这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Rethinking Contemporary Deep Learning Techniques for Error Correction in Biometric Data

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In the realm of cryptography, the implementation of error correction in biometric data offers many benefits, including secure data storage and key derivation. Deep learning-based decoders have emerged as a catalyst for improved error correction when decoding noisy biometric data. Although these decoders exhibit competence in approximating precise solutions, we expose the potential inadequacy of their security assurances through a minimum entropy analysis. This limitation curtails their applicability in secure biometric contexts, as the inherent complexities of their non-linear neural network architectures pose challenges in modeling the solution distribution precisely. To address this limitation, we introduce U-Sketch, a universal approach for error correction in biometrics, which converts arbitrary input random biometric source distributions into independent and identically distributed (i.i.d.) data while maintaining the pairwise distance of the data post-transformation. This method ensures interpretability within the decoder, facilitating transparent entropy analysis and a substantiated security claim. Moreover, U-Sketch employs Maximum Likelihood Decoding, which provides optimal error tolerance and a precise security guarantee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Fig. 3
Algorithm 3
Fig. 4

Similar content being viewed by others

References

  • Ferguson, N., Schneier, B., & Kohno, T. (2010). Cryptography engineering: design principles and practical applications. New York: Wiley Publishing.

    MATH  Google Scholar 

  • Liu, S., Shao, W., Li, T., Xu, W., & Song, L. (2022) Recent advances in biometrics-based user authentication for wearable devices: A contemporary survey, Digital Signal Processing, vol. 125, p. 103120, sensing, Signal Processing and Computing for the Era of Wearables. Available: https://www.sciencedirect.com/science/article/pii/S1051200421001597

  • Kaur, P., Kumar, N., & Singh, M. (2022). Biometric cryptosystems: A comprehensive survey. Multimedia Tools and Applications, 82, 1–56.

    MATH  Google Scholar 

  • Rathgeb, C., & Uhl, A. (2011). A survey on biometric cryptosystems and cancelable biometrics. EURASIP journal on information security, 2011(1), 1–25.

    MATH  Google Scholar 

  • Uludag, U., Pankanti, S., Prabhakar, S., & Jain, A. K. (2004). Biometric cryptosystems: issues and challenges. Proceedings of the IEEE, 92(6), 948–960.

    MATH  Google Scholar 

  • Dodis, Y., Reyzin, L., & Smith, A. (2004). “Fuzzy extractors: How to generate strong keys from biometrics and other noisy data,” in Advances in Cryptology-EUROCRYPT 2004: International Conference on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, Proceedings 23. Springer, 2004, pp. 523–540.

  • Shaltiel, R. (2011). “An introduction to randomness extractors,” in Automata, Languages and Programming: 38th International Colloquium, ICALP. (2011). Zurich, Switzerland, Proceedings, Part II 38. Springer, 21–41.

  • Kingma, D.P., & Welling, M. (2019). “An introduction to variational autoencoders.” Foundations and Trends® in Machine Learning, 12(4): 307–392,

  • Peterson, W. W., Peterson, W., Weldon, E. J., & Weldon, E. J. (1972). Error-correcting codes. Cambridge: MIT press.

    MATH  Google Scholar 

  • Juels, A., & Wattenberg, M. (1999). “A fuzzy commitment scheme,” In Proceedings of the 6th ACM conference on Computer and communications security, pp. 28–36.

  • Andoni, A., & Indyk, P. (2008). Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Communications of the ACM, 51(1), 117–122.

    MATH  Google Scholar 

  • Chauhan, S., & Sharma, A. (2022). Improved fuzzy commitment scheme. International Journal of Information Technology, 14(3), 1321–1331.

    MATH  Google Scholar 

  • Ganorkar, A. M., & Sahula, V. (2022). Error correction using pufs for reliable key generation. IEEE International Symposium on Smart Electronic Systems (iSES), 2022, 643–646.

    Google Scholar 

  • Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P., & “Efficient helper data key extractor on fpgas,” In Cryptographic Hardware and Embedded Systems-CHES,. (2008). 10th International Workshop, Washington, DC, USA, August 10–13, 2008. Proceedings 10. Springer: Berlin, 181–197.

  • Maes, R., Tuyls, P., & Verbauwhede, I. (2009). “A soft decision helper data algorithm for sram pufs,” In: (2009). IEEE international symposium on information theory. IEEE, 2101–2105.

  • Maes, R., Van Herrewege, A., Verbauwhede, I., & “Pufky: A fully functional puf-based cryptographic key generator,” In: Cryptographic Hardware and Embedded Systems-CHES,. (2012). 14th International Workshop, Leuven, Belgium, September 9–12, 2012. Proceedings 14. Springer, 2012, 302–319.

  • Van Herrewege, A., Katzenbeisser, S., Maes, R., Peeters, R., Sadeghi, A-R., Verbauwhede, I., & Wachsmann, C. (2012). “Reverse fuzzy extractors: Enabling lightweight mutual authentication for puf-enabled rfids,” In: Financial Cryptography and Data Security: 16th International Conference, FC. Kralendijk, Bonaire, Februray 27-March 2, 2012, Revised Selected Papers 16. Springer, 374–389.

  • Yang, W., Hu, J., Wang, S., & Stojmenovic, M. (2014). An alignment-free fingerprint bio-cryptosystem based on modified voronoi neighbor structures. Pattern Recognition, 47(3), 1309–1320.

    MATH  Google Scholar 

  • Suh, G.E., O’Donnell, C.W., Sachdev, I., & Devadas, S. (2005). “Design and implementation of the aegis single-chip secure processor using physical random functions,” In: 32nd International Symposium on Computer Architecture (ISCA’05). IEEE, pp. 25–36.

  • Fuller, B., & Peng, L. (2019). Continuous-source fuzzy extractors: Source uncertainty and insecurity. IEEE International Symposium on Information Theory (ISIT), 2019, 2952–2956.

    MATH  Google Scholar 

  • Fuller, B., Reyzin, L., & Smith, A. (2020). When are fuzzy extractors possible? IEEE Transactions on Information Theory, 66(8), 5282–5298.

    MathSciNet  MATH  Google Scholar 

  • Lin, S., Costello, D.J. (2001). Error control coding. Prentice hall Lebanon, IN, vol. 2, no. 4.

  • Berlekamp, E., McEliece, R., & Van Tilborg, H. (1978). On the inherent intractability of certain coding problems (corresp.). IEEE Transactions on Information Theory, 24(3), 384–386.

    MathSciNet  MATH  Google Scholar 

  • Wang, X.-A., & Wicker, S. B. (1996). An artificial neural net viterbi decoder. IEEE Transactions on communications, 44(2), 165–171.

    MATH  Google Scholar 

  • Hamalainen, A., & Henriksson, J. (1999). A recurrent neural decoder for convolutional codes, In: IEEE International Conference on Communications (Cat. No. 99CH36311), vol. 2. IEEE, 1999, pp. 1305–1309.

  • Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L., & Imagenet: A large-scale hierarchical image database, In,. (2009). IEEE conference on computer vision and pattern recognition. Ieee, 2009, 248–255.

  • Ryan, W. E., et al. (2004). An introduction to ldpc codes. CRC Handbook for Coding and Signal Processing for Recording Systems, 5(2), 1–23.

    MATH  Google Scholar 

  • Jiang, J., & Narayanan, K. R. (2006). Iterative soft-input soft-output decoding of reed-solomon codes by adapting the parity-check matrix. IEEE Transactions on Information Theory, 52(8), 3746–3756.

    MathSciNet  MATH  Google Scholar 

  • Nachmani, E., Be’ery, Y., & Burshtein, D. (2016). Learning to decode linear codes using deep learning,” In: 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, pp. 341–346.

  • Gruber, T., Cammerer, S., Hoydis, J., ten Brink, S., & “On deep learning-based channel decoding,” In: (2017). 51st annual conference on information sciences and systems (CISS). IEEE, 2017, 1–6.

  • Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P.T.P. (2016). On large-batch training for deep learning: Generalization gap and sharp minima,” arXiv preprint arXiv:1609.04836

  • Daugman, J. (2015). Information theory and the iriscode. IEEE transactions on information forensics and security, 11(2), 400–409.

    MATH  Google Scholar 

  • Wayman, J. L., Jain, A. K., Maltoni, D., & Maio, D. (2005). Biometric systems: technology, design and performance evaluation. Berlin: Springer.

    MATH  Google Scholar 

  • Sutcu, Y., Rane, S., Yedidia, J. S., Draper, S. C., Vetro, A., & (2008). “Feature extraction for a slepian-wolf biometric system using ldpc codes,” In: (2008) IEEE International Symposium on Information Theory. IEEE, 2008, 2297–2301.

  • Delvaux, J. (2017). “Security analysis of puf-based key generation and entity authentication,”

  • Lai, L., Ho, S.-W., & Poor, H. V. (2010). Privacy-security trade-offs in biometric security systems—part i: Single use case. IEEE transactions on information forensics and security, 6(1), 122–139.

    Google Scholar 

  • Ignatenko, T., & Willems, F. M. (2009). Biometric systems: privacy and secrecy aspects. IEEE transactions on information forensics and security, 4(4), 956–973.

    MATH  Google Scholar 

  • Turan, M. S., Barker, E., Kelsey, J., McKay, K., Baish, M. L., & Boyle, M. (2018). Nist special publication 800–90b: recommendation for the entropy sources used for random bit generation,’’ US Department of Commerce, National institute of standards and technology: gaithersburg. USA: MD.

    Google Scholar 

  • Charikar, M.S. (2002). “Similarity estimation techniques from rounding algorithms,” In: Proceedings of the thiry-fourth annual ACM symposium on Theory of computing pp. 380–388.

  • Yu, M.-D., & Devadas, S. (2010). Secure and robust error correction for physical unclonable functions. IEEE design & test of computers, 27(1), 48–65.

    MATH  Google Scholar 

  • Bishop, C.M., & Nasrabadi, N.M. (2006). Pattern recognition and machine learning. Springer: Berlin, vol. 4, no. 4.

  • Meng, Q., Zhao, S., Huang, Z., & Zhou, F. (2021). Magface: A universal representation for face recognition and quality assessment,” In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 14 225–14 234.

  • Huang, G.B., Mattar, M., Berg, T., & Learned-Miller, E. (2008). “Labeled faces in the wild: A database forstudying face recognition in unconstrained environments,” In: Workshop on faces in’Real-Life’Images: detection, alignment, and recognition.

  • Sengupta, S., Chen, J.-C., Castillo, C., Patel, V. M., Chellappa, R., Jacobs, D. W., & (2016). “Frontal to profile face verification in the wild,” In: (2016). IEEE winter conference on applications of computer vision (WACV). IEEE, 2016, 1–9.

  • Sim, T., Baker, S., & Bsat, M (2002). The cmu pose, illumination, and expression (pie) database,” In: Proceedings of fifth IEEE international conference on automatic face gesture recognition. IEEE, pp. 53–58.

  • Phillips, P. J., Moon, H., Rizvi, S. A., & Rauss, P. J. (2000). The feret evaluation methodology for face-recognition algorithms. IEEE transactions on pattern analysis and machine intelligence, 22(10), 1090–1104.

    Google Scholar 

  • Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., & Jain, A.K. (2002). Fvc2002: Second fingerprint verification competition, In: Object recognition supported by user interaction for service robots, vol. 3. IEEE pp. 811–814.

  • Kumar Jindal, A., Chalamala, S., & Kumar Jami, S. (2018). Face template protection using deep convolutional neural network, In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops pp. 462–470.

  • Kumar Pandey, R., Zhou, Y., Urala Kota, B., & Govindaraju, V. (2016). Deep secure encoding for face template protection,” In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops pp. 9–15.

  • Talreja, V., Valenti, M.C., & Nasrabadi, N.M. (2019). Zero-shot deep hashing and neural network based error correction for face template protection, In: 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS). IEEE, pp. 1–10.

  • Chen, L., Zhao, G., Zhou, J., Ho, A. T., & Cheng, L.-M. (2019). Face template protection using deep ldpc codes learning. IET biometrics, 8(3), 190–197.

    MATH  Google Scholar 

  • Lai, Y.-L., Hwang, J. Y., Jin, Z., Kim, S., Cho, S., & Teoh, A. B. J. (2019). Symmetric keyring encryption scheme for biometric cryptosystem. Information sciences, 502, 492–509.

    MathSciNet  Google Scholar 

  • Mai, G., Cao, K., Lan, X., & Yuen, P. C. (2020). Secureface: face template protection. IEEE transactions on information forensics and security, 16, 262–277.

    Google Scholar 

  • Kim, S., Jeong, Y., Kim, J., Kim, J., Lee, H.T., & Seo, J.H. (2021). Ironmask: Modular architecture for protecting deep face template, In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 16 125–16 134.

  • Maze, B., Adams, J., Duncan, J. A., Kalka, N., Miller, T., Otto, C., Jain, A. K., Niggel, W. T., Anderson, J., Cheney, J., “Iarpa janus benchmark-c: Face dataset and protocol, et al. (2018). In: international conference on biometrics (ICB). IEEE, 2018, 158–165.

  • Dang, T. M., Nguyen, T. D., Hoang, T., Kim, H., Teoh, A. B. J., & Choi, D. (2022). Avet: a novel transform function to improve cancellable biometrics security. IEEE transactions on information forensics and security, 18, 758–772.

    Google Scholar 

  • Lai, Y., Dong, X., Jin, Z., Tistarelli, M., Yap, W.-S., & Goi, B.-M. (2023). Breaking free from entropy’s shackles: cosine distance-sensitive error correction for reliable biometric cryptography. IEEE transactions on information forensics and security, 18, 3101–3115.

    Google Scholar 

  • Boddeti, V.N. (2018). “Secure face matching using fully homomorphic encryption,” In: 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS). IEEE, pp. 1–10.

  • Shahreza, H. O., Hahn, V. K., Marcel, S., & (2023). Mlp-hash: Protecting face templates via hashing of randomized multi-layer perceptron, (2023). In: 31st European Signal Processing Conference (EUSIPCO). IEEE, 2023, 605–609.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62376003, 62076086, 62476077) and Anhui Provincial Natural Science Foundation (No. 2308085MF200)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe Jin or Wei Jia.

Additional information

Communicated by Segio Escalera.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Y., Dong, X., Jin, Z. et al. Rethinking Contemporary Deep Learning Techniques for Error Correction in Biometric Data. Int J Comput Vis 133, 2158–2175 (2025). https://doi.org/10.1007/s11263-024-02280-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11263-024-02280-8

Keywords

Profiles

  1. XingBo Dong
  2. Zhe Jin