这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

The Impact of the Transport of Chemicals and Electronic Screening on Helioseismic and Neutrino Observations in Solar Models

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The transport of chemical elements in stellar interiors is one of the greatest sources of uncertainties of solar and stellar modelling. The Sun, with its exquisite spectroscopic, helioseismic and neutrino observations, offers a prime environment to test the prescriptions used for both microscopic and macroscopic transport processes. We study in detail the impact of various formalisms for atomic diffusion on helioseismic constraints in both CLES (Scuflaire et al. 2008a) and Cesam2k20 (Morel and Lebreton 2008; Marques et al. 2013; Deal et al. 2018) models and compare both codes in detail. Moreover, due to the inability of standard models using microscopic diffusion to reproduce light element depletion in the Sun (Li, Be), another efficient process must be included to reproduce these constraints (rotation-induced: Eggenberger et al. 2022, overshooting -or penetrative convection- below the convective envelope: Thévenin et al. 2017, or ad hoc turbulence: Lebreton and Maeder 1987; Richer, Michaud, and Turcotte 2000). However, introducing such an extra mixing leads to issues with the CNO neutrino fluxes (see Buldgen et al. 2023), which seem to be systematically lower than the Borexino observations (Appel et al. 2022). Another key aspect to consider when reconciling models with neutrino fluxes is the impact of electronic screening (Mussack and Däppen 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data Availability

All observational data are public and accessible from the references mentioned in the text.

Code Availability

The Cesam2k20 stellar evolution code and OSM code are publicly available and can be accessed from this website: https://www.ias.u-psud.fr/cesam2k20/home.html.

Notes

  1. https://www.ias.u-psud.fr/cesam2k20/.

References

  • Alecian, G., LeBlanc, F.: 2020, An improved parametric method for evaluating radiative accelerations in stellar interiors. Mon. Not. R. Astron. Soc. 498, 3420. DOI. ADS.

    Article  ADS  Google Scholar 

  • Amarsi, A.M., Ogneva, D., Buldgen, G., Grevesse, N., Zhou, Y., Barklem, P.S.: 2024, The solar beryllium abundance revisited with 3D non-LTE models. Astron. Astrophys. 690, A128. DOI. ADS.

    Article  Google Scholar 

  • Angulo, C.: 1999, NACRE: a European compilation of reaction rates for astrophysics. In: American Institute of Physics Conference Series, American Institute of Physics Conference Series 495, 365. DOI. ADS.

    Chapter  Google Scholar 

  • Appel, S., Bagdasarian, Z., Basilico, D., Bellini, G., Benziger, J., Biondi, R., Caccianiga, B., Calaprice, F., Caminata, A., Cavalcante, P., Chepurnov, A., D’Angelo, D., Derbin, A., Di Giacinto, A., Di Marcello, V., Ding, X.F., Di Ludovico, A., Di Noto, L., Drachnev, I., Franco, D., Galbiati, C., Ghiano, C., Giammarchi, M., Goretti, A., Göttel, A.S., Gromov, M., Guffanti, D., Ianni, A., Ianni, A., Jany, A., Kobychev, V., Korga, G., Kumaran, S., Laubenstein, M., Litvinovich, E., Lombardi, P., Lomskaya, I., Ludhova, L., Lukyanchenko, G., Machulin, I., Martyn, J., Meroni, E., Miramonti, L., Misiaszek, M., Muratova, V., Nugmanov, R., Oberauer, L., Orekhov, V., Ortica, F., Pallavicini, M., Papp, L., Pelicci, L., Penek, Ö., Pietrofaccia, L., Pilipenko, N., Pocar, A., Raikov, G., Ranalli, M.T., Ranucci, G., Razeto, A., Re, A., Redchuk, M., Rossi, N., Schönert, S., Semenov, D., Settanta, G., Skorokhvatov, M., Singhal, A., Smirnov, O., Sotnikov, A., Tartaglia, R., Testera, G., Unzhakov, E., Villante, F.L., Vishneva, A., Vogelaar, R.B., von Feilitzsch, F., Wojcik, M., Wurm, M., Zavatarelli, S., Zuber, K., Zuzel, G., Borexino Collaboration: 2022, Improved measurement of solar neutrinos from the carbon-nitrogen-oxygen cycle by Borexino and its implications for the standard solar model. Phys. Rev. Lett. 129, 252701. DOI. ADS.

    Article  ADS  Google Scholar 

  • Asplund, M., Amarsi, A.M., Grevesse, N.: 2021, The chemical make-up of the Sun: a 2020 vision. Astron. Astrophys. 653, A141. DOI. ADS.

    Article  ADS  Google Scholar 

  • Asplund, M., Grevesse, N., Sauval, A.J., Scott, P.: 2009, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481. DOI. ADS.

    Article  ADS  Google Scholar 

  • Baglin, A., Auvergne, M., Boisnard, L., Lam-Trong, T., Barge, P., Catala, C., Deleuil, M., Michel, E., Weiss, W.: 2006, CoRoT: a high precision photometer for stellar ecolution and exoplanet finding. In: 36th COSPAR Scientific Assembly 36, 3749. ADS.

    Google Scholar 

  • Basu, S., Antia, H.M.: 2008, Helioseismology and solar abundances. Phys. Rep. 457, 217. DOI. ADS.

    Article  ADS  Google Scholar 

  • Basu, S., Christensen-Dalsgaard, J., Chaplin, W.J., Elsworth, Y., Isaak, G.R., New, R., Schou, J., Thompson, M.J., Tomczyk, S.: 1997, Solar internal sound speed as inferred from combined BiSON and LOWL oscillation frequencies. Mon. Not. R. Astron. Soc. 292, 243. DOI. ADS.

    Article  ADS  Google Scholar 

  • Basu, S., Chaplin, W.J., Elsworth, Y., New, R., Serenelli, A.M.: 2009, Fresh insights on the structure of the solar core. Astrophys. J. 699, 1403. DOI. ADS.

    Article  ADS  Google Scholar 

  • Baturin, V.A., Ayukov, S.V., Gryaznov, V.K., Iosilevskiy, I.L., Fortov, V.E., Starostin, A.N.: 2013, The current version of the SAHA-S equation of state: improvement and perspective. In: Shibahashi, H., Lynas-Gray, A.E. (eds.) Progress in Physics of the Sun and Stars: A New Era in Helio- and Asteroseismology, Astronomical Society of the Pacific Conference Series 479, 11. ADS.

    Google Scholar 

  • Baturin, V.A., Däppen, W., Morel, P., Oreshina, A.V., Thévenin, F., Gryaznov, V.K., Iosilevskiy, I.L., Starostin, A.N., Fortov, V.E.: 2017, Equation of state SAHA-S meets stellar evolution code CESAM2k. Astron. Astrophys. 606, A129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Baturin, V.A., Oreshina, A.V., Buldgen, G., Ayukov, S.V., Gryaznov, V.K., Iosilevskiy, I.L., Noels, A., Scuflaire, R.: 2024, Heavy elements abundances inferred from the first adiabatic exponent in the solar envelope. Sol. Phys. 299, 142. DOI. ADS.

    Article  Google Scholar 

  • Baturin, V.A., Ayukov, S.V., Oreshina, A.V., Gorshkov, A.B., Gryaznov, V.K., Iosilevskiy, I.L., Däppen, W.: 2025, Hydrogen ionization inside the Sun. Sol. Phys. 300, 3. DOI. ADS.

    Article  Google Scholar 

  • Böhm-Vitense, E.: 1958, Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Mit 5 Textabbildungen. Z. Astrophys. 46, 108. ADS.

    ADS  Google Scholar 

  • Boothroyd, A.I., Sackmann, I.-J.: 2003, Our Sun. IV. The standard model and helioseismology: consequences of uncertainties in input physics and in observed solar parameters. Astrophys. J. 583, 1004. DOI. ADS.

    Article  ADS  Google Scholar 

  • Borucki, W.J., Koch, D., et al.: 2010, Kepler planet-detection mission: introduction and first results. Science 327, 977. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brown, L.S., Sawyer, R.F.: 1997, Nuclear reaction rates in a plasma. Rev. Mod. Phys. 69, 411. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brun, A.S., Antia, H.M., Chitre, S.M., Zahn, J.-P.: 2002, Seismic tests for solar models with tachocline mixing. Astron. Astrophys. 391, 725. DOI. ADS.

    Article  ADS  Google Scholar 

  • Buldgen, G., Salmon, S., Noels, A.: 2019, Progress in global helioseismology: a new light on the solar modelling problem and its implications for solar-like stars. Front. Astron. Space Sci. 6, 42. DOI. ADS.

    Article  ADS  Google Scholar 

  • Buldgen, G., Salmon, S.J.A.J., Godart, M., Noels, A., Scuflaire, R., Dupret, M.A., Reese, D.R., Colgan, J., Fontes, C.J., Eggenberger, P., Hakel, P., Kilcrease, D.P., Richard, O.: 2017, Inversions of the Ledoux discriminant: a closer look at the tachocline. Mon. Not. R. Astron. Soc. 472, L70. DOI. ADS.

    Article  ADS  Google Scholar 

  • Buldgen, G., Salmon, S.J.A.J., Noels, A., Scuflaire, R., Montalban, J., Baturin, V.A., Eggenberger, P., Gryaznov, V.K., Iosilevskiy, I.L., Meynet, G., Chaplin, W.J., Miglio, A., Oreshina, A.V., Richard, O., Starostin, A.N.: 2019, Combining multiple structural inversions to constrain the solar modelling problem. Astron. Astrophys. 621, A33. DOI. ADS.

    Article  Google Scholar 

  • Buldgen, G., Eggenberger, P., Noels, A., Scuflaire, R., Amarsi, A.M., Grevesse, N., Salmon, S.: 2023, Higher metal abundances do not solve the solar problem. Astron. Astrophys. 669, L9. DOI. ADS.

    Article  ADS  Google Scholar 

  • Buldgen, G., Noels, A., Baturin, V.A., Oreshina, A.V., Ayukov, S.V., Scuflaire, R., Amarsi, A.M., Grevesse, N.: 2024a, Helioseismic determination of the solar metal mass fraction. Astron. Astrophys. 681, A57. DOI. ADS.

    Article  ADS  Google Scholar 

  • Buldgen, G., Noels, A., Scuflaire, R., Amarsi, A.M., Grevesse, N., Eggenberger, P., Colgan, J., Fontes, C.J., Baturin, V.A., Oreshina, A.V., Ayukov, S.V., Hakel, P., Kilcrease, D.P.: 2024b, In-depth analysis of solar models with high-metallicity abundances and updated opacity tables. Astron. Astrophys. 686, A108. DOI. ADS.

    Article  ADS  Google Scholar 

  • Buldgen, G., Noels, A., Amarsi, A.M., Nandal, D., Pezzotti, C., Scuflaire, R., Deal, M., Grevesse, N.: 2025a, Constraints on the properties of macroscopic transport in the Sun from combined lithium and beryllium depletion. Astron. Astrophys. 694, A285. DOI. ADS.

    Article  Google Scholar 

  • Buldgen, G., Pain, J.-C., Cossé, P., Blancard, C., Gilleron, F., Pradhan, A.K., Fontes, C.J., Colgan, J., Noels, A., Christensen-Dalsgaard, J., Deal, M., Ayukov, S.V., Baturin, V.A., Oreshina, A.V., Scuflaire, R., Pinçon, C., Lebreton, Y., Corbard, T., Eggenberger, P., Hakel, P., Kilcrease, D.P.: 2025b, Helioseismic inference of the solar radiative opacity. Nat. Commun. 16, 693. DOI. https://cnrs.hal.science/hal-04915685.

    Article  Google Scholar 

  • Burgers, J.M.: 1969, Flow Equations for Composite Gases. ADS.

    Google Scholar 

  • Canuto, V.M., Goldman, I., Mazzitelli, I.: 1996, Stellar turbulent convection: a self-consistent model. Astrophys. J. 473, 550. DOI. ADS.

    Article  ADS  Google Scholar 

  • Canuto, V.M., Mazzitelli, I.: 1991, Stellar turbulent convection: a new model and applications. Astrophys. J. 370, 295. DOI. ADS.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J.: 2002, Helioseismology. Rev. Mod. Phys. 74, 1073. DOI. ADS.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J.: 2021, Solar structure and evolution. Living Rev. Sol. Phys. 18, 2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Gough, D.O., Knudstrup, E.: 2018, On the hydrostatic stratification of the solar tachocline. Mon. Not. R. Astron. Soc. 477, 3845. DOI. ADS.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Proffitt, C.R., Thompson, M.J.: 1993, Effects of diffusion on solar models and their oscillation frequencies. Astrophys. J. Lett. 403, L75. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cox, J.P., Giuli, R.T.: 1968, Principles of Stellar Structure. ADS.

    Google Scholar 

  • Däppen, W.: 2024, The current state of the controversy over screening in nuclear reactions. Sol. Phys. 299, 128. DOI. ADS.

    Article  Google Scholar 

  • Davies, G.R., Broomhall, A.M., Chaplin, W.J., Elsworth, Y., Hale, S.J.: 2014, Low-frequency, low-degree solar p-mode properties from 22 years of Birmingham solar oscillations network data. Mon. Not. R. Astron. Soc. 439, 2025. DOI. ADS.

    Article  ADS  Google Scholar 

  • Deal, M., Alecian, G., Lebreton, Y., Goupil, M.J., Marques, J.P., LeBlanc, F., Morel, P., Pichon, B.: 2018, Impacts of radiative accelerations on solar-like oscillating main-sequence stars. Astron. Astrophys. 618, A10. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dumont, T., Palacios, A., Charbonnel, C., Richard, O., Amard, L., Augustson, K., Mathis, S.: 2021, Lithium depletion and angular momentum transport in solar-type stars. Astron. Astrophys. 646, A48. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dziembowski, W.A., Pamyatnykh, A.A., Sienkiewicz, R.: 1990, Solar model from helioseismology and the neutrino flux problem. Mon. Not. R. Astron. Soc. 244, 542. ADS.

    ADS  Google Scholar 

  • Dzitko, H., Turck-Chieze, S., Delbourgo-Salvador, P., Lagrange, C.: 1995, The screened nuclear reaction rates and the solar neutrino puzzle. Astrophys. J. 447, 428. DOI. ADS.

    Article  ADS  Google Scholar 

  • Eggenberger, P., Buldgen, G., Salmon, S.J.A.J., Noels, A., Grevesse, N., Asplund, M.: 2022, The internal rotation of the Sun and its link to the solar Li and He surface abundances. Nat. Astron. 6, 788. DOI. ADS.

    Article  ADS  Google Scholar 

  • Farnir, M., Dupret, M.-A., Buldgen, G., Salmon, S.J.A.J., Noels, A., Pinçon, C., Pezzotti, C., Eggenberger, P.: 2020, Thorough characterisation of the 16 Cygni system. I. Forward seismic modelling with WhoSGlAd. Astron. Astrophys. 644, A37. DOI. ADS.

    Article  Google Scholar 

  • Ferguson, J.W., Alexander, D.R., Allard, F., Barman, T., Bodnarik, J.G., Hauschildt, P.H., Heffner-Wong, A., Tamanai, A.: 2005, Low-temperature opacities. Astrophys. J. 623, 585. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fiorentini, G., Ricci, B., Villante, F.L.: 2001, Helioseismology and screening of nuclear reactions in the Sun. Phys. Lett. B 503, 121. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gabriel, M.: 1997, Influence of heavy element and rotationally induced diffusions on the solar models. Astron. Astrophys. 327, 771. arXiv. ADS.

    ADS  Google Scholar 

  • Gorshkov, A.B., Baturin, V.A.: 2008, Diffusion settling of heavy elements in the solar interior. Astron. Rep. 52, 760. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gough, D.O., Weiss, N.O.: 1976, The calibration of stellar convection theories. Mon. Not. R. Astron. Soc. 176, 589. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gough, D.O., Kosovichev, A.G., Toomre, J., Anderson, E., Antia, H.M., Basu, S., Chaboyer, B., Chitre, S.M., Christensen-Dalsgaard, J., Dziembowski, W.A., Eff-Darwich, A., Elliott, J.R., Giles, P.M., Goode, P.R., Guzik, J.A., Harvey, J.W., Hill, F., Leibacher, J.W., Monteiro, M.J.P.F.G., Richard, O., Sekii, T., Shibahashi, H., Takata, M., Thompson, M.J., Vauclair, S., Vorontsov, S.V.: 1996, The seismic structure of the Sun. Science 272, 1296. DOI. ADS.

    Article  ADS  Google Scholar 

  • Graboske, H.C., Dewitt, H.E., Grossman, A.S., Cooper, M.S.: 1973, Screening factors for nuclear reactions. II. Intermediate screen-ing and astrophysical applications. Astrophys. J. 181, 457. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gryaznov, V.K., Ayukov, S.V., Baturin, V.A., Iosilevskiy, I.L., Starostin, A.N., Fortov, V.E.: 2004, SAHA-S model: equation of state and thermodynamic functions of solar plasma. In: Celebonovic, V., Gough, D., Däppen, W. (eds.) Equation-of-State and Phase-Transition in Models of Ordinary Astrophysical Matter, American Institute of Physics Conference Series 731, 147. DOI. AIP. ADS.

    Chapter  Google Scholar 

  • Heiter, U., Kupka, F., van’t Veer-Menneret, C., Barban, C., Weiss, W.W., Goupil, M.-J., Schmidt, W., Katz, D., Garrido, R.: 2002, New grids of ATLAS9 atmospheres I: influence of convection treatments on model structure and on observable quantities. Astron. Astrophys. 392, 619. DOI. ADS.

    Article  ADS  Google Scholar 

  • Iglesias, C.A., Rogers, F.J.: 1996, Updated opal opacities. Astrophys. J. 464, 943. DOI. ADS.

    Article  ADS  Google Scholar 

  • Imbriani, G., Costantini, H., Formicola, A., Bemmerer, D., Bonetti, R., Broggini, C., Corvisiero, P., Cruz, J., Fülöp, Z., Gervino, G., Guglielmetti, A., Gustavino, C., Gyürky, G., Jesus, A.P., Junker, M., Lemut, A., Menegazzo, R., Prati, P., Roca, V., Rolfs, C., Romano, M., Rossi Alvarez, C., Schümann, F., Somorjai, E., Straniero, O., Strieder, F., Terrasi, F., Trautvetter, H.P., Vomiero, A., Zavatarelli, S.: 2004, The bottleneck of CNO burning and the age of globular clusters. Astron. Astrophys. 420, 625. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kunitomo, M., Guillot, T.: 2021, Imprint of planet formation in the deep interior of the Sun. Astron. Astrophys. 655, A51. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kunitomo, M., Guillot, T., Buldgen, G.: 2022, Evidence of a signature of planet formation processes from solar neutrino fluxes. Astron. Astrophys. 667, L2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lebreton, Y., Goupil, M.J., Montalbán, J.: 2014a, How accurate are stellar ages based on stellar models? I. The impact of stellar models uncertainties. In: Lebreton, Y., Valls-Gabaud, D., Charbonnel, C. (eds.) EAS Publications Series, EAS Publications Series 65, 99. DOI. ADS.

    Chapter  Google Scholar 

  • Lebreton, Y., Goupil, M.J., Montalbán, J.: 2014b, How accurate are stellar ages based on stellar models? II. The impact of asteroseismology. In: Lebreton, Y., Valls-Gabaud, D., Charbonnel, C. (eds.) EAS Publications Series, EAS Publications Series 65, 177. DOI. ADS.

    Chapter  Google Scholar 

  • Lebreton, Y., Maeder, A.: 1987, Stellar evolution with turbulent diffusion mixing. VI - the solar model, surface Li-7, and He-3 abundances, solar neutrinos and oscillations. Astron. Astrophys. 175, 99. ADS.

    ADS  Google Scholar 

  • Lebreton, Y., Montalbán, J., Christensen-Dalsgaard, J., Théado, S., Hui-Bon-Hoa, A., Monteiro, M.J.P.F.G., Degl’Innocenti, S., Marconi, M., Morel, P., Prada Moroni, P.G., Weiss, A.: 2007, Microscopic diffusion in stellar evolution codes: first comparisons results of ESTA-Task 3. In: Straka, C.W., Lebreton, Y., Monteiro, M.J.P.F.G. (eds.) EAS Publications Series, EAS Publications Series 26, 155. DOI. ADS.

    Chapter  Google Scholar 

  • Lebreton, Y., Montalbán, J., Christensen-Dalsgaard, J., Roxburgh, I.W., Weiss, A.: 2008, CoRoT/ESTA–TASK 1 and TASK 3 comparison of the internal structure and seismic properties of representative stellar models: comparisons between the ASTEC, CESAM, CLES, GARSTEC and STAROX codes. Astrophys. Space Sci. 316, 187. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ludwig, H.-G., Freytag, B., Steffen, M.: 1999, A calibration of the mixing-length for solar-type stars based on hydrodynamical simulations. I. Methodical aspects and results for solar metallicity. Astron. Astrophys. 346, 111.

    ADS  Google Scholar 

  • Maeder, A.: 2009, Physics, Formation and Evolution of Rotating Stars. DOI. ADS.

    Book  Google Scholar 

  • Magic, Z., Weiss, A., Asplund, M.: 2015, The stagger-grid: a grid of 3D stellar atmosphere models. III. The relation to mixing length convection theory. Astron. Astrophys. 573, A89. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mamajek, E.E., Prsa, A., Torres, G., Harmanec, P., Asplund, M., Bennett, P.D., Capitaine, N., Christensen-Dalsgaard, J., Depagne, E., Folkner, W.M., Haberreiter, M., Hekker, S., Hilton, J.L., Kostov, V., Kurtz, D.W., Laskar, J., Mason, B.D., Milone, E.F., Montgomery, M.M., Richards, M.T., Schou, J., Stewart, S.G.: 2015, IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties. arXiv e-prints. arXiv. ADS.

  • Manchon, L., Deal, M., Goupil, M.-J., Serenelli, A., Lebreton, Y., Klevas, J., Kučinskas, A., Ludwig, H.-G., Montalbán, J., Gizon, L.: 2024, Entropy-calibrated stellar modeling: testing and improving the use of prescriptions for the entropy of adiabatic convection. Astron. Astrophys. 687, A146. DOI. ADS.

    Article  Google Scholar 

  • Mao, D., Mussack, K., Däppen, W.: 2009, Dynamic screening in solar plasma. Astrophys. J. 701, 1204. DOI. ADS.

    Article  ADS  Google Scholar 

  • Marques, J.P., Goupil, M.J., Lebreton, Y., Talon, S., Palacios, A., Belkacem, K., Ouazzani, R.-M., Mosser, B., Moya, A., Morel, P., Pichon, B., Mathis, S., Zahn, J.-P., Turck-Chièze, S., Nghiem, P.A.P.: 2013, Seismic diagnostics for transport of angular momentum in stars. I. Rotational splittings from the pre-main sequence to the red-giant branch. Astron. Astrophys. 549, A74. DOI. ADS.

    Article  Google Scholar 

  • Michaud, G., Proffitt, C.R.: 1993, Particle transport processes. In: Weiss, W.W., Baglin, A. (eds.) IAU Colloq. 137: Inside the Stars, Astronomical Society of the Pacific Conference Series 40, 246. ADS.

    Google Scholar 

  • Michaud, G., Richer, J., Vick, M.: 2011, Sirius a: turbulence or mass loss? Astron. Astrophys. 534, A18. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mitler, H.E.: 1977, Thermonuclear ion-electron screening at all densities. I. Static solution. Astrophys. J. 212, 513. DOI. ADS.

    Article  ADS  Google Scholar 

  • Montalbán, J., Théado, S., Lebreton, Y.: 2007, Comparisons for ESTA-Task3: CLES and CESAM. In: Straka, C.W., Lebreton, Y., Monteiro, M.J.P.F.G. (eds.) EAS Publications Series, EAS Publications Series 26, 167. DOI. ADS.

    Chapter  Google Scholar 

  • Montalbán, J., Lebreton, Y., Miglio, A., Scuflaire, R., Morel, P., Noels, A.: 2008, Thorough analysis of input physics in CESAM and CLÉS codes. Astrophys. Space Sci. 316, 219. DOI. ADS.

    Article  ADS  Google Scholar 

  • Monteiro, M.J.P.F.G., Lebreton, Y., Montalban, J., Christensen-Dalsgaard, J., Castro, M., Degl’Innocenti, S., Moya, A., Roxburgh, I.W., Scuflaire, R., Baglin, A., Cunha, M.S., Eggenberger, P., Fernandes, J., Goupil, M.J., Hui-Bon-Hoa, A., Marconi, M., Marques, J.P., Michel, E., Miglio, A., Morel, P., Pichon, B., Prada Moroni, P.G., Provost, J., Ruoppo, A., Suarez, J.-C., Suran, M., Teixeira, T.C.: 2006, Report on the CoRoT evolution and seismic tools activity. In: Fridlund, M., Baglin, A., Lochard, J., Conroy, L. (eds.) The CoRoT Mission Pre-Launch Status - Stellar Seismology and Planet Finding, ESA Special Publication 1306, 363. arXiv. ADS.

    Google Scholar 

  • Morel, P., Lebreton, Y.: 2008, CESAM: a free code for stellar evolution calculations. Astrophys. Space Sci. 316, 61. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mussack, K., Däppen, W.: 2011, Dynamic screening correction for solar p-p reaction rates. Astrophys. J. 729, 96. DOI. ADS.

    Article  ADS  Google Scholar 

  • Paquette, C., Pelletier, C., Fontaine, G., Michaud, G.: 1986, Diffusion coefficients for stellar plasmas. Astrophys. J. Suppl. Ser. 61, 177. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pijpers, F.P., Thompson, M.J.: 1994, The SOLA method for helioseismic inversion. Astron. Astrophys. 281, 231. ADS.

    ADS  Google Scholar 

  • Proffitt, C.R., Michaud, G.: 1991, Gravitational settling in solar models. Astrophys. J. 380, 238. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rabello-Soares, M.C., Basu, S., Christensen-Dalsgaard, J.: 1999, On the choice of parameters in solar-structure inversion. Mon. Not. R. Astron. Soc. 309, 35. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rauer, H., Aerts, C., Cabrera, J., Deleuil, M., Erikson, A., Gizon, L., Goupil, M., Heras, A., Walloschek, T., Lorenzo-Alvarez, J., Marliani, F., Martin-Garcia, C., Mas-Hesse, J.M., O’Rourke, L., Osborn, H., Pagano, I., Piotto, G., Pollacco, D., Ragazzoni, R., Ramsay, G., Udry, S., Appourchaux, T., Benz, W., Brandeker, A., Güdel, M., Janot-Pacheco, E., Kabath, P., Kjeldsen, H., Min, M., Santos, N., Smith, A., Suarez, J.-C., Werner, S.C., Aboudan, A., Abreu, M., Acuña, L., Adams, M., Adibekyan, V., Affer, L., Agneray, F., Agnor, C., Aguirre Børsen-Koch, V., Ahmed, S., Aigrain, S., Al-Bahlawan, A., Gil, M.d.l.A.A., Alei, E., Alencar, S., Alexander, R., Alfonso-Garzón, J., Alibert, Y., Allende Prieto, C., Almeida, L., Alonso Sobrino, R., Altavilla, G., Althaus, C., Alvarez Trujillo, L.A., Amarsi, A., Ammler-von Eiff, M., Amôres, E., Andrade, L., Antoniadis-Karnavas, A., António, C., Aparicio del Moral, B., Appolloni, M., Arena, C., Armstrong, D., Aroca Aliaga, J., Asplund, M., Audenaert, J., Auricchio, N., Avelino, P., Baeke, A., Baillié, K., Balado, A., Ballber Balagueró, P., Balestra, A., Ball, W., Ballans, H., Ballot, J., Barban, C., Barbary, G., Barbieri, M., Barceló Forteza, S., Barker, A., Barklem, P., Barnes, S., Barrado Navascues, D., Barragan, O., Baruteau, C., Basu, S., Baudin, F., Baumeister, P., Bayliss, D., Bazot, M., Beck, P.G., Belkacem, K., Bellinger, E., Benatti, S., Benomar, O., Bérard, D., Bergemann, M., Bergomi, M., Bernardo, P., Biazzo, K., Bignamini, A., Bigot, L., Billot, N., Binet, M., Biondi, D., Biondi, F., Birch, A.C., Bitsch, B., Bluhm Ceballos, P.V., Bódi, A., Bognár, Z., Boisse, I., Bolmont, E., Bonanno, A., Bonavita, M., Bonfanti, A., Bonfils, X., Bonito, R., Bonomo, A.S., Börner, A., Boro Saikia, S., Borreguero Martín, E., Borsa, F., Borsato, L., Bossini, D., Bouchy, F., Boué, G., Boufleur, R., Boumier, P., Bourrier, V., Bowman, D.M., Bozzo, E., Bradley, L., Bray, J., Bressan, A., Breton, S., Brienza, D., Brito, A., Brogi, M., Brown, B., Brown, D.J.A., Brun, A.S., Bruno, G., Bruns, M., Buchhave, L.A., Bugnet, L., Buldgen, G., Burgess, P., Busatta, A., Busso, G., Buzasi, D., Caballero, J.A., Cabral, A., Cabrero Gomez, J.-F., Calderone, F., Cameron, R., Cameron, A., Campante, T., Campos Gestal, N., Canto Martins, B.L., Cara, C., Carone, L., Carrasco, J.M., Casagrande, L., Casewell, S.L., Cassisi, S., Castellani, M., Castro, M., Catala, C., Catalán Fernández, I., Catelan, M., Cegla, H., Cerruti, C., Cessa, V., Chadid, M., Chaplin, W., Charpinet, S., Chiappini, C., Chiarucci, S., Chiavassa, A., Chinellato, S., Chirulli, G., Christensen-Dalsgaard, J., Church, R., Claret, A., Clarke, C., Claudi, R., Clermont, L., Coelho, H., Coelho, J., Cogato, F., Colomé, J., Condamin, M., Conde García, F., Conseil, S.: 2025, The PLATO mission. Exp. Astron. 59, 26. DOI. ADS.

    Article  Google Scholar 

  • Richard, O., Michaud, G., Richer, J.: 2001, Iron convection zones in B, A, and F stars. Astrophys. J. 558, 377. DOI. ADS.

    Article  ADS  Google Scholar 

  • Richard, O., Michaud, G., Richer, J.: 2002, Models of metal-poor stars with gravitational settling and radiative accelerations. III. Metallicity dependence. Astrophys. J. 580, 1100. DOI. ADS.

    Article  ADS  Google Scholar 

  • Richard, O., Vauclair, S.: 1997, Local mixing near the solar core, neutrino fluxes and helioseismology. Astron. Astrophys. 322, 671. arXiv. ADS.

    ADS  Google Scholar 

  • Richard, O., Vauclair, S., Charbonnel, C., Dziembowski, W.A.: 1996, New solar models including helioseismological constraints and light-element depletion. Astron. Astrophys. 312, 1000. arXiv. ADS.

    ADS  Google Scholar 

  • Richer, J., Michaud, G., Turcotte, S.: 2000, The evolution of AMFM stars, abundance anomalies, and turbulent transport. Astrophys. J. 529, 338. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ricker, G.R.: 2016, The Transiting Exoplanet Survey Satellite (TESS): discovering exoplanets in the solar neighborhood. In: AGU Fall Meeting Abstracts, P13C. ADS.

    Google Scholar 

  • Rogers, F.J., Nayfonov, A.: 2002, Updated and expanded OPAL equation-of-state tables: implications for helioseismology. Astrophys. J. 576, 1064. DOI. ADS.

    Article  ADS  Google Scholar 

  • Salmon, S.J.A.J., Buldgen, G., Noels, A., Eggenberger, P., Scuflaire, R., Meynet, G.: 2021, Standard solar models: perspectives from updated solar neutrino fluxes and gravity-mode period spacing. Astron. Astrophys. 651, A106. DOI. ADS.

    Article  ADS  Google Scholar 

  • Salpeter, E.E.: 1954, Electrons screening and thermonuclear reactions. Aust. J. Phys. 7, 373. DOI. ADS.

    Article  ADS  Google Scholar 

  • Samadi, R., Kupka, F., Goupil, M.J., Lebreton, Y., van’t Veer-Menneret, C.: 2006, Influence of local treatments of convection upon solar p mode excitation rates. Astron. Astrophys. 445, 233. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schlattl, H.: 2002, Microscopic diffusion of partly ionized metals in the Sun and metal-poor stars. Astron. Astrophys. 395, 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scuflaire, R., Montalbán, J., Théado, S., Bourge, P.-O., Miglio, A., Godart, M., Thoul, A., Noels, A.: 2008b, The Liège Oscillation code. Astrophys. Space Sci. 316, 149. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scuflaire, R., Théado, S., Montalbán, J., Miglio, A., Bourge, P.-O., Godart, M., Thoul, A., Noels, A.: 2008a, CLÉS, Code Liégeois d’Évolution Stellaire. Astrophys. Space Sci. 316, 83. DOI. ADS.

    Article  ADS  Google Scholar 

  • Semenova, E., Bergemann, M., Deal, M., Serenelli, A., Hansen, C.J., Gallagher, A.J., Bayo, A., Bensby, T., Bragaglia, A., Carraro, G., Morbidelli, L., Pancino, E., Smiljanic, R.: 2020, The Gaia-ESO survey: 3D NLTE abundances in the open cluster NGC 2420 suggest atomic diffusion and turbulent mixing are at the origin of chemical abundance variations. Astron. Astrophys. 643, A164. DOI. ADS.

    Article  Google Scholar 

  • Serenelli, A.M., Basu, S., Ferguson, J.W., Asplund, M.: 2009, New solar composition: the problem with solar models revisited. Astrophys. J. Lett. 705, L123. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shaviv, G.: 2004, Numerical experiments in screening theory. Astron. Astrophys. 418, 801. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shaviv, N.J., Shaviv, G.: 1996, The electrostatic screening of thermonuclear reactions in astrophysical plasmas. I. Astrophys. J. 468, 433. DOI. ADS.

    Article  ADS  Google Scholar 

  • Spada, F., Demarque, P.: 2019, Testing the entropy calibration of the radii of cool stars: models of \(\alpha \) Centauri A and B. Mon. Not. R. Astron. Soc. 489, 4712. DOI. ADS.

    Article  ADS  Google Scholar 

  • Spada, F., Demarque, P., Kupka, F.: 2021, Stellar evolution models with entropy-calibrated mixing-length parameter: application to red giants. Mon. Not. R. Astron. Soc. 504, 3128. DOI. ADS.

    Article  ADS  Google Scholar 

  • Spada, F., Demarque, P., Basu, S., Tanner, J.D.: 2018, Improved calibration of the radii of cool stars based on 3D simulations of convection: implications for the solar model. Astrophys. J. 869, 135. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tanner, J.D., Basu, S., Demarque, P.: 2016, Entropy in adiabatic regions of convection simulations. Astrophys. J. Lett. 822, L17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thévenin, F., Oreshina, A.V., Baturin, V.A., Gorshkov, A.B., Morel, P., Provost, J.: 2017, Evolution of lithium abundance in the Sun and solar twins. Astron. Astrophys. 598, A64. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thompson, M.J., Christensen-Dalsgaard, J., Miesch, M.S., Toomre, J.: 2003, The internal rotation of the Sun. Annu. Rev. Astron. Astrophys. 41, 599. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thoul, A.A., Bahcall, J.N., Loeb, A.: 1994, Element diffusion in the solar interior. Astrophys. J. 421, 828. DOI. ADS.

    Article  ADS  Google Scholar 

  • Turcotte, S., Richer, J., Michaud, G., Iglesias, C.A., Rogers, F.J.: 1998, Consistent solar evolution model including diffusion and radiative acceleration effects. Astrophys. J. 504, 539. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vernazza, J.E., Avrett, E.H., Loeser, R.: 1981, Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet Sun. Astrophys. J. Suppl. Ser. 45, 635. DOI. ADS.

    Article  ADS  Google Scholar 

  • Villante, F.L., Serenelli, A.: 2021, The relevance of nuclear reactions for standard solar models construction. Front. Astron. Space Sci. 7, 112. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vorontsov, S.V., Baturin, V.A., Ayukov, S.V., Gryaznov, V.K.: 2013, Helioseismic calibration of the equation of state and chemical composition in the solar convective envelope. Mon. Not. R. Astron. Soc. 430, 1636. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vorontsov, S.V., Baturin, V.A., Ayukov, S.V., Gryaznov, V.K.: 2014, Helioseismic measurements in the solar envelope using group velocities of surface waves. Mon. Not. R. Astron. Soc. 441, 3296. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, E.X., Nordlander, T., Asplund, M., Amarsi, A.M., Lind, K., Zhou, Y.: 2021, 3D NLTE spectral line formation of lithium in late-type stars. Mon. Not. R. Astron. Soc. 500, 2159. DOI. ADS.

    Article  ADS  Google Scholar 

  • Weiss, A., Flaskamp, M., Tsytovich, V.N.: 2001, Solar models and electron screening. Astron. Astrophys. 371, 1123. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wood, S.R., Mussack, K., Guzik, J.A.: 2018, Solar models with dynamic screening and early mass loss tested by helioseismic, astrophysical, and planetary constraints. Sol. Phys. 293, 111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.-S., Li, Y., Christensen-Dalsgaard, J.: 2019, Solar models with convective overshoot, solar-wind mass loss, and PMS disk accretion: helioseismic quantities, Li depletion, and neutrino fluxes. Astrophys. J. 881, 103. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We gratefully thank our anonymous referee whose comprehensive readings and remarks helped to improve the content of the manuscript.

Funding

M. D. acknowledges support from CNES, focused on PLATO. G. B. acknowledges fundings from the Fonds National de la Recherche Scientifique (FNRS) as a postdoctoral researcher. L. M. acknowledges support from the Agence Nationale de la Recherche (ANR) grant ANR-21-CE31-0018.

Author information

Authors and Affiliations

Authors

Contributions

M. D. proposed the idea of testing different micro- and macroscopic transport of chemical element formalisms on solar models, and G. B. proposed the idea of testing the impact of electronic screening on solar models and neutrino fluxes. The idea of comparing CLES and Cesam2k20 in this context was decided by all co-authors. CLES models were computed by G. B., A. N., and R. S., and Cesam2k20 models were computed by M. D., L. M., and Y. L. The comparison of internal structures and evolution of surface abundances was performed by M. D. and inversions were performed by G. B. All co-authors contributed to the interpretation of the results and were involved in the discussions.

Corresponding author

Correspondence to Morgan Deal.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deal, M., Buldgen, G., Manchon, L. et al. The Impact of the Transport of Chemicals and Electronic Screening on Helioseismic and Neutrino Observations in Solar Models. Sol Phys 300, 96 (2025). https://doi.org/10.1007/s11207-025-02512-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11207-025-02512-1

Keywords