Abstract
Hyperspectral Images (HSIs) provide detailed scene insights using extensive spectral bands, crucial for material discrimination and earth observation with substantial costs and low spatial resolution. Recently, Convolutional Neural Networks (CNNs) are common choice for Spectral Super-Resolution (SSR) from Multispectral Images (MSIs). However, they often fail to simultaneously exploit pixel-level noise degradation of MSIs and complex contextual spatial-spectral characteristics of HSIs. In this paper, a Deep Local Residual Attention Network with Contextual Refinement Network (DLRA-Net) is proposed to integrate local low-rank spectral and global contextual priors for improved SSR. Specifically, SSR is unfolded into Contextual-attention Refinement Module (CRM) and Dual Local Residual Attention Module (DLRAM). CRM is proposed to adaptively learn complex contextual priors to guide the convolution layer weights for improved spatial restorations. While DLRAM captures deep refined texture details to enhance contextual priors representations for recovering HSIs. Moreover, lateral fusion strategy is designed to integrate the obtained priors among DLRAMs for faster network convergence. Experimental results on natural-scene datasets with practical noise patterns confirm exceptional DLRA-Net performance with relatively small model size. DLRA-Net demonstrates Maximum Relative Improvements (MRI) between 9.71 and 58.58% in Mean Relative Absolute Error (MRAE) with reduced parameters between 52.18 and 85.85%. Besides, a practical RS-HSI dataset is generated for evaluations showing MRI between 8.64 and 50.56% in MRAE. Furthermore, experiments with HSI classifiers indicate improved performance of reconstructed RS-HSIs compared to RS-MSIs, with MRI in Overall Accuracy (OA) between 7.10 and 15.27%. Lastly, a detailed ablation study assesses model complexity and runtime.
Similar content being viewed by others
Data Availability
The data and materials utilized in this study can be made available by the corresponding author upon reasonable request.
Code Availability
The code utilized in this study can be made available by the corresponding author upon reasonable request.
References
Aly, H., & Dubois, E. (2005). Image up-sampling using total-variation regularization with a new observation model. IEEE Transactions on Image Processing, 14(10), 1647–1659. https://doi.org/10.1109/TIP.2005.851684
Aly, H., & Dubois, E. (2005). Specification of the observation model for regularized image up-sampling. IEEE Transactions on Image Processing, 14(5), 567–576. https://doi.org/10.1109/TIP.2005.846019
Aly, H. A., & Sharma, G. (2014). A regularized model-based optimization framework for pan-sharpening. IEEE Transactions on Image Processing, 23(6), 2596–2608. https://doi.org/10.1109/TIP.2014.2316641
Arad, B. , Ben-Shahar, O. , Timofte, R., & Van Gool, L. (2018). NTIRE 2018 challenge on single image super-resolution: Methods and results. in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 965–96511.
Arad, B. , Timofte, R. , Ben-Shahar, O. , Lin, Y. T., & Finlayson, G.D. (2020). NTIRE 2020 Challenge on Spectral Reconstruction from an RGB Image. in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1806–1822. Los Alamitos, CA, USA: IEEE Computer Society.
Arad, B. , Timofte, R. , Yahel, R. , Morag, N. , Bernat, A. , Cai, Y. et al. (2022). NTIRE 2022 spectral recovery challenge and data set. in 2022 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp. 862–880.
Arad, B. , Timofte, R. , Yahel, R. , Morag, N. , Bernat, A. , Wu, Y. et al. (2022). NTIRE 2022 spectral demosaicing challenge and data set. in 2022 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp. 881–895.
Arad, B., & Ben-Shahar, O. (2016). Sparse recovery of hyperspectral signal from natural RGB images. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Computer vision-ECCV 2016 (pp. 19–34). Cham: Springer International Publishing.
Awad, M., Elliethy, A., & Aly, H. A. (2020). Adaptive near-infrared and visible fusion for fast image enhancement. IEEE Transactions on Computational Imaging, 6, 408–418. https://doi.org/10.1109/TCI.2019.2956873
Bioucas-Dias, J. M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., & Chanussot, J. (2013). Hyperspectral remote sensing data analysis and future challenges. IEEE Geoscience and remote sensing magazine, 1(2), 6–36. https://doi.org/10.1109/MGRS.2013.2244672
Borengasser, M., Hungate, W. S., & Watkins, R. (2007). Hyperspectral remote sensing: Principles and applications. CRC Press.
Breuer, M., & Albertz, J. (2000). Geometric correction of airborne whiskbroom scanner imagery using hybrid auxiliary data. International Archives of Photogrammetry and Remote Sensing, 33(B3/1; PART 3), 93–100.
Cai, Y. , Lin, J. , Hu, X. , Wang, H. , Yuan, X. , Zhang, Y., & Van Gool, L. (2022). Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image Reconstruction. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17502–17511. https://doi.org/10.1109/CVPR52688.2022.01698
Calin, M. A., Parasca, S. V., Savastru, D., & Manea, D. (2014). Hyperspectral imaging in the medical field: Present and future. Applied Spectroscopy Reviews, 49(6), 435–447. https://doi.org/10.1080/05704928.2013.838678
Chen, X. , Wang, X. , Zhou, J. , Qiao, Y., & Dong, C. (2023). Activating more pixels in image super-resolution transformer. in 2023 IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 22367–22377.
Deng, L., Sun, J., Chen, Y., Lu, H., Duan, F., Zhu, L., & Fan, T. (2021). M2H-Net: A reconstruction method for hyperspectral remotely sensed imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 323–348. https://doi.org/10.1016/j.isprsjprs.2021.01.019
Dian, R., Li, S., & Kang, X. (2021). Regularizing hyperspectral and multispectral image fusion by CNN denoiser. IEEE Transactions on Neural Networks and Learning Systems, 32(3), 1124–1135. https://doi.org/10.1109/TNNLS.2020.2980398
Dian, R., Shan, T., He, W., & Liu, H. (2023). Spectral super-resolution via model-guided cross-fusion network. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2023.3238506
Dong, W., Fu, F., Shi, G., Cao, X., Wu, J., Li, G., & Li, X. (2016). Hyperspectral image super-resolution via non-negative structured sparse representation. IEEE Transactions on Image Processing, 25(5), 2337–2352. https://doi.org/10.1109/TIP.2016.2542360
Elizar, E., Zulkifley, M. A., Muharar, R., Zaman, M. H. M., & Mustaza, S. M. (2022). A review on multiscale-deep-learning applications. Sensors, 22(19), 7384. https://doi.org/10.3390/s22197384
Elliethy, A., & Aly, H.A. (2017). Fast near infrared fusion-based adaptive enhancement of visible images. in 2017 IEEE global conference on signal and information processing (globalsip), pp. 156–160.
Feng, K., Zeng, H., Zhao, Y., Kong, S. G., & Bu, Y. (2024). Unsupervised spectral demosaicing with lightweight spectral attention networks. IEEE Transactions on Image Processing, 33, 1655–1669. https://doi.org/10.1109/TIP.2024.3364064
Fu, Q. , Souza, M. , Choi, E. , Shin, S. , Baek, S. H., & Heidrich, W. (2024). Limitations of data-driven spectral reconstruction—optics-aware analysis and mitigation.
Galliani, S. , Lanaras, C. , Marmanis, D. , Baltsavias, E., & Schindler, K. (2017). Learned spectral super-resolution. arXiv:1703.09470,
Han, X., Yu, J., Luo, J., & Sun, W. (2019). Reconstruction from multispectral to hyperspectral image using spectral library-based dictionary learning. IEEE Transactions on Geoscience and Remote Sensing, 57(3), 1325–1335. https://doi.org/10.1109/TGRS.2018.2866054
He, K. , Zhang, X. , Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. in 2015 IEEE international conference on computer vision (ICCV), pp. 1026–1034.
He, K. , Zhang, X. , Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. in 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp. 770–778.
Hu, W., Huang, Y., Wei, L., Zhang, F., & Li, H. (2015). Deep convolutional neural networks for hyperspectral image classification. Journal of Sensors, 2015, 1–12. https://doi.org/10.1155/2015/258619
Jia, Y. , Zheng, Y. , Gu, L. , Subpa-Asa, A. , Lam, A. , Sato, Y., Sato, I. (2017). From RGB to spectrum for natural scenes via manifold-based mapping. in 2017 IEEE international conference on computer vision (ICCV), pp. 4715–4723.
Jiaojiao Li., S., Du , Wu, C. , Leng, Y. , Song, R., & Li, Y. (2022). DRCR Net: Dense residual channel re-calibration network with non-local purification for spectral super resolution. in 2022 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp. 1258–1267.
Kingma, D.P., & Ba, J. (2014). Adam: A method for stochastic optimization. CoRRabs/1412.6980
Li, J. , Wu, C. , Song, R. , Li, Y., & Liu, F. (2020). Adaptive weighted attention network with camera spectral sensitivity prior for spectral reconstruction from RGB images. in 2020 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp. 1894–1903.
Li, J., Du, Q., Li, Y., & Li, W. (2018). Hyperspectral image classification with imbalanced data based on orthogonal complement subspace projection. IEEE Transactions on Geoscience and Remote Sensing, 56(7), 3838–3851. https://doi.org/10.1109/TGRS.2018.2813366
Li, T., & Gu, Y. (2021). Progressive spatial-spectral joint network for hyperspectral image reconstruction. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14. https://doi.org/10.1109/TGRS.2021.3079969
Li, J., Huang, X., & Tu, L. (2022). WHU-OHS: A benchmark dataset for large-scale hersepctral image classification. International Journal of Applied Earth Observation and Geoinformation, 113, 103022. https://doi.org/10.1016/j.jag.2022.103022
Li, J., Wu, C., Song, R., Xie, W., Ge, C., Li, B., & Li, Y. (2021). Hybrid 2-D-3-D deep residual attentional network with structure tensor constraints for spectral super-resolution of RGB images. IEEE Transactions on Geoscience and Remote Sensing, 59(3), 2321–2335. https://doi.org/10.1109/TGRS.2020.3004934
Mahesh, S., Jayas, D., Paliwal, J., & White, N. (2015). Hyperspectral imaging to classify and monitor quality of agricultural materials. Journal of Stored Products Research, 61, 17–26. https://doi.org/10.1016/j.jspr.2015.01.006
Mei, S., Geng, Y., Hou, J., & Du, Q. (2022). Learning hyperspectral images from RGB images via a coarse-to-fine CNN. Science China Information Sciences, 65(5), 1–14. https://doi.org/10.1007/s11432-020-3102-9
Monno, Y., Teranaka, H., Yoshizaki, K., Tanaka, M., & Okutomi, M. (2019). Single-sensor RGB-NIR imaging: High-quality system design and prototype implementation. IEEE Sensors Journal, 19(2), 497–507. https://doi.org/10.1109/JSEN.2018.2876774
Pan, Z., Healey, G., Prasad, M., & Tromberg, B. (2003). Face recognition in hyperspectral images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12), 1552–1560. https://doi.org/10.1109/TPAMI.2003.1251148
Paoletti, M. E., Haut, J. M., Fernandez-Beltran, R., Plaza, J., Plaza, A. J., & Pla, F. (2019). Deep pyramidal residual networks for spectral-spatial hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 57(2), 740–754. https://doi.org/10.1109/TGRS.2018.2860125
Poli, D., & Toutin, T. (2012). Review of developments in geometric modelling for high resolution satellite pushbroom sensors. The Photogrammetric Record, 27(137), 58–73. https://doi.org/10.1111/j.1477-9730.2011.00665.x
Ravikanth, L., Jayas, D. S., White, N. D., Fields, P. G., & Sun, D. W. (2017). Extraction of spectral information from hyperspectral data and application of hyperspectral imaging for food and agricultural products. Food and Bioprocess Technology, 10(1), 1–33. https://doi.org/10.1007/s11947-016-1817-8
Roy, S. K., Manna, S., Song, T., & Bruzzone, L. (2021). Attention-based adaptive spectral-spatial kernel resnet for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 59(9), 7831–7843. https://doi.org/10.1109/TGRS.2020.3043267
Shi, Z. , Chen, C. , Xiong, Z. , Liu, D., & Wu, F. (2018). HSCNN+: Advanced CNN-based hyperspectral recovery from RGB images. in 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp. 1052–10528.
Song, W., Li, S., Fang, L., & Lu, T. (2018). Hyperspectral image classification with deep feature fusion network. IEEE Transactions on Geoscience and Remote Sensing, 56(6), 3173–3184. https://doi.org/10.1109/TGRS.2018.2794326
Wald, L. (2002). Data Fusion: Definitions and architectures: Fusion of images of different spatial resolutions. Presses des MINES.
Wang, Z., Bovik, A., Sheikh, H., & Simoncelli, E. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. https://doi.org/10.1109/TIP.2003.819861
Wei, Y., Yuan, Q., Shen, H., & Zhang, L. (2017). Boosting the accuracy of multispectral image Pansharpening by learning a deep residual network. IEEE Geoscience and Remote Sensing Letters, 14(10), 1795–1799. https://doi.org/10.1109/LGRS.2017.2736020
Wu, J. , Aeschbacher, J., & Timofte, R. (2017). In Defense of Shallow Learned Spectral Reconstruction from RGB Images. in 2017 IEEE international conference on computer vision workshops (ICCVW), pp. 471–479.
Yokoya, N., & Iwasaki, A. (2014). Airborne unmixing-based hyperspectral super-resolution using RGB imagery. in 2014 IEEE geoscience and remote sensing symposium, pp. 2653–2656.
Yuhas, R.H. , Goetz, A.F.H., & Boardman, J.W. (1992). Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (sam) algorithm. Jpl, summaries of the third annual jpl airborne geoscience workshop. volume 1: Aviris workshop. https://api.semanticscholar.org/CorpusID:126879175
Zhang, J. , Su, R. , Ren, W. , Fu, Q., & Nie, Y. (2021). Learnable reconstruction methods from RGB images to hyperspectral imaging: A survey. arXiv:2106.15944
Zhang, L., Lang, Z., Wang, P., Wei, W., Liao, S., Shao, L., & Zhang, Y. (2020). Pixel-aware deep function-mixture network for spectral super-resolution. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 12821–12828. https://doi.org/10.1609/aaai.v34i07.6978
Zhang, L., Wei, W., Bai, C., Gao, Y., & Zhang, Y. (2018). Exploiting clustering manifold structure for hyperspectral imagery super-resolution. IEEE Transactions on Image Processing, 27(12), 5969–5982. https://doi.org/10.1109/TIP.2018.2862629
Zhao, Y. , Po, L. M. , Yan, Q. , Liu, W., & Lin, T. (2020). Hierarchical regression network for spectral reconstruction from RGB images. in 2020 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp. 1695–1704.
Zheng, Z., Zhong, Y., Ma, A., & Zhang, L. (2020). FPGA: Fast patch-free global learning framework for fully end-to-end hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 58(8), 5612–5626. https://doi.org/10.1109/TGRS.2020.2967821
Zhong, Z., Li, J., Luo, Z., & Chapman, M. (2018). Spectral-spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Transactions on Geoscience and Remote Sensing, 56(2), 847–858. https://doi.org/10.1109/TGRS.2017.2755542
Zhu, L., Chen, Y., Ghamisi, P., & Benediktsson, J. A. (2018). Generative adversarial networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 56(9), 5046–5063. https://doi.org/10.1109/TGRS.2018.2805286
Funding
No funding is used for this work.
Author information
Authors and Affiliations
Contributions
Ahmed R. El-gabri: Methodology, Software, Data Curation, Writing—Original Draft, Visualization, Formal analysis. Tarek S. Ghoniemy: Validation, Writing—Review & Editing, Supervision. Mohamed A. Elshafey: Validation, Investigation, Resources, Writing—Review, Conceptualization & Editing, Supervision. Hussein A. Aly: Conceptualization, Validation, Formal analysis, Investigation, Resources, Writing—Review & Editing, Supervision, Project administration. All authors reviewed and approved the final version of the manuscript before submission for publication.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Ethics Approval
Not applicable.
Additional information
Communicated by Ayan Chakrabarti.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
El-gabri, A.R., Aly, H.A., Ghoniemy, T.S. et al. DLRA-Net: Deep Local Residual Attention Network with Contextual Refinement for Spectral Super-Resolution. Int J Comput Vis 133, 1499–1531 (2025). https://doi.org/10.1007/s11263-024-02238-w
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1007/s11263-024-02238-w