这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Using Unreliable Pseudo-Labels for Label-Efficient Semantic Segmentation

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The crux of label-efficient semantic segmentation is to produce high-quality pseudo-labels to leverage a large amount of unlabeled or weakly labeled data. A common practice is to select the highly confident predictions as the pseudo-ground-truths for each pixel, but it leads to a problem that most pixels may be left unused due to their unreliability. However, we argue that every pixel matters to the model training, even those unreliable and ambiguous pixels. Intuitively, an unreliable prediction may get confused among the top classes, however, it should be confident about the pixel not belonging to the remaining classes. Hence, such a pixel can be convincingly treated as a negative key to those most unlikely categories. Therefore, we develop an effective pipeline to make sufficient use of unlabeled data. Concretely, we separate reliable and unreliable pixels via the entropy of predictions, push each unreliable pixel to a category-wise queue that consists of negative keys, and manage to train the model with all candidate pixels. Considering the training evolution, we adaptively adjust the threshold for the reliable-unreliable partition. Experimental results on various benchmarks and training settings demonstrate the superiority of our approach over the state-of-the-art alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the PASCAL VOC 2012(http://host.robots.ox.ac.uk/pascal/VOC/), the SBD(https://ieeexplore.ieee.org/abstract/document/6126343), the GTA5(https://arxiv.org/pdf/1608.02192v1.pdf), the Synthia(https://synthia-dataset.net/), and the Cityscapes(https://www.cityscapes-dataset.com/).

References

  • Abramov, A., Bayer, C., and Heller, C. (2020). Keep it simple: Image statistics matching for domain adaptation. arXiv preprint arXiv:2005.12551.

  • Ahn, J. and Kwak, S. (2018). Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In CVPR.

  • Alonso, I., Sabater, A., Ferstl, D., Montesano, L., and Murillo, A. C. (2021). Semi-supervised semantic segmentation with pixel-level contrastive learning from a class-wise memory bank. In ICCV.

  • Araslanov, N. and Roth, S. (2020). Single-stage semantic segmentation from image labels. In CVPR.

  • Araslanov, N. and Roth, S. (2021). Self-supervised augmentation consistency for adapting semantic segmentation. In CVPR.

  • Arazo, E., Ortego, D., Albert, P., O’Connor, N. E., and McGuinness, K. (2020). Pseudo-labeling and confirmation bias in deep semi-supervised learning. In International Joint Conference on Neural Networks (IJCNN.

  • Bachman, P., Alsharif, O., and Precup, D. (2014). Learning with pseudo-ensembles. NeurIPS.

  • Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. TPAMI, 39(12), 2481–2495.

    MATH  Google Scholar 

  • Chang, W.-L., Wang, H.-P., Peng, W.-H., and Chiu, W.-C. (2019). All about structure: Adapting structural information across domains for boosting semantic segmentation. In CVPR.

  • Chang, Y.-T., Wang, Q., Hung, W.-C., Piramuthu, R., Tsai, Y.-H., and Yang, M.-H. (2020). Weakly-supervised semantic segmentation via sub-category exploration. In CVPR.

  • Chen, C., Xie, W., Huang, W., Rong, Y., Ding, X., Huang, Y., Xu, T., and Huang, J. (2019). Progressive feature alignment for unsupervised domain adaptation. In CVPR.

  • Chen, H., Jin, Y., Jin, G., Zhu, C., & Chen, E. (2021). Semi-supervised semantic segmentation by improving prediction confidence. IEEE Transactions on Neural Networks and Learning Systems, 13(1), 4991–5003.

    MATH  Google Scholar 

  • Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS. TPAMI, 40(4), 834–848.

    MATH  Google Scholar 

  • Chen, L.-C., Papandreou, G., Schroff, F., and Adam, H. (2017b). Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587.

  • Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. In ECCV.

  • Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and Hinton, G. (2020). Big self-supervised models are strong semi-supervised learners. NeurIPS.

  • Chen, X., Xie, S., and He, K. (2021b). An empirical study of training self-supervised vision transformers. In ICCV.

  • Chen, X., Yuan, Y., Zeng, G., and Wang, J. (2021c). Semi-supervised semantic segmentation with cross pseudo supervision. In CVPR.

  • Cheng, B., Misra, I., Schwing, A. G., Kirillov, A., and Girdhar, R. (2022). Masked-attention mask transformer for universal image segmentation. In CVPR.

  • Cheng, B., Schwing, A., and Kirillov, A. (2021). Per-pixel classification is not all you need for semantic segmentation. NeurIPS.

  • Choi, J., Kim, T., and Kim, C. (2019). Self-ensembling with gan-based data augmentation for domain adaptation in semantic segmentation. In ICCV.

  • Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., and Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. In CVPR.

  • Dai, J., He, K., and Sun, J. (2015). Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In ICCV.

  • Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In CVPR.

  • DeVries, T. and Taylor, G. W. (2017). Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552.

  • Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. In ICLR.

  • Du, Y., Fu, Z., Liu, Q., and Wang, Y. (2022a). Weakly supervised semantic segmentation by pixel-to-prototype contrast. In CVPR.

  • Du, Y., Shen, Y., Wang, H., Fei, J., Li, W., Wu, L., Zhao, R., Fu, Z., and Liu, Q. (2022b). Learning from future: A novel self-training framework for semantic segmentation. NeurIPS.

  • Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (VOC) challenge. IJCV, 88(2), 303–338.

    Google Scholar 

  • Fan, J., Zhang, Z., Song, C., and Tan, T. (2020a). Learning integral objects with intra-class discriminator for weakly-supervised semantic segmentation. In CVPR.

  • Fan, J., Zhang, Z., and Tan, T. (2020b). Employing multi-estimations for weakly-supervised semantic segmentation. In ECCV.

  • Fan, J., Zhang, Z., & Tan, T. (2022). Pointly-supervised panoptic segmentation. In ECCV: Springer.

    Google Scholar 

  • Fan, J., Zhang, Z., Tan, T., Song, C., and Xiao, J. (2020c). Cian: Cross-image affinity net for weakly supervised semantic segmentation. In AAAI.

  • French, G., Laine, S., Aila, T., Mackiewicz, M., and Finlayson, G. (2020). Semi-supervised semantic segmentation needs strong, varied perturbations. In BMVC.

  • Gong, R., Li, W., Chen, Y., and Gool, L. V. (2019). Dlow: Domain flow for adaptation and generalization. In CVPR.

  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. NeurIPS.

  • Grandvalet, Y. and Bengio, Y. (2004). Semi-supervised learning by entropy minimization. NeurIPS.

  • Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., and Malik, J. (2011). Semantic contours from inverse detectors. In ICCV.

  • He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. In CVPR.

  • He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In CVPR.

  • Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko, K., Efros, A., and Darrell, T. (2018). Cycada: Cycle-consistent adversarial domain adaptation. In ICML.

  • Hoffman, J., Wang, D., Yu, F., and Darrell, T. (2016). Fcns in the wild: Pixel-level adversarial and constraint-based adaptation. arXiv preprint arXiv:1612.02649.

  • Hong, W., Wang, Z., Yang, M., and Yuan, J. (2018). Conditional generative adversarial network for structured domain adaptation. In CVPR.

  • Hoyer, L., Dai, D., and Van Gool, L. (2022). Daformer: Improving network architectures and training strategies for domain-adaptive semantic segmentation. In CVPR.

  • Hu, H., Wei, F., Hu, H., Ye, Q., Cui, J., and Wang, L. (2021). Semi-supervised semantic segmentation via adaptive equalization learning. NeurIPS.

  • Ji, W., Li, J., Bi, Q., Liu, T., Li, W., and Cheng, L. (2023). Segment anything is not always perfect: An investigation of sam on different real-world applications. arXiv preprint arXiv:2304.05750.

  • Jiang, P.-T., Hou, Q., Cao, Y., Cheng, M.-M., Wei, Y., and Xiong, H.-K. (2019). Integral object mining via online attention accumulation. In ICCV.

  • Kang, G., Wei, Y., Yang, Y., Zhuang, Y., and Hauptmann, A. (2020). Pixel-level cycle association: A new perspective for domain adaptive semantic segmentation. NeurIPS.

  • Ke, Z., Qiu, D., Li, K., Yan, Q., and Lau, R. W. (2020). Guided collaborative training for pixel-wise semi-supervised learning. In ECCV.

  • Kim, B., Han, S., and Kim, J. (2021). Discriminative region suppression for weakly-supervised semantic segmentation. In AAAI.

  • Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo, W.-Y., et al. (2023). Segment anything. In ICCV.

  • Krähenbühl, P. and Koltun, V. (2011). Efficient inference in fully connected crfs with gaussian edge potentials. NeurIPS.

  • Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.

  • Lee, C.-Y., Batra, T., Baig, M. H., and Ulbricht, D. (2019a). Sliced wasserstein discrepancy for unsupervised domain adaptation. In CVPR.

  • Lee, D.-H. et al. (2013). Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In ICML, volume 3, page 896.

  • Lee, J., Choi, J., Mok, J., and Yoon, S. (2021a). Reducing information bottleneck for weakly supervised semantic segmentation. NeurIPS.

  • Lee, J., Kim, E., Lee, S., Lee, J., and Yoon, S. (2019b). Ficklenet: Weakly and semi-supervised semantic image segmentation using stochastic inference. In CVPR.

  • Lee, J., Kim, E., and Yoon, S. (2021b). Anti-adversarially manipulated attributions for weakly and semi-supervised semantic segmentation. In CVPR.

  • Lee, S., Lee, M., Lee, J., and Shim, H. (2021c). Railroad is not a train: Saliency as pseudo-pixel supervision for weakly supervised semantic segmentation. In CVPR.

  • Li, J., Fan, J., and Zhang, Z. (2022a). Towards noiseless object contours for weakly supervised semantic segmentation. In CVPR.

  • Li, R., Jia, X., He, J., Chen, S., and Hu, Q. (2021a). T-svdnet: Exploring high-order prototypical correlations for multi-source domain adaptation. In ICCV.

  • Li, R., Li, S., He, C., Zhang, Y., Jia, X., and Zhang, L. (2022b). Class-balanced pixel-level self-labeling for domain adaptive semantic segmentation. In CVPR.

  • Li, Y., Kuang, Z., Liu, L., Chen, Y., and Zhang, W. (2021b). Pseudo-mask matters in weakly-supervised semantic segmentation. In ICCV.

  • Li, Y., Yuan, L., and Vasconcelos, N. (2019). Bidirectional learning for domain adaptation of semantic segmentation. In CVPR.

  • Lin, D., Dai, J., Jia, J., He, K., and Sun, J. (2016). Scribblesup: Scribble-supervised convolutional networks for semantic segmentation. In CVPR.

  • Liu, S., Zhi, S., Johns, E., and Davison, A. J. (2021). Bootstrapping semantic segmentation with regional contrast. arXiv preprint arXiv:2104.04465.

  • Long, J., Shelhamer, E., and Darrell, T. (2015a). Fully convolutional networks for semantic segmentation. In CVPR.

  • Long, M., Cao, Y., Wang, J., and Jordan, M. (2015b). Learning transferable features with deep adaptation networks. In ICML.

  • Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101.

  • Luo, Y., Zheng, L., Guan, T., Yu, J., and Yang, Y. (2019). Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation. In CVPR.

  • Ma, J., He, Y., Li, F., Han, L., You, C., & Wang, B. (2024). Segment anything in medical images. Nature Communications, 15(1), 654.

    MATH  Google Scholar 

  • Mei, K., Zhu, C., Zou, J., and Zhang, S. (2020). Instance adaptive self-training for unsupervised domain adaptation. In ECCV.

  • Melas-Kyriazi, L. and Manrai, A. K. (2021). Pixmatch: Unsupervised domain adaptation via pixelwise consistency training. In CVPR.

  • Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R., and Kim, K. (2018). Image to image translation for domain adaptation. In CVPR.

  • Nowozin, S., Cseke, B., and Tomioka, R. (2016). f-gan: Training generative neural samplers using variational divergence minimization. NeurIPS.

  • Olsson, V., Tranheden, W., Pinto, J., and Svensson, L. (2021). Classmix: Segmentation-based data augmentation for semi-supervised learning. In CVPR.

  • Oord, A. v. d., Li, Y., and Vinyals, O. (2018). Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748.

  • Ouali, Y., Hudelot, C., and Tami, M. (2020). Semi-supervised semantic segmentation with cross-consistency training. In CVPR.

  • Papandreou, G., Chen, L.-C., Murphy, K. P., and Yuille, A. L. (2015). Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In ICCV.

  • Pinheiro, P. O. and Collobert, R. (2015). From image-level to pixel-level labeling with convolutional networks. In CVPR.

  • Richter, S. R., Vineet, V., Roth, S., and Koltun, V. (2016). Playing for data: Ground truth from computer games. In ECCV.

  • Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer Assisted Intervention, pages 234–241. Springer.

  • Ros, G., Sellart, L., Materzynska, J., Vazquez, D., and Lopez, A. M. (2016). The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In CVPR.

  • Roy, A. and Todorovic, S. (2017). Combining bottom-up, top-down, and smoothness cues for weakly supervised image segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3529–3538.

  • Ru, L., Zhan, Y., Yu, B., and Du, B. (2022). Learning affinity from attention: end-to-end weakly-supervised semantic segmentation with transformers. In CVPR.

  • Ru, L., Zheng, H., Zhan, Y., and Du, B. (2023). Token contrast for weakly-supervised semantic segmentation. In CVPR.

  • Saito, K., Watanabe, K., Ushiku, Y., and Harada, T. (2018). Maximum classifier discrepancy for unsupervised domain adaptation. In CVPR.

  • Sajjadi, M., Javanmardi, M., and Tasdizen, T. (2016). Regularization with stochastic transformations and perturbations for deep semi-supervised learning. NeurIPS.

  • Sakaridis, C., Dai, D., and Van Gool, L. (2021). Acdc: The adverse conditions dataset with correspondences for semantic driving scene understanding. In ICCV.

  • Sankaranarayanan, S., Balaji, Y., Jain, A., Lim, S. N., and Chellappa, R. (2018). Learning from synthetic data: Addressing domain shift for semantic segmentation. In CVPR.

  • Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C. A., Cubuk, E. D., Kurakin, A., and Li, C.-L. (2020). Fixmatch: Simplifying semi-supervised learning with consistency and confidence. NeurIPS.

  • Strudel, R., Garcia, R., Laptev, I., and Schmid, C. (2021). Segmenter: Transformer for semantic segmentation. In ICCV.

  • Su, Y., Sun, R., Lin, G., and Wu, Q. (2021). Context decoupling augmentation for weakly supervised semantic segmentation. In ICCV.

  • Sun, G., Wang, W., Dai, J., & Van Gool, L. (2020). Mining cross-image semantics for weakly supervised semantic segmentation. In ECCV: Springer.

    MATH  Google Scholar 

  • Sun, K., Shi, H., Zhang, Z., and Huang, Y. (2021). Ecs-net: Improving weakly supervised semantic segmentation by using connections between class activation maps. In ICCV.

  • Tarvainen, A. and Valpola, H. (2017). Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. NeurIPS.

  • Tsai, Y.-H., Hung, W.-C., Schulter, S., Sohn, K., Yang, M.-H., and Chandraker, M. (2018). Learning to adapt structured output space for semantic segmentation. In CVPR.

  • Vu, T.-H., Jain, H., Bucher, M., Cord, M., and Pérez, P. (2019). Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation. In CVPR.

  • Wan, Z., Zhang, B., Chen, D., Zhang, P., Chen, D., Liao, J., and Wen, F. (2020). Bringing old photos back to life. In CVPR.

  • Wang, H., Fan, J., Wang, Y., Song, K., Wang, T., and Zhang, Z. (2023a). Droppos: Pre-training vision transformers by reconstructing dropped positions. Advances in Neural Information Processing Systems (NeurIPS).

  • Wang, H., Shen, T., Zhang, W., Duan, L.-Y., and Mei, T. (2020a). Classes matter: A fine-grained adversarial approach to cross-domain semantic segmentation. In ECCV.

  • Wang, H., Shen, Y., Fei, J., Li, W., Wu, L., Wang, Y., and Zhang, Z. (2023b). Pulling target to source: A new perspective on domain adaptive semantic segmentation. arXiv preprint arXiv:2305.13752.

  • Wang, H., Song, K., Fan, J., Wang, Y., Xie, J., and Zhang, Z. (2023c). Hard patches mining for masked image modeling. In CVPR.

  • Wang, W., Zhou, T., Yu, F., Dai, J., Konukoglu, E., and Van Gool, L. (2021). Exploring cross-image pixel contrast for semantic segmentation. In ICCV.

  • Wang, Y., Chen, H., Fan, Y., Sun, W., Tao, R., Hou, W., Wang, R., Yang, L., Zhou, Z., Guo, L.-Z., Qi, H., Wu, Z., Li, Y.-F., Nakamura, S., Ye, W., Savvides, M., Raj, B., Shinozaki, T., Schiele, B., Wang, J., Xie, X., and Zhang, Y. (2022a). Usb: A unified semi-supervised learning benchmark for classification. In NeurIPS.

  • Wang, Y., Chen, H., Heng, Q., Hou, W., Fan, Y., Wu, Z., Wang, J., Savvides, M., Shinozaki, T., Raj, B., et al. (2023d). Freematch: Self-adaptive thresholding for semi-supervised learning. In ICLR.

  • Wang, Y., Fei, J., Wang, H., Li, W., Wu, L., Zhao, R., and Shen, Y. (2023e). Balancing logit variation for long-tail semantic segmentation. In CVPR.

  • Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J., and Bailey, J. (2019). Symmetric cross entropy for robust learning with noisy labels. In CVPR.

  • Wang, Y., Wang, H., Shen, Y., Fei, J., Li, W., Jin, G., Wu, L., Zhao, R., and Le, X. (2022b). Semi-supervised semantic segmentation using unreliable pseudo labels. In CVPR.

  • Wang, Y., Zhang, J., Kan, M., Shan, S., and Chen, X. (2020b). Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation. In CVPR.

  • Wei, Y., Feng, J., Liang, X., Cheng, M.-M., Zhao, Y., and Yan, S. (2017). Object region mining with adversarial erasing: A simple classification to semantic segmentation approach. In CVPR.

  • Wu, T., Huang, J., Gao, G., Wei, X., Wei, X., Luo, X., and Liu, C. H. (2021). Embedded discriminative attention mechanism for weakly supervised semantic segmentation. In CVPR.

  • Wu, Z., Wang, X., Gonzalez, J. E., Goldstein, T., and Davis, L. S. (2019). Ace: Adapting to changing environments for semantic segmentation. In ICCV.

  • Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J. M., and Luo, P. (2021). Segformer: Simple and efficient design for semantic segmentation with transformers. NeurIPS.

  • Xie, Q., Luong, M.-T., Hovy, E., and Le, Q. V. (2020). Self-training with noisy student improves imagenet classification. In CVPR.

  • Xu, J., De Mello, S., Liu, S., Byeon, W., Breuel, T., Kautz, J., and Wang, X. (2022). Groupvit: Semantic segmentation emerges from text supervision. In CVPR.

  • Xu, L., Ouyang, W., Bennamoun, M., Boussaid, F., Sohel, F., and Xu, D. (2021a). Leveraging auxiliary tasks with affinity learning for weakly supervised semantic segmentation. In ICCV.

  • Xu, Y., Shang, L., Ye, J., Qian, Q., Li, Y.-F., Sun, B., Li, H., and Jin, R. (2021b). Dash: Semi-supervised learning with dynamic thresholding. In ICML.

  • Yang, L., Zhuo, W., Qi, L., Shi, Y., and Gao, Y. (2022). St++: Make self-training work better for semi-supervised semantic segmentation. In CVPR.

  • Yao, Y., Chen, T., Xie, G.-S., Zhang, C., Shen, F., Wu, Q., Tang, Z., and Zhang, J. (2021). Non-salient region object mining for weakly supervised semantic segmentation. In CVPR.

  • Yu, F. and Koltun, V. (2015). Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122.

  • Yuan, J., Liu, Y., Shen, C., Wang, Z., and Li, H. (2021). A simple baseline for semi-supervised semantic segmentation with strong data augmentation. In ICCV.

  • Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y. (2019). Cutmix: Regularization strategy to train strong classifiers with localizable features. In ICCV.

  • Zhang, B., Xiao, J., Wei, Y., Sun, M., and Huang, K. (2020a). Reliability does matter: An end-to-end weakly supervised semantic segmentation approach. In AAAI.

  • Zhang, F., Gu, C., Zhang, C., and Dai, Y. (2021a). Complementary patch for weakly supervised semantic segmentation. In ICCV.

  • Zhang, P., Zhang, B., Chen, D., Yuan, L., and Wen, F. (2020b). Cross-domain correspondence learning for exemplar-based image translation. In CVPR.

  • Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., and Wen, F. (2021b). Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. In CVPR.

  • Zhang, Q., Zhang, J., Liu, W., and Tao, D. (2019). Category anchor-guided unsupervised domain adaptation for semantic segmentation. NeurIPS.

  • Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017). Pyramid scene parsing network. In CVPR.

  • Zhao, X., Vemulapalli, R., Mansfield, P. A., Gong, B., Green, B., Shapira, L., and Wu, Y. (2021). Contrastive learning for label efficient semantic segmentation. In ICCV.

  • Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang, T., Torr, P. H., et al. (2021). Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In CVPR.

  • Zhong, Y., Yuan, B., Wu, H., Yuan, Z., Peng, J., and Wang, Y.-X. (2021). Pixel contrastive-consistent semi-supervised semantic segmentation. In ICCV.

  • Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016). Learning deep features for discriminative localization. In CVPR.

  • Zhou, Q., Zhuang, C., Lu, X., and Ma, L. (2021). Domain adaptive semantic segmentation with regional contrastive consistency regularization. arXiv preprint arXiv:2110.05170.

  • Zou, Y., Yu, Z., Kumar, B., and Wang, J. (2018). Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In ECCV.

  • Zou, Y., Zhang, Z., Zhang, H., Li, C.-L., Bian, X., Huang, J.-B., and Pfister, T. (2020). Pseudoseg: Designing pseudo labels for semantic segmentation. In ICLR.

  • Zuo, S., Yu, Y., Liang, C., Jiang, H., Er, S., Zhang, C., Zhao, T., and Zha, H. (2021). Self-training with differentiable teacher. arXiv preprint arXiv:2109.07049.

Download references

Acknowledgements

This work was supported in part by the National Key R&D Program of China (No. 2022ZD0116500), the National Natural Science Foundation of China (No. U21B2042, No. 62320106010), the 2035 Innovation Program of CAS, and the InnoHK program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxiang Zhang.

Additional information

Communicated by Jifeng Dai.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, Y., Shen, Y. et al. Using Unreliable Pseudo-Labels for Label-Efficient Semantic Segmentation. Int J Comput Vis 133, 1476–1498 (2025). https://doi.org/10.1007/s11263-024-02229-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11263-024-02229-x

Keywords

Profiles

  1. Haochen Wang