spectrum of an equitable quotient matrix and its application. Linear Algebra Appl 577:21–40

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhai S, Wei E, Zhang F (2022) The Characterization of \(p\)-factor-critical graphs. Acta Math Appl Sin Engl Ser 38(1):154–158

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou S (2022) A neighborhood union condition for fractional \((a, b, k)\)-critical covered graphs. Discrete Appl Math 323:343–348

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhou S (2023) Path factors and neighborhoods of independent sets in graphs. Acta Math Appl Sin Engl Ser 39(2):232–238

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou S (2023) Some results on path-factor critical avoidable graphs. Discuss Math Graph Theory 43(1):233–244

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhou S, Bian Q, Sun Z (2023) Two sufficient conditions for component factors in graphs. Discuss Math Graph Theory 43(3):761–766

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhou S, Pan Q, Xu L (2023) Isolated toughness for fractional \((2, b, k)\)-critical covered graphs. Proc Rom Acad Ser A Math Phys Tech Sci Inf Sci 24(1):11–18

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou S, Pan Q, Xu Y (2024) A new result on orthogonal factorizations in networks. Filomat 38(20):7235–7244

    MathSciNet  MATH  Google Scholar 

  32. Zhou S, Sun Z, Bian Q (2023) Isolated toughness and path-factor uniform graphs (II). Indian J Pure Appl Math 54(3):689–696

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhou S, Sun Z, Liu H (2023) Some sufficient conditions for path-factor uniform graphs. Aequationes Math 97(3):489–500

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhou S, Sun Z, Liu H (2024) Distance signless Laplacian spectral radius for the existence of path-factors in graphs. Aequationes Math 98(3):727–737

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhou S, Xu Y, Sun Z (2024) Some results about star-factors in graphs. Contrib Discrete Math 19(3):154–162

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhou S, Wu J (2024) Spanning \(k\)-trees and distance spectral radius in graphs. J Supercomput 80(16):23357–23366

    Article  MATH  Google Scholar 

  37. Zhou S, Zhang Y, Liu H (2024) Some properties of \((a, b, k)\)-critical graphs. Filomat 38(16):5885–5894

    MathSciNet  MATH  Google Scholar 

  38. Zhou S, Zhang Y, Sun Z (2024) The \(A_{\alpha }\)-spectral radius for path-factors in graphs. Discrete Math 347(5):113940

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their valuable comments, suggestions, and corrections which improve the presentation of the original manuscript. This work was supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20241949). Project ZR2023MA078 supported by Shandong Provincial Natural Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuli Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Sun, Z. & Zhang, Y. Spectral radius and k-factor-critical graphs. J Supercomput 81, 456 (2025). https://doi.org/10.1007/s11227-024-06902-3

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11227-024-06902-3

Keywords

Mathematics Subject Classification