Abstract
Current image-based keypoint detection methods for animal (including human) bodies and faces are generally divided into fully supervised and few-shot class-agnostic approaches. The former typically relies on laborious and time-consuming manual annotations, posing considerable challenges in expanding keypoint detection to a broader range of keypoint categories and animal species. The latter, though less dependent on extensive manual input, still requires necessary support images with annotation for reference during testing. To realize zero-shot keypoint detection without any prior annotation, we introduce the Open-Vocabulary Keypoint Detection (OVKD) task, which is innovatively designed to use text prompts for identifying arbitrary keypoints across any species. In pursuit of this goal, we have developed a novel framework named Open-Vocabulary Keypoint Detection with Semantic-feature Matching (KDSM). This framework synergistically combines vision and language models, creating an interplay between language features and local keypoint visual features. KDSM enhances its capabilities by integrating Domain Distribution Matrix Matching (DDMM) and other special modules, such as the Vision-Keypoint Relational Awareness (VKRA) module, improving the framework’s generalizability and overall performance. Our comprehensive experiments demonstrate that KDSM significantly outperforms the baseline in terms of performance and achieves remarkable success in the OVKD task. Impressively, our method, operating in a zero-shot fashion, still yields results comparable to state-of-the-art few-shot species class-agnostic keypoint detection methods. Codes and data are available at https://github.com/zhanghao5201/KDSM.
Similar content being viewed by others
Data availibility
The dataset MP-100 for this study can be downloaded at: https://github.com/luminxu/Pose-for-Everything. Our reorganized and partitioned dataset MP-78 is released together with our source code.
Notes
We refer to the method “Few-shot keypoint detection with uncertainty learning for unseen species” as FS-ULUS.
References
Andriluka, M., Pishchulin, L., Gehler, P., & Schiele, B. (2014). 2D human pose estimation: New benchmark and state of the art analysis. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3686–3693)
Bangalath, H., Maaz, M., Khattak, M. U., Khan, S. H., & Shahbaz Khan, F. (2022). Bridging the gap between object and image-level representations for open-vocabulary detection. Advances in Neural Information Processing Systems, 35, 33781–33794.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., & Agarwal, S. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877–1901.
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-end object detection with transformers. In Computer vision—ECCV 2020: 16th European conference, Glasgow, UK, August 23–28, 2020, proceedings, part I 16 (pp. 213–229)
Chen, L., Li, J., Dong, X., Zhang, P., He, C., Wang, J., Zhao, F., & Lin, D. (2023). Sharegpt4v: Improving large multi-modal models with better captions. arXiv preprint arXiv:2311.12793.
Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248–255). IEEE
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). Image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929
Fang, H.-S., Xie, S., Tai, Y.-W., & Lu, C. (2017). RMPE: Regional multi-person pose estimation. In ICCV (pp. 2334–2343)
Feighelstein, M., Shimshoni, I., Finka, L. R., Luna, S. P. L., Mills, D. S., & Zamansky, A. (2022). Automated recognition of pain in cats. Scientific Reports, 12(1), 9575.
Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep networks. In International conference on machine learning (pp. 1126–1135). PMLR
Graving, J. M., Chae, D., Naik, H., Li, L., Koger, B., Costelloe, B. R., & Couzin, I. D. (2019). Deepposekit, a software toolkit for fast and robust animal pose estimation using deep learning. Elife, 8, e47994.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778)
Hu, S., Zheng, C., Zhou, Z., Chen, C., & Sukthankar, G. (2023). Lamp: Leveraging language prompts for multi-person pose estimation. In 2023 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3759–3766). IEEE
Jia, C., Yang, Y., Xia, Y., Chen, Y.-T., Parekh, Z., Pham, H., Le, H., Sung, Y.-H., Li, Z., & Duerig, T. (2021). Scaling up visual and vision-language representation learning with noisy text supervision. In International conference on machine learning (pp. 4904–4916). PMLR
Khan, M. H., McDonagh, J., Khan, S., Shahabuddin, M., Arora, A., Khan, F. S., Shao, L., & Tzimiropoulos, G. (2020). Animalweb: A large-scale hierarchical dataset of annotated animal faces. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 6939–6948)
Koestinger, M., Wohlhart, P., Roth, P. M., & Bischof, H. (2011). Annotated facial landmarks in the wild: A large-scale, real-world database for facial landmark localization. In 2011 IEEE international conference on computer vision workshops (ICCV workshops) (pp. 2144–2151). IEEE
Kumar, A., Marks, T. K., Mou, W., Wang, Y., Jones, M., Cherian, A., Koike-Akino, T., Liu, X., & Feng, C. (2020). Luvli face alignment: Estimating landmarks’ location, uncertainty, and visibility likelihood. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8236–8246)
Labuguen, R., Matsumoto, J., Negrete, S. B., Nishimaru, H., Nishijo, H., Takada, M., Go, Y., Inoue, K., & Shibata, T. (2021). Macaquepose: A novel “in the wild” macaque monkey pose dataset for markerless motion capture. Frontiers in Behavioral Neuroscience,14, 581154
Li, B., Weinberger, K. Q., Belongie, S., Koltun, V., & Ranftl, R. (2022). Language-driven semantic segmentation. arXiv preprint arXiv:2201.03546
Li, D., Li, J., & Hoi, S. (2024). Blip-diffusion: Pre-trained subject representation for controllable text-to-image generation and editing. Advances in Neural Information Processing Systems,36
Lin, B., Tang, Z., Ye, Y., Cui, J., Zhu, B., Jin, P., Zhang, J., Ning, M., & Yuan, L. (2024). Moe-llava: Mixture of experts for large vision-language models. arXiv preprint arXiv:2401.15947
Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Computer vision—ECCV 2014: 13th European conference, Zurich, Switzerland, September 6–12, 2014, proceedings, part V 13 (pp. 740–755)
Lu, C., & Koniusz, P. (2022). Few-shot keypoint detection with uncertainty learning for unseen species. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 19416–19426)
Martvel, G., Farhat, N., Shimshoni, I., & Zamansky, A. (2023). Catflw: Cat facial landmarks in the wild dataset. arXiv preprint arXiv:2305.04232
Nakamura, A., & Harada, T. (2019). Revisiting fine-tuning for few-shot learning. arXiv preprint arXiv:1910.00216
Newell, A., Yang, K., & Deng, J. (2016). Stacked hourglass networks for human pose estimation. In Computer vision—ECCV 2016: 14th European conference, Amsterdam, The Netherlands, October 11–14, 2016, proceedings, part VIII 14 (pp. 483–499)
Ni, B., Peng, H., Chen, M., Zhang, S., Meng, G., Fu, J., Xiang, S., & Ling, H. (2022). Expanding language-image pretrained models for general video recognition. In Computer vision—ECCV 2022: 17th European conference, Tel Aviv, Israel, October 23–27, 2022, proceedings, part IV (pp. 1–18)
Pan, Y., Yao, T., Li, Y., & Mei, T. (2020). X-linear attention networks for image captioning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10971–10980)
Patel, M., Gu, Y., Carstensen, L. C., Hasselmo, M. E., & Betke, M. (2023). Animal pose tracking: 3D multimodal dataset and token-based pose optimization. International Journal of Computer Vision, 131(2), 514–530.
Pereira, T. D., Aldarondo, D. E., Willmore, L., Kislin, M., Wang, S.S.-H., Murthy, M., & Shaevitz, J. W. (2019). Fast animal pose estimation using deep neural networks. Nature Methods, 16(1), 117–125.
Pessanha, F., Salah, A. A., van Loon, T. J. P. A. M., & Veltkamp, R. C. (2023). Facial image-based automatic assessment of equine pain. IEEE Transactions on Affective Computing, 14(3), 2064–2076.
Pourpanah, F., Abdar, M., Luo, Y., Zhou, X., Wang, R., Lim, C. P., Wang, X. Z., & Wu, Q. J. (2022). A review of generalized zero-shot learning methods. IEEE Transactions on Pattern Analysis and Machine Intelligence
Qian, R., Li, Y., Xu, Z., Yang, M.-H., Belongie, S., & Cui, Y. (2022). Multimodal open-vocabulary video classification via pre-trained vision and language models. arXiv preprint arXiv:2207.07646
Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., & Krueger, G., Sutskever, I. (2021). Learning transferable visual models from natural language supervision. In International conference on machine learning (pp. 8748–8763). PMLR.
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B.. (2022). High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10684–10695).
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv 2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510–4520).
Shi, M., Huang, Z., Ma, X., Hu, X., & Cao, Z. (2023). Matching is not enough: A two-stage framework for category-agnostic pose estimation. In IEEE/CVF conference on computer vision and pattern recognition, CVPR 2023, Vancouver, BC, Canada, June 17–24, 2023 (pp. 7308–7317). IEEE
Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105–6114).
Tu, J., Wu, G., & Wang, L. (2023). Dual graph networks for pose estimation in crowded scenes. International Journal of Computer Vision, 1–21.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems,30.
Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Yadong, M., Tan, M., Wang, X., et al. (2020). Deep high-resolution representation learning for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(10), 3349–3364.
Wang, Y., Peng, C., & Liu, Y. (2018). Mask-pose cascaded CNN for 2D hand pose estimation from single color image. IEEE Transactions on Circuits and Systems for Video Technology, 29(11), 3258–3268.
Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., & Perona, P. (2010). Caltech-UCSD birds 200.
Weng, T., Xiao, J., Pan, H., & Jiang, H. (2023). PartCom: Part composition learning for 3d open-set recognition. International Journal of Computer Vision, 1–24.
Wu, W., Qian, C., Yang, S., Wang, Q., Cai, Y., & Zhou, Q. (2018). Look at boundary: A boundary-aware face alignment algorithm. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2129–2138).
Xiao, B., Wu, H., & Wei, Y. (2018). Simple baselines for human pose estimation and tracking. In Proceedings of the European conference on computer vision (ECCV) (pp. 466–481).
Xu, L., Jin, S., Zeng, W., Liu, W., Qian, C., Ouyang, W., Luo, P., & Wang, X. (2022). Pose for everything: Towards category-agnostic pose estimation. In Computer vision—ECCV 2022: 17th European conference, Tel Aviv, Israel, October 23–27, 2022, proceedings, part VI (pp. 398–416)
Xu, M., Zhang, Z., Wei, F., Hu, H., & Bai, X. (2023). Side adapter network for open-vocabulary semantic segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 2945–2954).
Xu, Y., Zhang, J., Zhang, Q., & Tao, D. (2024). Vitpose++: Vision transformer for generic body pose estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(2), 1212–1230.
Yao, L., Han, J., Wen, Y., Liang, X., Xu, D., Zhang, W., Li, Z., Xu, C., & Xu, H. (2022). Detclip: Dictionary-enriched visual-concept paralleled pre-training for open-world detection. arXiv preprint arXiv:2209.09407
Yu, H., Xu, Y., Zhang, J., Zhao, W., Guan, Z., & Tao, D. (2021). Ap-10k: A benchmark for animal pose estimation in the wild. arXiv preprint arXiv:2108.12617
Zhang, H., Lai, S., Wang, Y., Da, Z., Dun, Y., & Qian, X. (2023). Scgnet: Shifting and cascaded group network. IEEE Transactions on Circuits and Systems for Video Technology
Zhang, H., Dun, Y., Pei, Y., Lai, S., Liu, C., Zhang, K., & Qian, X. (2024). HF-HRNet: A simple hardware friendly high-resolution network. IEEE Transactions on Circuits and Systems for Video Technology. https://doi.org/10.1109/TCSVT.2024.3377365
Zhang, H., Shao, W., Liu, H., Ma, Y., Luo, P., Qiao, Y., & Zhang, K. (2024b). AVIbench: Towards evaluating the robustness of large vision-language model on adversarial visual-instructions. arXiv preprint arXiv:2403.09346
Zhou, Z., Li, H., Liu, H., Wang, N., Yu, G., & Ji, R. (2023). Star loss: Reducing semantic ambiguity in facial landmark detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 15475–15484).
Zhu, X., Zhang, R., He, B., Guo, Z., Zeng, Z., Qin, Z., Zhang, S., & Gao, P. (2023). Pointclip v2: Prompting clip and GPT for powerful 3d open-world learning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 2639–2650).
Acknowledgements
This work was supported in part by the National Science Foundation of China (Grant No. 62088102), in part by the National Key R&D Program of China (NO.2022ZD0160101).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no Conflict of interest.
Additional information
Communicated by Hong Liu
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was done during Hao Zhang’s internship at Shanghai Artificial Intelligence Laboratory.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, H., Xu, L., Lai, S. et al. Open-Vocabulary Animal Keypoint Detection with Semantic-Feature Matching. Int J Comput Vis 132, 5741–5758 (2024). https://doi.org/10.1007/s11263-024-02126-3
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1007/s11263-024-02126-3