Abstract
The demand for compact cameras capable of recording high-speed scenes with high resolution is steadily increasing. However, achieving such capabilities often entails high bandwidth requirements, resulting in bulky, heavy systems unsuitable for low-capacity platforms. To address this challenge, leveraging a coded exposure setup to encode a frame sequence into a blurry snapshot and subsequently retrieve the latent sharp video presents a lightweight solution. Nevertheless, restoring motion from blur remains a formidable challenge due to the inherent ill-posedness of motion blur decomposition, the intrinsic ambiguity in motion direction, and the diverse motions present in natural videos. In this study, we propose a novel approach to address these challenges by combining the classical coded exposure imaging technique with the emerging implicit neural representation for videos. We strategically embed motion direction cues into the blurry image during the imaging process. Additionally, we develop a novel implicit neural representation based blur decomposition network to sequentially extract the latent video frames from the blurry image, leveraging the embedded motion direction cues. To validate the effectiveness and efficiency of our proposed framework, we conduct extensive experiments using benchmark datasets and real-captured blurry images. The results demonstrate that our approach significantly outperforms existing methods in terms of both quality and flexibility. The code for our work is available at https://github.com/zhihongz/BDINR.
Similar content being viewed by others
Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
References
Agrawal, A., & Raskar, R. (2009). Optimal single image capture for motion deblurring. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp 2560–2567
Agrawal, A., & Xu, Y. (2009). Coded exposure deblurring: Optimized codes for PSF estimation and invertibility. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp 2066–2073
Agrawal, A., Xu, Y., & Raskar, R. (2009). Invertible motion blur in video. In: ACM SIGGRAPH 2009 papers, ACM, pp 1–8
Argaw, D. M., Kim, J., Rameau, F., Zhang, C., & Kweon, I. S. (2021). Restoration of video frames from a single blurred image with motion understanding. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 701–710
Charbonnier, P., Blanc-Feraud, L., Aubert, G., & Barlaud, M. (1994). Two deterministic half-quadratic regularization algorithms for computed imaging. In: 1994 IEEE International Conference on Image Processing (ICIP), IEEE Comput. Soc. Press, vol 2, pp 168–172
Chen, H., Gu, J., Gallo, O., Liu, M. Y., Veeraraghavan, A., & Kautz, J. (2018). Reblur2Deblur: Deblurring videos via self-supervised learning. In: 2018 IEEE International Conference on Computational Photography (ICCP), IEEE, pp 1–9
Chen, H., He, B., Wang, H., Ren, Y., Lim, S. N., & Shrivastava, A. (2021). NeRV: Neural representations for videos. Advances in Neural Information Processing Systems, 34, 21557–21568.
Chen, H., Gwilliam, M., Lim. S. N., & Shrivastava, A. (2023). HNeRV: A hybrid neural representation for videos. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Chen, Z., Chen, Y., Liu, J., Xu, X., Goel, V., Wang, Z., Shi, H., & Wang, X. (2022). VideoINR: Learning video implicit neural representation for continuous space-time super-resolution. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 2047–2057
Cui, G., Ye, X., Zhao, J., Zhu, L., Chen, Y., & Zhang, Y. (2021). An effective coded exposure photography framework using optimal fluttering pattern generation. Optics and Lasers in Engineering, 139, 106489.
Deng, C., Zhang, Y., Mao, Y., Fan, J., Suo, J., Zhang, Z., & Dai, Q. (2021). Sinusoidal sampling enhanced compressive camera for high speed imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(4), 1380–1393.
Dong, J., Ota, K., & Dong, M. (2023). Video frame interpolation: A comprehensive survey. ACM Transactions on Multimedia Computing, Communications, and Applications, 19(2s), 1–31.
Geng, Z., Liang, L., Ding, T., & Zharkov, I. (2022). Rstt: Real-time spatial temporal transformer for space-time video super-resolution. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 17441–17451
Harshavardhan, S., Gupta, S., & Venkatesh, K. S. (2013). Flutter shutter based motion deblurring in complex scenes. In: 2013 Annual IEEE India Conference (INDICON), IEEE, pp 1–6
Hitomi, Y., Gu, J., Gupta, M., Mitsunaga, T., & Nayar, S. K. (2011). Video from a single coded exposure photograph using a learned over-complete dictionary. In: 2011 International Conference on Computer Vision, IEEE, pp 287–294
Jeon, H. G., Lee, J. Y., Han, Y., Kim, S.J., & Kweon, I. S. (2015). Complementary sets of shutter sequences for motion deblurring. In: 2015 IEEE International Conference on Computer Vision (ICCV), IEEE, pp 3541–3549
Jeon, H. G., Lee, J. Y., Han, Y., Kim, S. J., & Kweon, I. S. (2017). Generating fluttering patterns with low autocorrelation for coded exposure imaging. International Journal of Computer Vision, 123(2), 269–286.
Jin, M., Meishvili, G., & Favaro, P. (2018). Learning to extract a video sequence from a single motion-blurred image. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 6334–6342
Jin, M., Hu. Z., & Favaro, P. (2019). Learning to extract flawless slow motion from blurry videos. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp 8104–8113
Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J., & Aila, T. (2021). Alias-free generative adversarial networks. Advances in Neural Information Processing Systems, 34, 852–863.
Ke, J., Wang, Q., Wang, Y., Milanfar, P., & Yang, F. (2021). MUSIQ: Multi-scale Image Quality Transformer. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, pp 5128–5137
Li, C., Guo, C., Han, L., Jiang, J., Cheng, M. M., Gu, J., & Loy, C. C. (2022). Low-light image and video enhancement using deep learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12), 9396–9416. https://doi.org/10.1109/TPAMI.2021.3126387
Li, D., Bian, L., & Zhang, J. (2022). High-speed large-scale imaging using frame decomposition from intrinsic multiplexing of motion. IEEE Journal of Selected Topics in Signal Processing, 16(4), 700–712.
Li, Z., Wang, M., Pi, H., Xu, K., Mei, J., & Liu, Y. (2022c). E-NeRV: Expedite neural video representation with disentangled spatial-temporal context. In: Computer Vision—ECCV 2022, Springer Nature Switzerland, pp 267–284
Lin, S., Zhang, J., Pan, J., Jiang, Z., Zou, D., Wang, Y., Chen, J., & Ren. J. (2020). Learning event-driven video deblurring and interpolation. In: Computer Vision—ECCV 2020, Springer International Publishing, pp 695–710
Liu, D., Gu, J., Hitomi, Y., Gupta, M., Mitsunaga, T., & Nayar, S. K. (2014). Efficient space-time sampling with pixel-wise coded exposure for high-speed imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(2), 248–260.
Llull, P., Liao, X., Yuan, X., Yang, J., Kittle, D., Carin, L., Sapiro, G., & Brady, D. J. (2013). Coded aperture compressive temporal imaging. Optics Express, 21(9), 10526–10545.
Loshchilov, I., & Hutter, F. (2017). SGDR: Stochastic gradient descent with warm restarts. In: 2017 International Conference on Learning Representations (ICLR), p 1
Mai, L., & Liu, F. (2022). Motion-adjustable neural implicit video representation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 10738–10747
McCloskey, S. (2010). Velocity-dependent shutter sequences for motion deblurring. In: Computer Vision—ECCV 2010, Springer, pp 309–322
McCloskey, S., Ding, Y., & Yu, J. (2012). Design and estimation of coded exposure point spread functions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(10), 2071–2077.
Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., & Ng, R. (2020). NeRF: Representing scenes as neural radiance fields for view synthesis. In: Computer vision–ECCV 2020, Springer International Publishing, pp 405–421
Nah, S., Kim, T. H., Lee, K. M. (2017). Deep multi-scale convolutional neural network for dynamic scene deblurring. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp 257–265
Nah, S., Son, S., Lee, J., & Lee, K. M. (2021). Clean images are hard to reblur: Exploiting the ill-posed inverse task for dynamic scene deblurring. In: 2021 International Conference on Learning Representations (ICLR).
Pan, L., Scheerlinck, C., Yu, X., Hartley, R., Liu, M., & Dai, Y. (2019). Bringing a blurry frame alive at high frame-rate with an event camera. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 6820–6829
Parihar, A. S., Varshney, D., Pandya, K., & Aggarwal, A. (2022). A comprehensive survey on video frame interpolation techniques. The Visual Computer, 38(1), 295–319.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., & Desmaison, A. (2019). PyTorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32, 8024–8035.
Pinkus, A. (1999). Approximation theory of the MLP model in neural networks. Acta Numerica, 8, 143–195.
Purohit, K., Shah, A., & Rajagopalan, A. N. (2019). Bringing alive blurred moments. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 6830–6839
Qiu, J., Wang, X., Maybank, S. J., & Tao, D. (2019). World From Blur. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp 8485–8496
Raskar, R., Agrawal, A., & Tumblin, J. (2006). Coded exposure photography: Motion deblurring using fluttered shutter. ACM Transactions on Graphics, 25(3), 795–804.
Rota, C., Buzzelli, M., Bianco, S., & Schettini, R. (2023). Video restoration based on deep learning: A comprehensive survey. Artificial Intelligence Review, 56(6), 5317–5364.
Rozumnyi, D., Oswald, M. R., Ferrari, V., Matas, J., & Pollefeys, M. (2021). DeFMO: Deblurring and shape recovery of fast moving objects. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 3456–3465
Sanghvi, Y., Gnanasambandam, A., Mao, Z., & Chan, S. H. (2022). Photon-limited blind deconvolution using unsupervised iterative kernel estimation. IEEE Transactions on Computational Imaging, 8, 1051–1062.
Shangguan, W., Sun, Y., Gan, W., & Kamilov, U. S. (2022). Learning cross-video neural representations for high-quality frame interpolation. In: Computer Vision–ECCV 2022, Springer Nature Switzerland, pp 511–528.
Shedligeri, P. S. A., & Mitra, K. (2021). A unified framework for compressive video recovery from coded exposure techniques. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, pp 1599–1608
Shen, W., Bao, W., Zhai, G., Chen, L., Min, X., & Gao, Z. (2020). Blurry video frame interpolation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 5114–5123
Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J., & Ng, R. (2020). Fourier features let networks learn high frequency functions in low dimensional domains. Advances in Neural Information Processing Systems, Curran Associates Inc, 33, 7537–7547.
Wang, Z., Bovik, A., Sheikh, H., & Simoncelli, E. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.
Xie, X., Zhou, P., Li, H., Lin, Z., & Yan, S. (2023). Adan: Adaptive nesterov momentum algorithm for faster optimizing deep models. arXiv preprint arXiv:2208.06677
Yang, R., Xiao, T., Cheng, Y., Cao, Q., Qu, J., Suo, J., & Dai, Q. (2022). SCI: A spectrum concentrated implicit neural compression for biomedical data. arXiv preprint arXiv:2209.15180
Zhang, K., Luo, W., Stenger, B., Ren, W., Ma, L., & Li, H. (2020a). Every moment matters: Detail-aware networks to bring a blurry image alive. In: 28th ACM International Conference on Multimedia, ACM, pp 384–392.
Zhang, K., Ren, W., Luo, W., Lai, W. S., Stenger, B., Yang, M. H., & Li, H. (2022). Deep image deblurring: A survey. International Journal of Computer Vision, 130(9), 2103–2130.
Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, O. (2018). The unreasonable effectiveness of deep features as a perceptual metric. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp 586–595.
Zhang, W., Ma, K., Yan, J., Deng, D., & Wang, Z. (2020). Blind Image Quality Assessment Using a Deep Bilinear Convolutional Neural Network. IEEE Transactions on Circuits and Systems for Video Technology, 30(1), 36–47.
Zhang, Z., Deng, C., Liu, Y., Yuan, X., Suo, J., & Dai, Q. (2021). Ten-mega-pixel snapshot compressive imaging with a hybrid coded aperture. Photonics Research, 9(11), 2277–2287.
Zhang, Z., Cheng, Y., Suo, J., Bian, L., & Dai, Q. (2023). INFWIDE: Image and feature space wiener deconvolution network for non-blind image deblurring in low-light conditions. IEEE Transactions on Image Processing, 32, 1390–1402.
Zhang, Z., Dong, K., Suo, J., & Dai, Q. (2023). Deep coded exposure: End-to-end co-optimization of flutter shutter and deblurring processing for general motion blur removal. Photonics Research, 11(10), 1678.
Zhong, Z., Sun, X., Wu, Z., Zheng, Y., Lin, S., & Sato, I. (2022). Animation from Blur: Multi-modal blur decomposition with motion guidance. In: Computer Vision–ECCV 2022, Springer Nature Switzerland, pp 599–615
Zuckerman, L. P., Naor, E., Pisha, G., Bagon, S., & Irani, M. (2020). Across scales and across dimensions: Temporal super-resolution using deep internal learning. In: Computer Vision–ECCV 2020, Springer International Publishing, pp 52–68.
Acknowledgements
This work was supported by the Ministry of Science and Technology of the People’s Republic of China [grant number 2020AAA0108202] and the National Natural Science Foundation of China [grant numbers 61931012, 62088102].
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Communicated by Chen Change Loy.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Supplementary Information
The supplementary material contains three videos that demonstrate the blur decomposition results of the proposed framework and its comparison with the competing methods. (Video 45,125KB)
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, Z., Yang, R., Suo, J. et al. Lightweight High-Speed Photography Built on Coded Exposure and Implicit Neural Representation of Videos. Int J Comput Vis 133, 991–1011 (2025). https://doi.org/10.1007/s11263-024-02198-1
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1007/s11263-024-02198-1