Abstract
Face Anti-Spoofing (FAS) research is challenged by the cross-domain problem, where there is a domain gap between the training and testing data. While recent FAS works are mainly model-centric, focusing on developing domain generalization algorithms for improving cross-domain performance, data-centric research for face anti-spoofing, improving generalization from data quality and quantity, is largely ignored. Therefore, our work starts with data-centric FAS by conducting a comprehensive investigation from the data perspective for improving cross-domain generalization of FAS models. More specifically, at first, based on physical procedures of capturing and recapturing, we propose task-specific FAS data augmentation (FAS-Aug), which increases data diversity by synthesizing data of artifacts, such as printing noise, color distortion, moiré pattern, etc. Our experiments show that using our FAS augmentation can surpass traditional image augmentation in training FAS models to achieve better cross-domain performance. Nevertheless, we observe that models may rely on the augmented artifacts, which are not environment-invariant, and using FAS-Aug may have a negative effect. As such, we propose Spoofing Attack Risk Equalization (SARE) to prevent models from relying on certain types of artifacts and improve the generalization performance. Last but not least, our proposed FAS-Aug and SARE with recent Vision Transformer backbones can achieve state-of-the-art performance on the FAS cross-domain generalization protocols. The implementation is available at https://github.com/RizhaoCai/FAS-Aug.
Similar content being viewed by others
Data availability
The ten datasets used in this paper are publically available (i.e. SiW (Liu et al., 2018), ROSE-YOUTU(Li et al., 2018b), OULU-NPU (Boulkenafet et al., 2017), CASIA FASD(Zhang et al., 2012), IDIAP Replay-Attack (Chingovska et al., 2012), MSU MFSD (Wen et al., 2015), CASIA-SURF CeFA (Liu et al., 2021), CASIA-SURF (Zhang et al., 2020), CASIA-SURF HiFi Mask (Liu et al., 2022), HKBU Marvs V2 (Liu et al., 2016)). These datasets can be found in third-party institutions, including Idiap Research Institute, Hong Kong Baptist University, Institute of Automation of Chinese Academy of Sciences, Tencent Youtu Research, and Michigan State University.
References
Boulkenafet, Z., Komulainen, J., & Hadid, A. (2016). Face spoofing detection using colour texture analysis. IEEE Transactions on Information Forensics and Security, 11(8), 1818–1830. https://doi.org/10.1109/TIFS.2016.2555286
Boulkenafet, Z., Komulainen, J., Li, L., Feng, X., Hadid, A. (2017). OULU-NPU: A mobile face presentation attack database with real-world variations. IEEE International Conference on Automatic Face and Gesture Recognition.
Cai, R., & Chen, C. (2019). Learning deep forest with multi-scale local binary pattern features for face anti-spoofing. arXiv preprint arXiv:1910.03850. ,
Cai, R., Cui, Y., Li, Z., Yu, Z., Li, H., Hu, Y., Kot, A. (2023). Rehearsal-Free Domain Continual Face Anti-Spoofing: Generalize More and Forget Less. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (p.8037-8048).
Cai, R., Li, H., Wang, S., Chen, C., & Kot, A. C. (2020). DRL-FAS: A novel framework based on deep reinforcement learning for face anti-spoofing. IEEE Transactions on Information Forensics and Security, 16, 937–951.
Cai, R., Li, Z., Wan, R., Li, H., Hu, Y., & Kot, A. C. (2022). Learning Meta Pattern for Face Anti-Spoofing. IEEE Transactions on Information Forensics and Security, 17, 1201–1213. https://doi.org/10.1109/TIFS.2022.3158551
Cai, R., Song, Z., Guan, D., Chen, Z., Luo, X., Yi, C., Kot, A. (2024). Benchlmm: Benchmarking cross-style visual capability of large multimodal models. European Conference on Computer Vision (ECCV).
Cai, R., Yu, Z., Kong, C., Li, H., Chen, C., Hu, Y.H., Kot, A. (2024). S-adapter: Generalizing vision transformer for face anti-spoofing with statistical tokens. IEEE Transactions on Information Forensics Security.
Chae, S.-H., Yoo, C.-H., Sun, J.-Y., Kang, M.-C., & Ko, S.-J. (2017). Subpixel rendering for the pentile display based on the human visual system. IEEE Transactions on Consumer Electronics, 63(4), 401–409.
Chen, C., Li, B., Cai, R., Zeng, J., & Huang, J. (2023). Distortion model-based spectral augmentation for generalized recaptured document detection. IEEE Transactions on Information Forensics and Security, 19, 1283–1298.
Chingovska, I., Anjos, A., Marcel, S. (2012). On the effectiveness of local binary patterns in face anti-spoofing. 2012 BIOSIG - Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG) (p.1-7).
ChromaSoft (n.d.). ICM Profiles.[SPACE]https://sites.google.com/site/chromasoft/icmprofiles.
Consortium, I.C., et al. (2004). The role of icc profiles in a colour reproduction system. ICC White Paper: http://www. color. org/ICC_white_paper_7_role_of_ICC_profiles. pdf, , ,
Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V. (2019). AutoAugment: Learning augmentation strategies from data. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 113–123).
Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V. (2020). Randaugment: Practical automated data augmentation with a reduced search space. Proceedings of the ieee/cvf conference on computer vision and pattern recognition workshops (pp. 702–703).
de Freitas Pereira, T., Komulainen, J., Anjos, A., De Martino, J. M., Hadid, A., Pietikäinen, M., & Marcel, S. (2014). Face liveness detection using dynamic texture. EURASIP Journal on Image and Video Processing, 2014(1), 2.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., others (2020). An image is worth 16x16 words: Transformers for image recognition at scale. International Conference on Learning Representations (ICLR).
Eck, D.J. (2021). Introduction to computer graphics. In (pp. 212–215). Hobart and William Smith College.
Elliott, C.H.B., Han, S., Im, M.H., Higgins, M., Higgins, P., Hong, M., Chung, K. (2002). 13.3 co-optimization of color amlcd subpixel architecture and rendering algorithms. SID Symposium Digest of Technical Papers (Vol. 33, pp. 172–175).
Fang, L., Au, O. C., & Cheung, N.-M. (2013). Subpixel rendering: from font rendering to image subsampling [applications corner]. IEEE Signal Processing Magazine, 30(3), 177–189.
Ford, A., & Roberts, A. (1998). Colour space conversions. Westminster University, London,1998, 1–31.
Galbally, J., & Marcel, S. (2014). Face Anti-spoofing Based on General Image Quality Assessment. 2014 22nd International Conference on Pattern Recognition (p.1173-1178).
Garcia, D. C., & de Queiroz, R. L. (2015). Face-spoofing 2d-detection based on moiré-pattern analysis. IEEE Transactions on Information Forensics and Security, 10(4), 778–786.
Garcia, D. C., & de Queiroz, R. L. (2015). Face-spoofing 2D-detection based on Moiré-pattern analysis. IEEE Transactions on Information Forensics and Security, 10(4), 778–786.
Green, P. (2013). Gamut mapping for the perceptual reference medium gamut. 2013 Colour and Visual Computing Symposium (CVCS) (pp. 1–6).
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9729–9738).
Huang, H-P., Sun, D., Liu, Y., Chu, W-S., Xiao, T., Yuan, J. & Yang, M-H. (2022). Adaptive transformers for robust few-shot cross-domain face anti-spoofing. European conference on computer vision.
HutchColor, L. (n.d.). RGB color space profiles.[SPACE]http://www.hutchcolor.com/profiles.html.
Incorporated, A.S. (n.d.). ICC profile downloads - Windows - Adobe Inc.[SPACE]https://www.adobe.com/support/downloads/iccprofiles/iccprofiles_win.html.
Jia, Y., Zhang, J., Shan, S., Chen, X. (2020). Single-Side Domain Generalization for Face Anti-Spoofing. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (p.8481-8490).
Jie, S., & Deng, Z-H. (2022). Convolutional bypasses are better vision transformer adapters. arXiv preprint arXiv:2207.07039.
Joshi, P. (2015). Opencv with python by example. In (p.39-40). Packt Publishing Ltd.
Khalid, M.J. (2021). Introduction to image processing using python.[SPACE]https://ggcarvalho.dev/posts/imageproc/.
Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., & Krishnan, D. (2020). Supervised contrastive learning. Advances in Neural Information Processing Systems, 33, 18661–18673.
King, D. E. (2009). Dlib-ml: A machine learning toolkit. Journal of Machine Learning Research, 10, 1755–1758.
Komulainen, J., Hadid, A., Pietikäinen, M., Anjos, A., Marcel, S. (2013). Complementary countermeasures for detecting scenic face spoofing attacks. 2013 International Conference on Biometrics (ICB) (p.1-7).
Lau, D. L., & Arce, G. R. (2018). Modern digital halftoning. Boca Raton: CRC Press.
Li, H., He, P., Wang, S., Rocha, A., Jiang, X., & Kot, A. C. (2018). Learning generalized deep feature representation for face anti-spoofing. IEEE Transactions on Information Forensics and Security, 13(10), 2639–2652. https://doi.org/10.1109/TIFS.2018.2825949
Li, H., Li, W., Cao, H., Wang, S., Huang, F., & Kot, A. C. (2018). Unsupervised domain adaptation for face anti-spoofing. IEEE Transactions on Information Forensics and Security, 13(7), 1794–1809. https://doi.org/10.1109/TIFS.2018.2801312
Li, H., Pan, S.J., Wang, S., Kot, A.C. (2018). Domain Generalization with Adversarial Feature Learning. Proceedings of the ieee conference on computer vision and pattern recognition (pp. 5400–5409).
Li, H., Wang, S., Kot, A.C. (2016). Face spoofing detection with image quality regression. 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA) (p.1-6).
Li, L., Xia, Z., Hadid, A., Jiang, X., Zhang, H., & Feng, X. (2019). Replayed video attack detection based on motion blur analysis. IEEE Transactions on Information Forensics and Security, 14(9), 2246–2261. https://doi.org/10.1109/TIFS.2019.2895212
Li, Y., Hu, G., Wang, Y., Hospedales, T., Robertson, N.M., Yang, Y. (2020). Differentiable automatic data augmentation. European Conference on Computer Vision (pp. 580–595).
Li, Z., Cai, R., Li, H., Lam, K-Y., Hu, Y., Kot, A.C. (2022). One-class knowledge distillation for face presentation attack detection. IEEE Transactions on Information Forensics and Security
Lin, X., Wang, S., Cai, R., Liu, Y., Fu, Y., Tang, W., Kot, A. (2024). Suppress and rebalance: Towards generalized multi-modal face anti-spoofing. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (p.211-221).
LingChen, T.C., Khonsari, A., Lashkari, A., Nazari, M.R., Sambee, J.S., Nascimento, M.A. (2020). UniformAugment: A search-free probabilistic data augmentation approach. arXiv preprint arXiv:2003.14348.
Liu, A., Tan, Z., Wan, J., Escalera, S., Guo, G., Li, S.Z. (2021). CASIA-SURF CeFA: A benchmark for multi-modal cross-ethnicity face anti-spoofing. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 1179–1187).
Liu, A., Zhao, C., Yu, Z., Wan, J., Su, A., Liu, X., et al. (2022). Contrastive context-aware learning for 3d high-fidelity mask face presentation attack detection. IEEE Transactions on Information Forensics and Security, 17, 2497–2507.
Liu, S., Yang, B., Yuen, P.C., Zhao, G. (2016). A 3D mask face anti-spoofing database with real world variations. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 100–106).
Liu, Y., Chen, Y., Dai, W., Gou, M., Huang, C-T., Xiong, H. (2022). Source-free domain adaptation with contrastive domain alignment and self-supervised exploration for face anti-spoofing. European Conference on Computer Vision (pp. 511–528).
Liu, Y., Jourabloo, A., Liu, X. (2018). Learning Deep Models for Face Anti-Spoofing: Binary or Auxiliary Supervision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 389–398). Salt Lake City, UT.
Liu, Y., & Liu, X. (2022). Spoof trace disentanglement for generic face anti-spoofing. IEEE Transactions on Pattern Analysis and Machine Intelligence,1–1,. https://doi.org/10.1109/TPAMI.2022.3176387
Morris, R.A. (2005). Colour management. Häuser, CL, Steiner, A, Holstein, J, and Scoble M J. Digital imaging of biological type specimens. A manual for best practice. Stuttgart: European Network for Biodiversity Information, , 31–36,
Müller, S.G., & Hutter, F. (2021). Trivialaugment: Tuning-free yet state-of-the-art data augmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 774–782).
Pappas, T.N. (1994). Digital halftoning techniques for printing. Icps (Vol. 94, p.47th).
Pérez-Cabo, D., Jiménez-Cabello, D., Costa-Pazo, A., López-Sastre, R.J. (2020). Learning to Learn Face-PAD: a lifelong learning approach. 2020 IEEE International Joint Conference on Biometrics (IJCB) (pp. 1–9).
Peters, C. (2016). Free blue noise textures.[SPACE]http://momentsingraphics.de/BlueNoise.html. Moments in Graphics.
Pfeiffer, J., Kamath, A., Rücklé, A., Cho, K., Gurevych, I. (2021). Adapterfusion: Non-destructive task composition for transfer learning. Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics.
Pinto, A., Goldenstein, S., Ferreira, A., Carvalho, T., Pedrini, H., & Rocha, A. (2020). Leveraging shape, reflectance and albedo from shading for face presentation attack detection. IEEE Transactions on Information Forensics and Security, 15, 3347–3358. https://doi.org/10.1109/TIFS.2020.2988168
Qin, Y., Yu, Z., Yan, L., Wang, Z., Zhao, C., & Lei, Z. (2021). Meta-teacher for Face Anti-Spoofing. IEEE Transactions on Pattern Analysis and Machine Intelligence, Early Access,1–1,. https://doi.org/10.1109/TPAMI.2021.3091167
Shao, R., Lan, X., Li, J., Yuen, P.C. (2019). Multi-Adversarial Discriminative Deep Domain Generalization for Face Presentation Attack Detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (p.10015-10023).
Shao, R., Lan, X., & Yuen, P. C. (2020). Regularized fine-grained meta face anti-spoofing. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 11974–11981. https://doi.org/10.1609/aaai.v34i07.6873
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1–48.
Spindler, J. P., Hatwar, T. K., Miller, M. E., Arnold, A. D., Murdoch, M. J., Kane, P.J. Van., & Slyke, S. A. (2006). System considerations for rgbw oled displays. Journal of the Society for Information Display, 14(1), 37–48.
Srivatsan, K., Naseer, M., Nandakumar, K. (2023). FLIP: Cross-domain face anti-spoofing with language guidance. Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 19685–19696).
Sun, W., Song, Y., Chen, C., Huang, J., & Kot, A. C. (2020). Face spoofing detection based on local ternary label supervision in fully convolutional networks. IEEE Transactions on Information Forensics and Security, 15, 3181–3196. https://doi.org/10.1109/TIFS.2020.2985530
Troscianko, J., & Stevens, M. (2015). Image calibration and analysis toolbox-a free software suite for objectively measuring reflectance, colour and pattern. Methods in Ecology and Evolution, 6(11), 1320–1331.
Ulichney, R. A. (1988). Dithering with blue noise. Proceedings of the IEEE, 76(1), 56–79.
Ulichney, R.A. (1993). Void-and-cluster method for dither array generation. Human vision, visual processing, and digital display iv (Vol. 1913, pp. 332–343).
Wan, R., Shi, B., Duan, L-Y., Tan, A-H., Kot, A.C. (2017). Benchmarking single-image reflection removal algorithms. Proceedings of the IEEE International Conference on Computer Vision (pp. 3922–3930).
Wan, R., Shi, B., Li, H., Hong, Y., Duan, L., & Kot Chichung, A. (2022). Benchmarking single-image reflection removal algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence,1–1,. https://doi.org/10.1109/TPAMI.2022.3168560
Wang, C-Y., Lu, Y-D., Yang, S-T., Lai, S-H. (2022). PatchNet: A Simple Face Anti-Spoofing Framework via Fine-Grained Patch Recognition. Proceedings of the ieee/cvf conference on computer vision and pattern recognition (pp. 20281–20290).
Wang, G., Han, H., Shan, S., Chen, X. (2020a). Cross-Domain Face Presentation Attack Detection via Multi-Domain Disentangled Representation Learning. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 6678–6687).
Wang, G., Han, H., Shan, S., & Chen, X. (2020). Unsupervised adversarial domain adaptation for cross-domain face presentation attack detection. IEEE Transactions on Information Forensics and Security, 16, 56–69.
Wang, J., Zhang, J., Bian, Y., Cai, Y., Wang, C., Pu, S. (2021). Self-domain adaptation for face anti-spoofing. Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, pp. 2746–2754).
Wang, W., Liu, P., Zheng, H., Ying, R., & Wen, F. (2023). Domain generalization for face anti-spoofing via negative data augmentation. IEEE Transactions on Information Forensics and Security, 18, 2333–2344. https://doi.org/10.1109/TIFS.2023.3266138
Wang, W., Luo, W., Bao, L., Gao, Y., Gong, D., Zheng, S., Overwijk, A. (2019). Face Anti-Spoofing: Model Matters, so Does Data. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Wang, Z., Wang, Z., Yu, Z., Deng, W., Li, J., Gao, T., Wang, Z. (2022). Domain Generalization via Shuffled Style Assembly for Face Anti-Spoofing. Proceedings of the ieee/cvf conference on computer vision and pattern recognition (pp. 4123–4133).
Wen, D., Han, H., & Jain, A. K. (2015). Face spoof detection with image distortion analysis. IEEE Transactions on Information Forensics and Security, 10(4), 746–761. https://doi.org/10.1109/TIFS.2015.2400395
Wu, H., Zeng, D., Hu, Y., Shi, H., Mei, T. (2021). Dual spoof disentanglement generation for face anti-spoofing with depth uncertainty learning. IEEE Transactions on Circuits and Systems for Video Technology
Xiao, F., Farrell, J.E., Catrysse, P.B., Wandell, B. (2009). Mobile imaging: The big challenge of the small pixel. Digital photography v (Vol. 7250, pp. 173–181).
Xiong, Y., Wang, L., Xu, W., Zou, J., Wu, H., Xu, Y., & Yu, G. (2009). Performance analysis of pled based flat panel display with rgbw sub-pixel layout. Organic Electronics, 10(5), 857–862.
Yang, W., Cai, R., Kot, A. (2022). Image inpainting detection via enriched attentive pattern with near original image augmentation. Proceedings of the 30th acm international conference on multimedia (p.2816-2824). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3503161.3547921
Yu, Z., Cai, R., Li, Z., Yang, W., Shi, J., Kot, A.C. (2024). Benchmarking Joint Face Spoofing and Forgery Detection with Visual and Physiological Cues. IEEE Transactions on Dependable and Secure Computing (TDSC).
Yu, Z., Li, X., Shi, J., Xia, Z., & Zhao, G. (2021). Revisiting pixel-wise supervision for face anti-spoofing. IEEE Transactions on Biometrics, Behavior, and Identity Science, 3(3), 285–295. https://doi.org/10.1109/TBIOM.2021.3065526
Yu, Z., Qin, Y., Li, X., Zhao, C., Lei, Z., Zhao, G. (2022). Deep learning for face anti-spoofing: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence
Yu, Z., Qin, Y., Zhao, H., Li, X., Zhao, G. (2021). Dual-Cross Central Difference Network for Face Anti-Spoofing. International Joint Conference on Artificial Intelligence (IJCAI).
Yu, Z., Wan, J., Qin, Y., Li, X., Li, S. Z., & Zhao, G. (2021). NAS-FAS: static-dynamic central difference network search for face anti-spoofing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 3005–3023. https://doi.org/10.1109/TPAMI.2020.3036338
Yu, Z., Zhao, C., Wang, Z., Qin, Y., Su, Z., Li, X., Zhao, G. (2020). Searching Central Difference Convolutional Networks for Face Anti-Spoofing. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (p.5294-5304).
Yuan, S., Timofte, R., Slabaugh, G., Leonardis, A. (2019). Aim 2019 challenge on image demoireing: Dataset and study. 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW) (pp. 3526–3533).
Zha, D., Bhat, Z.P., Lai, K-H., Yang, F., Jiang, Z., Zhong, S., Hu, X. (2023). Data-centric artificial intelligence: A survey. arXiv preprint arXiv:2303.10158
Zhang, K-Y., Yao, T., Zhang, J., Liu, S., Yin, B., Ding, S., Li, J. (2021). Structure destruction and content combination for face anti-spoofing. 2021 IEEE International Joint Conference on Biometrics (IJCB) (pp. 1–6).
Zhang, S., Liu, A., Wan, J., Liang, Y., Guo, G., Escalera, S., & Li, S. Z. (2020). Casia-surf: A large-scale multi-modal benchmark for face anti-spoofing. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2(2), 182–193.
Zhang, X., Wang, Q., Zhang, J., Zhong, Z. (2020). Adversarial AutoAugment. 2020 International Conference on Learning Representations, ICLR.
Zhang, Y. (1998). Space-filling curve ordered dither. Computers & Graphics, 22(4), 559–563.
Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.Z. (2012). A face anti-spoofing database with diverse attacks. IAPR International Conference on Biometrics (p.26-31).
Zhou, Q., Zhang, K-Y., Yao, T., Yi, R., Ding, S., Ma, L. (2022). Adaptive mixture of experts learning for generalizable face anti-spoofing. Proceedings of the 30th ACM International Conference on Multimedia (pp. 6009–6018).
Acknowledgements
This work was carried out at Rapid-Rich Object Search (ROSE) Lab, School of Electrical & Electronic Engineering, Nanyang Technological University. This research is supported by the NTU-PKU Joint Research Institute (a collaboration between the Nanyang Technological University and Peking University that is sponsored by a donation from the Ng Teng Fong Charitable Foundation). This work is also partly by the Basic and Frontier Research Project of PCL, the Major Key Project of PCL, partly by Guangdong Basic and Applied Basic Research Foundation (Grant No. 2024A1515010454 &2023A1515140037), National Natural Science Foundation of China under Grant 62306061, and Chow Sang Sang Group Research Fund under grant DON-RMG 9229161.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by R. Cai, C. Soh: Yasushi Yagi.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cai, R., Soh, C., Yu, Z. et al. Towards Data-Centric Face Anti-spoofing: Improving Cross-Domain Generalization via Physics-Based Data Synthesis. Int J Comput Vis 133, 1689–1710 (2025). https://doi.org/10.1007/s11263-024-02240-2
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1007/s11263-024-02240-2