这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Draw Sketch, Draw Flesh: Whole-Body Computed Tomography from Any X-Ray Views

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Stereoscopic observation is a common foundation of medical image analysis and is generally achieved by 3D medical imaging based on settled scanners, such as CT and MRI, that are not as convenient as X-ray machines in some flexible scenarios. However, X-ray images can only provide perspective 2D observation and lack view in the third dimension. If 3D information can be deduced from X-ray images, it would broaden the application of X-ray machines. Focus on the above objective, this paper dedicates to the generation of pseudo 3D CT scans from non-parallel 2D perspective X-ray (PXR) views and proposes the Draw Sketch and Draw Flesh (DSDF) framework to first roughly predict the tissue distribution (Sketch) from PXR views and then render the tissue details (Flesh) from the tissue distribution and PXR views. Different from previous studies that focus only on partial locations, e.g., chest or neck, this study theoretically investigates the feasibility of head-to-leg reconstruction, i.e., generally applicable to any body parts. Experiments on 559 whole-body samples from 4 cohorts suggest that our DSDF can reconstruct more reasonable pseudo CT images than state-of-the-art methods and achieve promising results in both visualization and various downstream tasks. The source code and well-trained models are available a https://github.com/YongshengPan/WholeBodyXraytoCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amber Diagnostics. (2022). Basic Overview of the C-Arm Machine. https://www.amberusa.com/blog/basic-overview-of-the-c-arm-system. 9.5.

  • Batzolis, G., Stanczuk, J., Schönlieb, C. -B., & Etmann, C. (2021). Conditional image generation with score-based diffusion models. arXiv preprint[SPACE]arXiv:2111.13606.

  • Bayat, A., Sekuboyina, A. K., Paetzold, J. C., Payer, C., Štern, D., Urschler, M., Kirschke, J. S., & Menze, B. H. (2020). Inferring the 3D standing spine posture from 2D radiographs. In International Conference on Medical Image Computing and Computer-Assisted Intervention.

  • Chao, H., Shan, H., Homayounieh, F., Singh, R., Khera, R. D., Guo, H., Su, T., Wang, G., Kalra, M. K., & Yan, P. (2021). Deep learning predicts cardiovascular disease risks from lung cancer screening low dose computed tomography. Nature Communications, 12(1), 2963–2963.

    Google Scholar 

  • Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A. L., & Zhou, Y. (2021). TransUNet: Transformers make strong encoders for medical image segmentation. arXiv preprint[SPACE]arXiv:2102.04306.

  • Chen, J., Zhang, Z., Xie, X., Li, Y., Xu, T., Ma, K., & Zheng, Y. (2022). Beyond mutual information: Generative adversarial network for domain adaptation using information bottleneck constraint. IEEE Transactions on Medical Imaging, 41, 595–607.

    Google Scholar 

  • Chen, P., Yang, W., Wang, M., Sun, L., Hu, K., & Wang, S. (2021). Compressed domain deep video super-resolution. IEEE Transactions on Image Processing, 30, 7156–7169.

    Google Scholar 

  • Chen, Z., Guo, L., Zhang, R., Fang, Z., He, X., & Wang, J. (2023). BX2S-Net: Learning to reconstruct 3D spinal structures from bi-planar X-ray images. Computers in Biology and Medicine, 154, 106615.

    Google Scholar 

  • Chiang, T., Huang, Y., Chen, R., Huang, C., & Chang, R. (2019). Tumor detection in automated breast ultrasound using 3-D CNN and prioritized candidate aggregation. IEEE Transactions on Medical Imaging, 38(1), 240–249.

    Google Scholar 

  • Cho, S., Lee, S., Lee, J., Lee, D., Kim, H., Ryu, J.-H., Jeong, K., Kim, K.-G., Yoon, K.-H., & Cho, S. (2021). A novel low-dose dual-energy imaging method for a fast-rotating gantry-type CT scanner. IEEE Transactions on Medical Imaging, 40(3), 1007–1020.

    Google Scholar 

  • Chougule, V. N., Mulay, A. V., & Ahuja, B. B. (2017). Clinical case study: Spine modeling for minimum invasive spine surgeries (miss) using rapid prototyping. In International Conference on Precision, Meso, Mocro and Nano Engineering (COPEN) (pp. 96–102).

  • Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., et al. (2013). The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository. Journal of Digital Imaging, 26(6), 1045–1057.

    Google Scholar 

  • Cohen, J. P., Luck, M., & Honari, S. (2018). Distribution matching losses can hallucinate features in medical image translation. arXiv:1805.08841.

  • Cretti, F. (2018). Assessment of occupational radiation dose in interventional settings. La Medicina del Lavoro, 109(1), 57.

    Google Scholar 

  • Croitoru, F.-A., Hondru, V., Ionescu, R. T., & Shah, M. (2023). Diffusion models in vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9), 10850–10869.

    Google Scholar 

  • Deak, Z., Grimm, J. M., Treitl, M., Geyer, L. L., Linsenmaier, U., Körner, M., Reiser, M., & Wirth, S. (2013). Filtered back projection, adaptive statistical iterative reconstruction, and a model-based iterative reconstruction in abdominal ct: An experimental clinical study. Radiology, 266(1), 197–206.

    Google Scholar 

  • DenOtter, T. D., & Schubert, J. (2021). Hounsfield unit. In StatPearls. StatPearls Publishing, Treasure Island (FL). http://europepmc.org/books/NBK547721.

  • Fard, A. S., Reutens, D. C., & Vegh, V. (2021). CNNs and GANs in mri-based cross-modality medical image estimation. arXiv:2106.02198.

  • Flood, P. D. L., & Banks, S. A. (2018). Automated registration of 3-D knee implant models to fluoroscopic images using lipschitzian optimization. IEEE Transactions on Medical Imaging, 37(1), 326–335.

    Google Scholar 

  • Gao, K., Gao, Y., He, H., Lu, D., Xu, L., & Li, J. (2022). Nerf: Neural radiance field in 3d vision, a comprehensive review. arXiv:2210.00379.

  • Ge, R., He, Y., Xia, C., Xu, C., Sun, W., Yang, G., Li, J., Wang, Z., Yu, H.-Z., Zhang, D., Chen, Y., Luo, L., Li, S., & Zhu, Y. (2022). X-ctrsnet: 3D cervical vertebra CT reconstruction and segmentation directly from 2D X-ray images. Knowl. Based Syst., 236, 107680.

    Google Scholar 

  • Ghani, M. U., & Karl, W. C. (2020). Fast enhanced CT metal artifact reduction using data domain deep learning. IEEE Transactions on Computational Imaging, 6, 181–193.

    Google Scholar 

  • Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J. (2021). A review on generative adversarial networks: Algorithms, theory, and applications. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2021.3130191

    Article  Google Scholar 

  • Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of wasserstein GANs. In NIPS.

  • Gupta, H., Jin, K. H., Nguyen, H. Q., McCann, M. T., & Unser, M. (2018). CNN-based projected gradient descent for consistent CT image reconstruction. IEEE Transactions on Medical Imaging, 37(6), 1440–1453.

    Google Scholar 

  • He, D., Zhou, J., Shang, X., Tang, X., Luo, J., & Chen, S.-L. (2022). De-noising of photoacoustic microscopy images by attentive generative adversarial network. IEEE Transactions on Medical Imaging, 42, 1349–1362.

    Google Scholar 

  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In CVPR (pp. 770–778).

  • He, Y., Schiele, B., & Fritz, M. (2020). Synthetic convolutional features for improved semantic segmentation. In European conference on computer vision (pp. 320–336).

  • Isola, P., Zhu, J. -Y., Zhou, T., & Efros, A. A. (2017) Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5967–5976).

  • Jecklin, S., Jancik, C., Farshad, M., Fürnstahl, P., & Esfandiari, H. (2022). X23-Dintraoperative 3D lumbar spine shape reconstruction based on sparse multi-view X-ray data. Journal of Imaging, 8(10), 271.

    Google Scholar 

  • Jha, D., Smedsrud, P. H., Johansen, D., Lange, T., Johansen, H. D., Halvorsen, P., & Riegler, M. A. (2021). A comprehensive study on colorectal polyp segmentation with ResUNet++, conditional random field and test-time augmentation. IEEE Journal of Biomedical and Health Informatics, 25(6), 2029–2040.

    Google Scholar 

  • Jiang, L., Zhang, M., Wei, R., Liu, B., Bai, X., & Zhou, F. (2021). Reconstruction of 3D ct from a single X-ray projection view using CVAE-GAN. In 2021 IEEE international conference on medical imaging physics and engineering (ICMIPE) (pp. 1–6).

  • Jonas, D. E., Reuland, D. S., Reddy, S. M., Nagle, M., Clark, S. D., Weber, R. P., Enyioha, C., Malo, T. L., Brenner, A. T., Armstrong, C., Coker-Schwimmer, M., Middleton, J. C., Voisin, C., & Harris, R. P. (2021). Screening for lung cancer with low-dose computed tomography: Updated evidence report and systematic review for the us preventive services task force. JAMA, 325(10), 971–987.

    Google Scholar 

  • Kang, Q., Yao, S., Zhou, M., Zhang, K., & Abusorrah, A. (2021). Effective visual domain adaptation via generative adversarial distribution matching. IEEE Transactions Neural Networks and Learning Systems, 32(9), 3919–3929.

    MathSciNet  Google Scholar 

  • Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint[SPACE]arXiv:1412.6980.

  • Li, M., Wang, J., Chen, Y., Tang, Y., Wu, Z., Qi, Y., Jiang, H., Zheng, J., & Tsui, B. M. W. (2023). Low-dose CT image synthesis for domain adaptation imaging using a generative adversarial network with noise encoding transfer learning. IEEE Transactions on Medical Imaging, 42(9), 2616–2630.

    Google Scholar 

  • Liao, H., Lin, W.-A., Zhou, S. K., & Luo, J. (2020). ADN: Artifact disentanglement network for unsupervised metal artifact reduction. IEEE Transactions on Medical Imaging, 39(3), 634–643.

    Google Scholar 

  • Mitrovic, U., Pernus, F., Likar, B., & Špiclin, V. (2015). Simultaneous 3D–2D image registration and C-arm calibration: Application to endovascular image-guided interventions. Medical Physics, 42(11), 6433–6447.

    Google Scholar 

  • Ouyang, J., Chen, K. T., Gong, E., Pauly, J., & Zaharchuk, G. (2019). Ultra-low-dose pet reconstruction using generative adversarial network with feature matching and task-specific perceptual loss. Medical Physics, 46(8), 3555–3564.

    Google Scholar 

  • Pan, Y., Liu, M., Lian, C., & Xia, Y. (2020). Spatially-constrained Fisher representation for brain disease identification with incomplete multi-modal neuroimages. IEEE Transactions on Medical Imaging. https://doi.org/10.1109/TMI.2020.2983085

  • Pan, Y., Liu, M., Lian, C., Xia, Y., & Shen, D. (2020). Spatially-constrained Fisher representation for brain disease identification with incomplete multi-modal neuroimages. IEEE Transactions on Medical Imaging, 39, 2965–2975.

    Google Scholar 

  • Pan, Y., Liu, M., Xia, Y., & Shen, D. (2022). Disease-image-specific learning for diagnosis-oriented neuroimage synthesis with incomplete multi-modality data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(10), 6839–6853.

    Google Scholar 

  • Pan, Y., & Xia, Y. (2021). Ultimate reconstruction: Understand your bones from orthogonal views. In 2021 IEEE 18th international symposium on biomedical imaging (ISBI) (pp. 1155–1158).

  • Park, S., Kim, S., Kwon, D., Jang, Y., Song, I.-S., & Baek, S.-H. (2023). Estimating 3D dental structures using simulated panoramic radiographs and neural ray tracing, arXiv:2304.04027.

  • Peng, C., Li, B., Liang, P., Zheng, J., Zhang, Y., Qiu, B., & Chen, D. Z. (2020). A cross-domain metal trace restoring network for reducing X-ray CT metal artifacts. IEEE Transactions on Medical Imaging, 39(12), 3831–3842.

    Google Scholar 

  • Qiao, Y., Cui, J., Huang, F., Liu, H., Bao, C., & Li, X. (2021). Efficient style-corpus constrained learning for photorealistic style transfer. IEEE Transactions on Image Processing, 30, 3154–3166.

    Google Scholar 

  • Qin, C., Schlemper, J., Caballero, J., Price, A. N., Hajnal, J. V., & Rueckert, D. (2019). Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Transactions on Medical Imaging, 38(1), 280–290.

    Google Scholar 

  • Quinto, E. T. (2006). An introduction to x-ray tomography and radon transforms. In Proceedings of Symposia in Applied Mathematics (Vol. 63, p. 1).

  • Rappard, J. R., Hummel, W. A., Jong, T., & Mouës, C. M. (2019). A comparison of image quality and radiation exposure between the mini c-arm and the standard c-arm. Hand, 14(6), 765–769.

    Google Scholar 

  • Reaungamornrat, S., Sari, H., Catana, C., & Kamen, A. (2022). Multimodal image synthesis based on disentanglement representations of anatomical and modality specific features, learned using uncooperative relativistic gan. Medical Image Analysis, 80, 102514.

    Google Scholar 

  • Ren, Z., Sidky, E. Y., Barber, R. F., Kao, C. -M., & Pan, X. (2023). Simultaneous activity and attenuation estimation in TOF-PET with TV-constrained nonconvex optimization. arXiv preprint[SPACE]arXiv:2303.17042.

  • Schousboe, J. T., & Ensrud, K. E. (2021). Opportunistic osteoporosis screening using low-dose computed tomography (LDCT): Promising strategy, but challenges remain. Journal of Bone and Mineral Research, 36(3), 425–426.

    Google Scholar 

  • Skiles, M. D. (2019). First principles to further our understanding of what is to be done. PhD thesis, UCLA.

  • Song, W., Liang, Y., Yang, J., Wang, K., & He, L. (2021). Oral-3D: Reconstructing the 3D structure of oral cavity from panoramic X-ray. In AAAI conference on artificial intelligence.

  • Strobel, N., Meissner, O., Boese, J., Brunner, T., Heigl, B., Hoheisel, M., Lauritsch, G., Nagel, M., Pfister, M., Rührnschopf, E.-P., Scholz, B., Schreiber, B., Spahn, M., Zellerhoff, M., & Klingenbeck-Regn, K. (2009). 3D imaging with flat-detector C-arm systems. In M. F. Reiser, C. R. Becker, K. Nikolaou, & G. Glazer (Eds.), Multislice CT (pp. 33–51). Springer. https://doi.org/10.1007/978-3-540-33125-4_3

    Chapter  Google Scholar 

  • Tan, Z., Li, J. Y., Tao, H., Li, S., & Hu, Y. (2022). XctNet: Reconstruction network of volumetric images from a single X-ray image. Computerized Medical Imaging and Graphics, 98, 102067.

    Google Scholar 

  • Tan, Z., Li, S., Hu, Y., Tao, H., & Zhang, L. (2023). Semi-xctnet: Volumetric images reconstruction network from a single projection image via semi-supervised learning. Computers in Biology and Medicine, 155, 106663.

    Google Scholar 

  • Wandtke, J., & Hobbs, S. K. (2021). Low-dose chest CT to predict disease-free survival for early-stage node-negative centrally located lung adenocarcinoma. Radiology, 299(2), 448–449.

    Google Scholar 

  • Wang, C.-L., Zhang, H., Zeng, Z.-Y., Yu, J.-H., & Wang, Y. (2021). Application of image reconstruction based on inverse radon transform in ct system parameter calibration and imaging. CompLex, 2021, 5360716–1536071610.

  • Wang, D., Cui, X., Chen, X., Zou, Z., Shi, T., Salcudean, S., Wang, Z. J., & Ward, R. (2021). Multi-view 3d reconstruction with transformers. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 5722–5731).

  • Wang, Q., Gao, Q., Wu, L., Sun, G., & Jiao, L. (2021). Adversarial multi-path residual network for image super-resolution. IEEE Transactions on Image Processing, 30, 6648–6658.

    Google Scholar 

  • Wang, T. -C., Liu, M. -Y., Zhu, J. -Y., Tao, A., Kautz, J., & Catanzaro, B. (2018). High-resolution image synthesis and semantic manipulation with conditional GANs. In 2018 IEEE/CVF conference on computer vision and pattern recognition (pp. 8798–8807).

  • Wardlaw, J. M., & White, P. M. (2000). The detection and management of unruptured intracranial aneurysms. Brain, 123(2), 205–221.

    Google Scholar 

  • Wasserthal, J., Meyer, M., Breit, H.-C., Cyriac, J., Yang, S., & Segeroth, M. (2022). TotalSegmentator: Robust segmentation of 104 anatomical structures in CT images. arXiv:2208.05868.

  • Withers, P. J., Bouman, C., Carmignato, S., Cnudde, V., Grimaldi, D., Hagen, C. K., Maire, E., Manley, M., Plessis, A. D., & Stock, S. R. (2021). X-ray computed tomography. Nature Reviews Methods Primers, 1(1), 1–21.

    Google Scholar 

  • Xiang, L., Qiao, Y., Nie, D., An, L., Lin, W., Wang, Q., & Shen, D. (2017). Deep auto-context convolutional neural networks for standard-dose PET image estimation from low-dose PET/MRI. Neurocomputing, 267, 406–416.

    Google Scholar 

  • Xie, Q., Zeng, D., Zhao, Q., Meng, D., Xu, Z., Liang, Z., & Ma, J. (2017). Robust low-dose CT sinogram preprocessing via exploiting noise-generating mechanism. IEEE Transactions on Medical Imaging, 36(12), 2487–2498.

    Google Scholar 

  • Yang, Q., Yan, P., Zhang, Y., Yu, H., Shi, Y., Mou, X., Kalra, M. K., Zhang, Y., Sun, L., & Wang, G. (2018). Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Transactions on Medical Imaging, 37(6), 1348–1357.

    Google Scholar 

  • Ying, X., Guo, H., Ma, K., Wu, J., Weng, Z., & Zheng, Y. (2019). X2CT-GAN: Reconstructing CT from biplanar x-rays with generative adversarial networks. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 10611–10620).

  • Zeng, D., Huang, J., Bian, Z., Niu, S., Zhang, H., Feng, Q., Liang, Z., & Ma, J. (2015). A simple low-dose X-ray CT simulation from high-dose scan. IEEE Transactions on Nuclear Science, 62(5), 2226–2233.

    Google Scholar 

  • Zhan, F., Zhu, H., & Lu, S. (2019). Spatial fusion GAN for image synthesis. In 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 3653–3662).

  • Zhang, C., Dai, J., Wang, T., Liu, X., Chan, Y., Liu, L., He, W., Xie, Y., & Liang, X. (2023). Xtransct: Ultra-fast volumetric ct reconstruction using two orthogonal x-ray projections via a transformer network. arXiv:2305.19621.

  • Zhang, H., Wang, J., Li, N., Zhang, Y., Cui, J., Huo, L., & Zhang, H. (2023). A quantitative clinical evaluation of simultaneous reconstruction of attenuation and activity in time-of-flight PET. BMC Medical Imaging, 23(1), 35.

    Google Scholar 

  • Zhang, Y., Fan, Q., Bao, F., Liu, Y., & Zhang, C. (2018). Single-image super-resolution based on rational fractal interpolation. IEEE Transactions on Image Processing, 27(8), 3782–3797.

  • Zhang, Y., & Yu, H. (2018). Convolutional neural network based metal artifact reduction in X-ray computed tomography. IEEE Transactions on Medical Imaging, 37(6), 1370–1381.

    Google Scholar 

  • Zhang, Y., Zhang, Y., & Cai, W. (2020). A unified framework for generalizable style transfer: Style and content separation. IEEE Transactions on Image Processing, 29, 4085–4098.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Nos. 6240012686, 62171377, 62131015, U23A20295), in part by the Fundamental Research Funds for the Central Universities (No. D5000230376), in part by China Postdoctoral Science Foundation (Nos. BX2021333, 2021M703340), in part by the National Key R &D Program of China under Grant 2022YFC2009903/2022YFC2009900, in part by the Ningbo Clinical Research Center for Medical Imaging (No. 2021L003: Open Project 2022LYKFZD06), and in part by Shenzhen Science and Technology Program (No. JCYJ20220530161616036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Xia or Dinggang Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Ziyue Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Mobile X-Ray Machines

Table 6 List of 10 C-arm X-ray systems

Operating on the principles of traditional X-ray imaging, such devices emit X-rays (a form of electromagnetic radiation) through the patient’s body (Cretti, 2018). These X-rays are attenuated differently by various tissues, producing a shadow-like image on a detector (receiver) positioned opposite to the X-ray source (transmitter). The C-shaped arm allows for extensive mobility, including horizontal, vertical, and rotational movements around swivel axes, enabling X-ray imaging from multiple angles. Mobile C-arm machines can capture images from diverse directions by rotating the arm and the attached detector.

C-arm machines are typically categorized into three types: Mini C-arms, Compact C-arms, and Full-Size C-Arms, each varying in size and specialization (van Rappard et al., 2019). These machines are highly versatile, tailored to meet specific demands across various medical specialties. They are extensively utilized in operating rooms for orthopedics, trauma surgery, spinal procedures, and other disciplines, significantly enhancing the efficiency and effectiveness of intraoperative imaging. Table 6 lists 10 C-arm X-ray systems along with the references of their specific features and applications.

Fig. 12
figure 12

Illustration of composing patch to full-field of view

Patch Composing

During the testing phase, the input and output of our frameworks are patches consecutively cropped. To achieve the full-field of view (FoV) output, the consecutive outputs of each CT scan are composed into a single image. The spatial continuity and semantic coherence of the final stitched 3D volume are ensured through several key strategies in our methodology. To provide a clearer illustration of these processes, we present Fig. 12 to visually depicts how the spatial and semantic integrity are maintained through our patching and stitching methodology.

First, before neural modeling and generation, each 2D image patch extracted from the input X-ray images is tagged with its original location information. This tagging allows us to accurately place each generated patch back into its corresponding position in the output 3D volume, thus preserving spatial continuity.

Second, to maintain semantic coherence across the stitched volume, we employ an overlap-averaging strategy in regions where multiple patches overlap. This approach blends intensities in overlapping regions, ensuring smooth transitions and consistency in semantic features throughout the volume.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Ye, Y., Zhang, Y. et al. Draw Sketch, Draw Flesh: Whole-Body Computed Tomography from Any X-Ray Views. Int J Comput Vis 133, 2505–2526 (2025). https://doi.org/10.1007/s11263-024-02286-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11263-024-02286-2

Keywords