这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

A Geometric Model for Polarization Imaging on Projective Cameras

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The vast majority of Shape-from-Polarization (SfP) methods work under the oversimplified assumption of using orthographic cameras. Indeed, it is still unclear how Stokes vector projection behaves when the incoming rays are not orthogonal to the image plane. In this paper, we try to answer this question with a new geometric model describing how a general projective camera captures the light polarization state. Based on the optical properties of a tilted polarizer, our model is implemented as a pre-processing operation acting on raw images, and a scene-independent rotation of the reconstructed normal field. Moreover, our model is consistent with state-of-the-art forward and inverse renderers (as Mitsuba3 and ART), intrinsically enforces physical constraints among the captured channels, and handles the demosaicing of DoFP sensors. Experiments on existing and new datasets demonstrate the accuracy of the model when applied to commercially available polarimetric cameras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

Notes

  1. Eq. (4) holds since \(S_0^2=S_1^2+S_2^2+S_3^2\) for completely polarized light.

  2. Circular polarization is relatively rare in nature (see Cronin and Marshall (2011)) and therefore it is usually not accounted for.

  3. To be precise, \(-\vec {r}_{z_j}\) is the true direction but changing the sign will not affect the orientation and Mueller calculus still applies.

  4. Since our dataset uses a different plane material than the one used for PPA, we estimated a different set of parameters for each dataset.

References

  • Atkinson, G. A., & Hancock, E. R. (2005). Multi-view surface reconstruction using polarization. In: ICCV, vol. 2, p. 3

  • Atkinson, G. A., & Hancock, E. R. (2006). Recovery of surface orientation from diffuse polarization. IEEE transactions on image processing, 15(6), 1653–1664.

    Article  Google Scholar 

  • Ba, Y., Gilbert, A., Wang, F., Yang, J., Chen, R., Wang, Y., Yan, L., Shi, B., & Kadambi, A. (2020). Deep shape from polarization. In: European Conference on Computer Vision, pp. 554–571 . Springer

  • Baek, S.-H., Jeon, D. S., Tong, X., & Kim, M. H. (2018). Simultaneous acquisition of polarimetric svbrdf and normals. ACM Trans. Graph., 37(6), 268–1.

    Article  Google Scholar 

  • Bass, M., DeCusatis, C., Enoch, J. M., Lakshminarayanan, V., Li, G., MacDonald, C., Mahajan, V. N., & Van Stryland, E. (2009). Handbook of Optics, Third Edition Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments(set). Handbook of Optics,

  • Chen, G., He, L., Guan, Y., & Zhang, H. (2022). Perspective phase angle model for polarimetric 3d reconstruction. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part II, pp. 398–414 Springer

  • Chen, L., Zheng, Y., Subpa-Asa, A., & Sato, I. (2018). Polarimetric three-view geometry. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 20–36

  • Chen, H., & Wolff, L. B. (1998). Polarization phase-based method for material classification in computer vision. International Journal of Computer Vision, 28(1), 73–83.

    Article  Google Scholar 

  • Collett, E. (2005). Field Guide to Polarization. Field Guide Series,

  • Cronin, T. W., & Marshall, J. (2011). Patterns and properties of polarized light in air and water. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1565), 619–626.

    Article  Google Scholar 

  • Cui, Z., Gu, J., Shi, B., Tan, P., & Kautz, J. (2017). Polarimetric multi-view stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1558–1567

  • Cui, Z., Larsson, V., & Pollefeys, M. (2019). Polarimetric relative pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2671–2680

  • Fatima, T., Pistellato, M., Torsello, A., & Bergamasco, F. (2022). One-shot hdr imaging via stereo pfa cameras. In: International Conference on Image Analysis and Processing, pp. 467–478 Springer

  • Fukao, Y., Kawahara, R., Nobuhara, S., & Nishino, K. (2021). Polarimetric normal stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 682–690

  • Goldstein, D. H. (2017). Polarized Light,

  • Huynh, C. P., Robles-Kelly, A., & Hancock, E. (2010). Shape and refractive index recovery from single-view polarisation images. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1229–1236 IEEE

  • Huynh, C. P., Robles-Kelly, A., & Hancock, E. R. (2013). Shape and refractive index from single-view spectro-polarimetric images. International journal of computer vision, 101(1), 64–94.

    Article  MathSciNet  Google Scholar 

  • Ichikawa, T., Purri, M., Kawahara, R., Nobuhara, S., Dana, K., & Nishino, K. (2021). Shape from sky: Polarimetric normal recovery under the sky. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14832–14841

  • Jakob, W., Speierer, S., Roussel, N., Nimier-David, M., Vicini, D., Zeltner, T., Nicolet, B., Crespo, M., Leroy, V., & Zhang, Z. (2022). Mitsuba 3 Renderer. https://mitsuba-renderer.org

  • Kadambi, A., Taamazyan, V., Shi, B., & Raskar, R. (2017). Depth sensing using geometrically constrained polarization normals. International Journal of Computer Vision, 125(1–3), 34–51.

    Article  MathSciNet  Google Scholar 

  • Korger, J., Kolb, T., Banzer, P., Aiello, A., Wittmann, C., Marquardt, C., & Leuchs, G. (2013). The polarization properties of a tilted polarizer. Optics express, 21(22), 27032–27042.

    Article  Google Scholar 

  • Kupinski, M. K., Bradley, C. L., Diner, D. J., Xu, F., & Chipman, R. A. (2019). Angle of linear polarization images of outdoor scenes. Optical Engineering, 58(8), 082419.

    Article  Google Scholar 

  • Lei, C., Qi, C., Xie, J., Fan, N., Koltun, V., & Chen, Q. (2022). Shape from polarization for complex scenes in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12632–12641

  • Lu, J., Ji, Y., Yu, J., & Ye, J. (2019). Mirror surface reconstruction using polarization field. In: 2019 IEEE International Conference on Computational Photography (ICCP), pp. 1–9 IEEE

  • Mahmoud, A. H., El-Melegy, M. T., & Farag, A. A. (2012). Direct method for shape recovery from polarization and shading. In: 2012 19th IEEE International Conference on Image Processing, pp. 1769–1772 IEEE

  • Meriaudeau, F., Ferraton, M., Stolz, C., Morel, O., & Bigué, L. (2008). Polarization imaging for industrial inspection. In: Image Processing: Machine Vision Applications, vol. 6813, pp. 72–81 SPIE

  • Miyazaki, D., Tan, R. T., Hara, K., & Ikeuchi, K. (2003). Polarization-based inverse rendering from a single view. In: Computer Vision, IEEE International Conference On, vol. 3, pp. 982–982 IEEE Computer Society

  • Miyazaki, D., & Ikeuchi, K. (2007). Shape estimation of transparent objects by using inverse polarization ray tracing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11), 2018–2030.

    Article  Google Scholar 

  • Morel, O., & Gorria, P. (2006). Polarization imaging for 3d inspection of highly reflective metallic objects. Optics and Spectroscopy, 101, 11–17.

    Article  Google Scholar 

  • Nayar, S. K., Fang, X.-S., & Boult, T. (1997). Separation of reflection components using color and polarization. International Journal of Computer Vision, 21(3), 163–186.

    Article  Google Scholar 

  • Ngo Thanh, T., Nagahara, H., & Taniguchi, R. -i. (2015). Shape and light directions from shading and polarization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2310–2318

  • Pistellato, M., Fatima, T., & Wimmer, M. (2023). Exploiting light polarization for deep hdr imaging from a single exposure. Sensors, 23(12), 5370.

    Article  Google Scholar 

  • Rahmann, S. (2000). Polarization images: a geometric interpretation for shape analysis. In: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, vol. 3, pp. 538–542 IEEE

  • Rahmann, S., & Canterakis, N. (2001). Reconstruction of specular surfaces using polarization imaging. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, p. IEEE

  • Shakeri, M., Loo, S. Y., Zhang, H., & Hu, K. (2021). Polarimetric monocular dense mapping using relative deep depth prior. IEEE Robotics and Automation Letters, 6(3), 4512–4519.

    Article  Google Scholar 

  • Smith, W. A., Ramamoorthi, R., & Tozza, S. (2018). Height-from-polarisation with unknown lighting or albedo. IEEE transactions on pattern analysis and machine intelligence, 41(12), 2875–2888.

    Article  Google Scholar 

  • Strutt, J. W. (1871). Xv. on the light from the sky, its polarization and colour. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(271), 107–120.

    Article  Google Scholar 

  • Taamazyan, V., Kadambi, A., & Raskar, R. (2016). Shape from mixed polarization. arXiv preprint arXiv:1605.02066

  • Tominaga, S., & Kimachi, A. (2008). Polarization imaging for material classification. Optical Engineering, 47(12), 123201.

    Article  Google Scholar 

  • Umow, V. N. (1905). Chromatische depolarisation durch lichtzerstreuung. Phys. Z, 6, 674–676.

    Google Scholar 

  • Wilkie, A. The Advanced Rendering Toolkit. http://cgg.mff.cuni.cz/ART

  • Wolff, L. B. (1990). Polarization-based material classification from specular reflection. IEEE transactions on pattern analysis and machine intelligence, 12(11), 1059–1071.

    Article  Google Scholar 

  • Wolff, L. B., & Boult, T. E. (1993). Constraining object features using a polarization reflectance model. Phys. Based Vis. Princ. Pract. Radiom, 1, 167.

  • Yang, L., Tan, F., Li, A., Cui, Z., Furukawa, Y., & Tan, P. (2018). Polarimetric dense monocular slam. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3857–3866

  • Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on pattern analysis and machine intelligence, 22(11), 1330–1334.

    Article  Google Scholar 

  • Zhang, J., Luo, H., Hui, B., & Chang, Z. (2016). Image interpolation for division of focal plane polarimeters with intensity correlation. Optics express, 24(18), 20799–20807.

    Article  Google Scholar 

  • Zhao, J., Monno, Y., & Okutomi, M. (2020). Polarimetric multi-view inverse rendering. In: European Conference on Computer Vision, pp. 85–102 . Springer

Download references

Acknowledgements

This work was partially supported by DAIS - Ca’ Foscari University of Venice within the IRIDE program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Pistellato.

Additional information

Communicated by Svetlana Lazebnik.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pistellato, M., Bergamasco, F. A Geometric Model for Polarization Imaging on Projective Cameras. Int J Comput Vis 132, 4688–4702 (2024). https://doi.org/10.1007/s11263-024-02119-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11263-024-02119-2

Keywords