这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

CEDFlow++: Latent Contour Enhancement for Dark Optical Flow Estimation

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

CEDFlow introduces a latent contour enhancement method into dark optical flow estimation and achieves advanced performance. Nevertheless, it largely focuses on addressing the motion boundary in a local manner. Unfortunately, it falls short in performance when addressing significant variations or large-scale degraded scenes. This paper introduces CEDFlow++, which features three innovative modules to address the key challenges of CEDFlow. Firstly, we introduce a decomposition-based feature encoder (DBFE), which captures both fine-grained and large-scale features through its local encoder and a uniquely designed sparse attention-based global encoder that suppresses noise and interference that only exist in the dark. Secondly, for reliable motion analysis, we propose a customized dual cost-volume reasoning (DCVR), which integrates important high-contrast feature correlations of the global cost volume into the local cost volume, effectively capturing salient yet holistic motion information while mitigating motion ambiguity caused by darkness. Importantly, we present a contour-guided attention (CGA) which enables context-adaptive extraction of contour features by modifying the sign properties of the Sobel kernel parameters in latent space, specifically targeting large-scale contours that are suitable for motion boundaries. Experimental results on the FCDN and VBOF datasets show that CEDFlow++ outperforms state-of-the-art methods in terms of the EPE index and produces more accurate and robust optical flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available in [FCDN and VBOF datasets] at [https://github.com/mf-zhang/Optical-Flow-in-the-Dark].

References

  • Bayramli, B., Hur, J., & Lu, H. (2023). Raft-msf: Self-supervised monocular scene flow using recurrent optimizer. IJCV, 131(11), 2757–2769.

    Article  Google Scholar 

  • Butler, D.J., Wulff, J., Stanley, G.B., & Black, M.J. (2012). A naturalistic open source movie for optical flow evaluation. In: ECCV, pp. 611–625 Springer

  • Cai, Y., Bian, H., Lin, J., Wang, H., Timofte, R., & Zhang, Y. (2023). Retinexformer: One-stage retinex-based transformer for low-light image enhancement. In: ICCV, pp. 12504–12513

  • Cai, B., Xu, X., Guo, K., Jia, K., Hu, B., & Tao, D. (2017). A joint intrinsic-extrinsic prior model for retinex. In: ICCV, pp. 4000–4009

  • Cao, B., Sun, Y., Zhu, P., & Hu, Q. (2023). Multi-modal gated mixture of local-to-global experts for dynamic image fusion. In: ICCV, pp. 23555–23564

  • Chi, C., Hao, T., Wang, Q., Guo, P., & Yang, X. (2022). Subspace-pnp: A geometric constraint loss for mutual assistance of depth and optical flow estimation. IJCV, 130(12), 3054–3069.

    Article  Google Scholar 

  • Chobola, T., Liu, Y., Zhang, H., Schnabel, J.A., & Peng, T. (2024). Fast context-based low-light image enhancement via neural implicit representations. In: ECCV, pp. 413–430 . Springer

  • Conde, M. V., Vazquez-Corral, J., Brown, M. S., & Timofte, R. (2024). Nilut: Conditional neural implicit 3d lookup tables for image enhancement. AAAI, 38, 1371–1379.

    Article  Google Scholar 

  • Dong, Q., Cao, C., & Fu, Y. (2023). Rethinking optical flow from geometric matching consistent perspective. In: CVPR, pp. 1337–1347

  • Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van Der Smagt, P., Cremers, D., & Brox, T. (2015). Flownet: Learning optical flow with convolutional networks. In: ICCV, pp. 2758–2766

  • Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? the kitti vision benchmark suite. In: CVPR, pp. 3354–3361 IEEE

  • Guo, X., Li, Y., & Ling, H. (2016). Lime: Low-light image enhancement via illumination map estimation. IEEE TIP, 26(2), 982–993.

    MathSciNet  Google Scholar 

  • Huang, Z., Shi, X., Zhang, C., Wang, Q., Cheung, K.C., Qin, H., Dai, J., & Li, H. (2022). Flowformer: A transformer architecture for optical flow. In: ECCV, pp. 668–685 . Springer

  • Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., & Brox, T. (2017). Flownet 2.0: Evolution of optical flow estimation with deep networks. In: CVPR, pp. 2462–2470

  • Jiang, S., Campbell, D., Lu, Y., Li, H., & Hartley, R. (2021). Learning to estimate hidden motions with global motion aggregation. In: ICCV, pp. 9772–9781

  • Jiang, S., Lu, Y., Li, H., & Hartley, R. (2021). Learning optical flow from a few matches. In: CVPR, pp. 16592–16600

  • Li, H., Luo, K., & Liu, S. (2021). Gyroflow: Gyroscope-guided unsupervised optical flow learning. In: ICCV, pp. 12869–12878

  • Li, H., Luo, K., Zeng, B., & Liu, S. (2024). Gyroflow+: Gyroscope-guided unsupervised deep homography and optical flow learning. IJCV, 132(6), 2331–2349.

    Article  Google Scholar 

  • Lin, Z., Liang, T., Xiao, T., Wang, Y., & Yang, M.-H. (2024). Flownas: neural architecture search for optical flow estimation. IJCV, 132(4), 1055–1074.

    Article  Google Scholar 

  • Loshchilov, I., Hutter, F., et al. (2017). Fixing weight decay regularization in adam. arXiv preprint arXiv:1711.05101 5, 5

  • Luo, A., Li, X., Yang, F., Liu, J., Fan, H., & Liu, S. (2024). Flowdiffuser: Advancing optical flow estimation with diffusion models. In: CVPR, pp. 19167–19176

  • Luo, K., Wang, C., Liu, S., Fan, H., Wang, J., & Sun, J. (2021). Upflow: Upsampling pyramid for unsupervised optical flow learning. In: CVPR, pp. 1045–1054

  • Luo, A., Yang, F., Li, X., & Liu, S. (2022). Learning optical flow with kernel patch attention. In: CVPR, pp. 8906–8915

  • Luo, A., Yang, F., Li, X., Nie, L., Lin, C., Fan, H., & Liu, S. (2023). Gaflow: Incorporating gaussian attention into optical flow. In: ICCV, pp. 9642–9651

  • Luo, A., Yang, F., Luo, K., Li, X., Fan, H., & Liu, S. (2022). Learning optical flow with adaptive graph reasoning. AAAI, 36, 1890–1898.

    Article  Google Scholar 

  • Menze, M., & Geiger, A. (2015). Object scene flow for autonomous vehicles. In: CVPR, pp. 3061–3070

  • Menze, M., Heipke, C., & Geiger, A. (2015). Joint 3d estimation of vehicles and scene flow. ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 2, 427–434.

    Article  Google Scholar 

  • Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic differentiation in pytorch

  • Ren, S., Zhou, D., He, S., Feng, J., & Wang, X. (2022). Shunted self-attention via multi-scale token aggregation. In: CVPR, pp. 10853–10862

  • Ren, Z., Luo, W., Yan, J., Liao, W., Yang, X., Yuille, A., & Zha, H. (2020). Stflow: Self-taught optical flow estimation using pseudo labels. IEEE TIP, 29, 9113–9124.

    Google Scholar 

  • Shi, X., Huang, Z., Li, D., Zhang, M., Cheung, K.C., See, S., Qin, H., Dai, J., & Li, H. (2023). Flowformer++: Masked cost volume autoencoding for pretraining optical flow estimation. In: CVPR, pp. 1599–1610

  • Shi, Y., Liu, D., Zhang, L., Tian, Y., Xia, X., & Fu, X. (2024). Zero-ig: zero-shot illumination-guided joint denoising and adaptive enhancement for low-light images. In: CVPR, pp. 3015–3024

  • Smith, L.N., & Topin, N. (2019). Super-convergence: Very fast training of neural networks using large learning rates. In: Artificial Intelligence and Machine Learning for Multi-domain Operations Applications, vol. 11006, pp. 369–386 SPIE

  • Sui, X., Li, S., Geng, X., Wu, Y., Xu, X., Liu, Y., Goh, R., & Zhu, H. (2022). Craft: Cross-attentional flow transformer for robust optical flow. In: CVPR, pp. 17602–17611

  • Sun, D., Yang, X., Liu, M.-Y., & Kautz, J. (2018). Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. In: CVPR, pp. 8934–8943

  • Sun, S., Chen, Y., Zhu, Y., Guo, G., & Li, G. (2022). Skflow: Learning optical flow with super kernels. NeurIPS, 35, 11313–11326.

    Google Scholar 

  • Teed, Z., & Deng, J. (2020). Raft: Recurrent all-pairs field transforms for optical flow. In: ECCV, pp. 402–419 Springer

  • Wang, R., Xu, X., Fu, C.-W., Lu, J., Yu, B., & Jia, J. (2021). Seeing dynamic scene in the dark: A high-quality video dataset with mechatronic alignment. In: ICCV, pp. 9700–9709

  • Wang, W., Yang, H., Fu, J., & Liu, J. (2024). Zero-reference low-light enhancement via physical quadruple priors. In: CVPR, pp. 26057–26066

  • Wang, Y., Yu, Y., Yang, W., Guo, L., Chau, L.-P., Kot, A.C., & Wen, B. (2023). Exposurediffusion: Learning to expose for low-light image enhancement. In: ICCV, pp. 12438–12448

  • Wang, W., Wang, X., Yang, W., & Liu, J. (2022). Unsupervised face detection in the dark. IEEE TPAMI, 45(1), 1250–1266.

    Article  Google Scholar 

  • Wang, Y., Wan, R., Yang, W., Li, H., Chau, L.-P., & Kot, A. (2022). Low-light image enhancement with normalizing flow. AAAI,36, 2604–2612.

  • Wang, B., Zhang, Y., Li, J., Yu, Y., Sun, Z., Liu, L., & Hu, D. (2024). Splatflow: Learning multi-frame optical flow via splatting. IJCV, 132(8), 3023–3045.

    Article  Google Scholar 

  • Wei, C., Wang, W., Yang, W., & Liu, J. (2018). Deep retinex decomposition for low-light enhancement. arXiv preprint arXiv:1808.04560

  • Xu, X., Wang, R., & Lu, J. (2023). Low-light image enhancement via structure modeling and guidance. In: CVPR, pp. 9893–9903

  • Xu, X., Wang, R., Fu, C.-W., & Jia, J. (2022). Snr-aware low-light image enhancement. In: CVPR, pp. 17714–17724

  • Xu, H., Yang, J., Cai, J., Zhang, J., & Tong, X. (2021). High-resolution optical flow from 1d attention and correlation. In: ICCV, pp. 10498–10507

  • Xu, H., Zhang, J., Cai, J., Rezatofighi, H., & Tao, D. (2022). Gmflow: Learning optical flow via global matching. In: CVPR, pp. 8121–8130

  • Young, S. I., Naman, A. T., & Taubman, D. (2019). Graph laplacian regularization for robust optical flow estimation. IEEE TIP, 29, 3970–3983.

    MathSciNet  Google Scholar 

  • Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., & Yang, M.-H. (2022). Restormer: Efficient transformer for high-resolution image restoration. In: CVPR, pp. 5728–5739

  • Zhang, F., Li, Y., You, S., & Fu, Y. (2021). Learning temporal consistency for low light video enhancement from single images. In: CVPR, pp. 4967–4976

  • Zhao, S., Zhao, L., Zhang, Z., Zhou, E., & Metaxas, D. (2022). Global matching with overlapping attention for optical flow estimation. In: CVPR, pp. 17592–17601

  • Zheng, Y., L, F., & Zhang, y. (2022) Optical flow in the dark. IEEE TPAMI 44(12), 9464–9476

  • Zheng, Y., L, F., & Zhang, M. (2020) Optical flow in the dark. In: CVPR, pp. 6749–6757

  • Zhou, H., Chang, Y., Liu, H., Yan, W., Duan, Y., Shi, Z., & Yan, L. (2024). Exploring the common appearance-boundary adaptation for nighttime optical flow. arXiv preprint arXiv:2401.17642

  • Zuo, F., Xiao, Z., Jin, H., & Su, H. (2024). Cedflow: latent contour enhancement for dark optical flow estimation. AAAI, 38, 7909–7916.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62272383, 62371389, 62031023) and the Doctoral Dissertation Innovation Fund of Xian University of Technology (252072206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Jin.

Additional information

Communicated by Ming-Hsuan Yang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Basic and Context Backbones We follow a similar design as the well-known RAFT (Teed & Deng, 2020); we incorporate motion backbone and context backbone into our PsFE framework. The motion backbone, it outputs features at 1/8 resolution from \(\textbf{x} \in \mathbb {R}^{3 \times H \times W} \) \(\rightarrow \) \(\textbf{x} \in \mathbb {R}^{C \times H/8 \times W/8} \) where we set C = 256. The motion backbone consists of 6 residual blocks, 2 at 1/2 resolution, 2 at 1/4 resolution, and 2 at 1/8 resolution. Furthermore, the structure of the context backbone is identical to that of the feature extraction network, except that BatchNorm regularization is used in the context branch and InstanceNorm is used in the basic branch.

The Local Feature Encoder. We used the local encoder in CEDFlow as a continuation. In detail, the local encoder employs three 2D residual convolutional blocks (with a small receptive field) to encode the local properties of each point, followed by ReLU activation to ensure robust information propagation of the fine-grained local feature.

The Global Feature Encoder. Our global encoder consists of a sparse attention method and an interaction layer. As shown in Fig. 19, the interaction layer first predicts a set of scale weights from the local feature \(\hat{f^L}\), and then enhances the appearance information in the coarse \(f^H\) while retaining high-contrast feature. The process is as follows,

$$\begin{aligned} V_p = L^V_p((1 + \mathcal{E}\mathcal{A}(\hat{f^L})) \cdot f^H), \end{aligned}$$
(15)

where ‘\(\cdot \)’ denotes an element-wise dot product. \(\mathcal{E}\mathcal{A}()\) is a spatial attention module, which consists of a convolutional block and a sigmoid function to extract the importance weight of each point, thereby improving the spatial expression of feature.

Fig. 19
figure 19

An overview of our sparse attention-based global encoder. It mainly contains a interaction layer and a sparse attention module. ‘\(\times \)’ is a matrix multiplication. ‘\(\cdot \)’ represents the dot product. ‘\(+\)’ denotes the pixel-wise addition

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, F., Jin, H., Xiao, Z. et al. CEDFlow++: Latent Contour Enhancement for Dark Optical Flow Estimation. Int J Comput Vis 133, 7222–7241 (2025). https://doi.org/10.1007/s11263-025-02528-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11263-025-02528-x

Keywords