这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

M-RRFS: A Memory-Based Robust Region Feature Synthesizer for Zero-Shot Object Detection

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

With the goal to detect both the object categories appearing in the training phase and those never have been observed before testing, zero-shot object detection (ZSD) becomes a challenging yet anticipated task in the community. Current approaches tackle this problem by drawing on the feature synthesis techniques used in the zero-shot image classification (ZSC) task without delving into the inherent problems of ZSD. In this paper, we analyze the out-standing challenges that ZSD presents compared with ZSC—severe intra-class variation, complex category co-occurrence, open test scenario, and reveal their interference to the region feature synthesis process. In view of this, we propose a novel memory-based robust region feature synthesizer (M-RRFS) for ZSD, which is equipped with the Intra-class Semantic Diverging (IntraSD), the Inter-class Structure Preserving (InterSP), and the Cross-Domain Contrast Enhancing (CrossCE) mechanisms to overcome the inadequate intra-class diversity, insufficient inter-class separability, and weak inter-domain contrast problems. Moreover, when designing the whole learning framework, we develop an asynchronous memory container (AMC) to explore the cross-domain relationship between the seen class domain and unseen class domain to reduce the overlap between the distributions of them. Based on AMC, a memory-assisted ZSD inference process is also proposed to further boost the prediction accuracy. To evaluate the proposed approach, comprehensive experiments on MS-COCO, PASCAL VOC, ILSVRC and DIOR datasets are conducted, and superior performances have been achieved. Notably, we achieve new state-of-the-art performances on MS-COCO dataset, i.e., 64.0\(\%\), 60.9\(\%\) and 55.5\(\%\) Recall@100 with IoU \(= 0.4, 0.5, 0.6 \) respectively, and 15.1\(\%\) mAp with IoU\(=0.5\), under the 48/17 category split setting. Meanwhile, experiments on the DIOR dataset actually build the earliest benchmark for evaluating zero-shot object detection performance on remote sensing images. https://github.com/HPL123/M-RRFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available in the MS COCO repository, https://cocodataset.org/#home, the PASCAL r- epository, http://host.robots.ox.ac.uk/pascal/VOC/, and the DIOR repository, https://pan.baidu.com/s/1iLKT0JQoKXEJTGNxt5lSMg#list/path=%2F.

References

  • Akata, Z., Perronnin, F., Harchaoui, Z., & Schmid, C. (2013). Label-embedding for attribute-based classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 819–826

  • Akata, Z., Reed, S., Walter, D., Lee, H., & Schiele, B. (2015). Evaluation of output embeddings for fine-grained image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2927–2936

  • Antonelli, S., Avola, D., Cinque, L., Crisostomi, D., Foresti, G. L., Galasso, F., Marini, M. R., Mecca, A., & Pannone, D. (2022). Few-shot object detection: A survey. ACM Computing Surveys (CSUR), 54(11s), 1–37.

    Article  Google Scholar 

  • Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. In: International conference on machine learning, PMLR, pp 214–223

  • Bansal, A., Sikka, K., Sharma, G., Chellappa, R., & Divakaran, A. (2018). Zero-shot object detection, in proceedings of the European Conference on Computer Vision (ECCV), pp 384–400

  • Bucher, M., Herbin, S., & Jurie, F. (2016). Improving semantic embedding consistency by metric learning for zero-shot classiffication. In: European conference on computer vision, Springer, pp 730–746

  • Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-end object detection with transformers, in European conference on computer vision, Springer, pp 213–229

  • Chen, C., Han, J., & Debattista, K. (2024). Virtual category learning: A semi-supervised learning method for dense prediction with extremely limited labels. IEEE transactions on pattern analysis and machine intelligence

  • Chen, S., Wang, W., Xia, B., Peng, Q., You, X., Zheng, F., & Shao, L. (2021). Free: Feature refinement for generalized zero-shot learning, in proceedings of the IEEE/CVF international conference on computer vision, pp 122–131

  • Chen, S., Hong, Z., Xie, G.S., Yang, W., Peng, Q., Wang, K., Zhaom J., & You, X. (2022). Msdn: Mutually semantic distillation network for zero-shot learning, in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7612–7621

  • Cheng, D., Wang, G., Wang, B., Zhang, Q., Han, J., & Zhang, D. (2023). Hybrid routing transformer for zero-shot learning. Pattern Recognition, 137, 109270.

    Article  Google Scholar 

  • Cheng, D., Wang, G., Wang, N., Zhang, D., Zhang, Q., & Gao, X. (2023). Discriminative and robust attribute alignment for zero-shot learning. IEEE Transactions on Circuits and Systems for Video Technology

  • Christensen, A., Mancini, M., Koepke, A., Winther, O., & Akata, Z. (2023). Image-free classifier injection for zero-shot classification, in proceedings of the IEEE/CVF international conference on computer vision, pp 19072–19081

  • Dai, X., Wang, C., Li, H., Lin, S., Dong, L., Wu, J., & Wang, J. (2023). Synthetic feature assessment for zero-shot object detection, in 2023 IEEE international conference on multimedia and expo (ICME), IEEE, pp 444–449

  • Demirel, B., Cinbis, R.G., & Ikizler-Cinbis, N. (2018). Zero-shot object detection by hybrid region embedding. arXiv preprint arXiv:1805.06157

  • Demirel, B., Baran, O.B., & Cinbis, R.G. (2023). Meta-tuning loss functions and data augmentation for few-shot object detection, In proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7339–7349

  • Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805

  • Ding, Z., Shao, M., & Fu, Y. (2018). Generative zero-shot learning via low-rank embedded semantic dictionary. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(12), 2861–2874.

    Article  Google Scholar 

  • Elhoseiny, M., Zhu, Y., Zhang, H., & Elgammal, A. (2017). Link the head to the" beak": Zero shot learning from noisy text description at part precision, in proceedings of the IEEE conference on computer vision and pattern recognition, pp 5640–5649

  • Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88(2), 303–338.

    Article  Google Scholar 

  • Fang, C., Tian, H., Zhang, D., Zhang, Q., Han, J., & Han, J. (2022). Densely nested top-down flows for salient object detection. Science China Information Sciences, 65(8), 1–14.

    Article  MathSciNet  Google Scholar 

  • Felix, R., Reid, I., Carneiro, G., et al. (2018). Multi-modal cycle-consistent generalized zero-shot learning, In proceedings of the european conference on computer vision (ECCV), pp 21–37

  • Feng, Y., Huang, X., Yang, P., Yu, J., & Sang, J. (2022). Non-generative generalized zero-shot learning via task-correlated disentanglement and controllable samples synthesis, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 9346–9355

  • Fu, Y., Hospedales, T.M., Xiang, T., Fu, Z., & Gong, S. (2014). Transductive multi-view embedding for zero-shot recognition and annotation, In European conference on computer vision, Springer, pp 584–599

  • Fu, Y., Wang, X., Dong, H., Jiang, Y. G., Wang, M., Xue, X., & Sigal, L. (2019). Vocabulary-informed zero-shot and open-set learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(12), 3136–3152.

    Article  Google Scholar 

  • Fu, Z., Xiang, T., Kodirov, E., & Gong, S. (2015). Zero-shot object recognition by semantic manifold distance, in, proceedings of the IEEE conference on computer vision and pattern recognition, pp 2635–2644

  • Fu, Z., Xiang, T., Kodirov, E., & Gong, S. (2017). Zero-shot learning on semantic class prototype graph. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(8), 2009–2022.

    Article  Google Scholar 

  • Gao, J., Zhang, T., & Xu, C. (2020). Learning to model relationships for zero-shot video classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(10), 3476–3491.

    Article  Google Scholar 

  • Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of Wasserstein Gans. Advances in Neural Information Processing Systems, 30, 17.

    Google Scholar 

  • Gupta, D., Anantharaman, A., Mamgain, N., Balasubramanian, V.N., Jawahar, C., et al. (2020). A multi-space approach to zero-shot object detection, in proceedings of the IEEE/CVF winter conference on applications of computer vision, pp 1209–1217

  • Han, J., Zhang, D., Cheng, G., Liu, N., & Xu, D. (2018). Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Signal Processing Magazine, 35(1), 84–100.

    Article  Google Scholar 

  • Han, J., Ren, Y., Ding, J., Pan, X., Yan, K., & Xia, G.S. (2022). Expanding low-density latent regions for open-set object detection, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 9591–9600

  • Han, Z., Fu, Z., & Yang, J. (2020). Learning the redundancy-free features for generalized zero-shot object recognition, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 12865–12874

  • Han, Z., Fu, Z., Chen, S., & Yang, J. (2021). Contrastive embedding for generalized zero-shot learning, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2371–2381

  • Hao, F., He, F., Liu, L., Wu, F., Tao, D., & Cheng, J. (2023). Class-aware patch embedding adaptation for few-shot image classification, in proceedings of the IEEE/CVF international conference on computer vision, pp 18905–18915

  • Hayat, N., Hayat, M., Rahman, S., Khan, S., Zamir, S.W., & Khan, F.S. (2020). Synthesizing the unseen for zero-shot object detection, in proceedings of the Asian conference on computer vision

  • He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 9729–9738

  • Huang, H., Wang, C., Yu, P.S., & Wang, C.D. (2019). Generative dual adversarial network for generalized zero-shot learning, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 801–810

  • Huang, P., Han, J., Liu, N., Ren, J., & Zhang, D. (2021). Scribble-supervised video object segmentation. IEEE/CAA Journal of Automatica Sinica, 9(2), 339–353.

    Article  Google Scholar 

  • Huang, P., Han, J., Cheng, D., & Zhang, D. (2022). Robust region feature synthesizer for zero-shot object detection, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7622–7631

  • Jocher, G., Stoken, A., Borovec, J., Chaurasia, A., Changyu, L., Laughing, V., Hogan, A., Hajek, J., Diaconu, L., Kwon, Y., et al. (2021). ultralytics/yolov5: v5. 0-yolov5-p6 1280 models, aws, supervise. ly and youtube integrations. Version v5 0 Apr

  • Kingma, D.P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114

  • Kodirov, E., Xiang, T., & Gong, S. (2017). Semantic autoencoder for zero-shot learning, in proceedings of the IEEE conference on computer vision and pattern recognition, pp 3174–3183

  • Kong, X., Gao, Z., Li, X., Hong, M., Liu, J., Wang, C., Xie, Y., & Qu, Y. (2022). En-compactness: Self-distillation embedding & contrastive generation for generalized zero-shot learning, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 9306–9315

  • Kuo, C.W., Ma, C.Y., Huang, J.B., & Kira, Z. (2020). Featmatch: Feature-based augmentation for semi-supervised learning, In European conference on computer vision, Springer, pp 479–495

  • Kwon, G., & Al Regib, G. (2022). A gating model for bias calibration in generalized zero-shot learning. IEEE Transactions on Image Processing

  • Li, H., Mei, J., Zhou, J., & Hu, Y. (2023). Zero-shot object detection based on dynamic semantic vectors, in 2023 IEEE international conference on robotics and automation (ICRA), IEEE, pp 9267–9273

  • Li, Z., Yao, L., Zhang, X., Wang, X., Kanhere, S., & Zhang, H. (2019). Zero-shot object detection with textual descriptions. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 8690–8697.

    Article  Google Scholar 

  • Liang, C., Ma, F., Zhu, L., Deng, Y., & Yang, Y. (2024). Caphuman: Capture your moments in parallel universes. arXiv preprint arXiv:2402.00627

  • Liang, J., Hu, D., & Feng, J. (2021). Domain adaptation with auxiliary target domain-oriented classifier, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 16632–16642

  • Liao, W., Hu, K., Yang, M.Y., & Rosenhahn, B. (2022). Text to image generation with semantic-spatial aware gan. in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 18187–18196

  • Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C.L. (2014). Microsoft coco: Common objects in context, in European conference on computer vision, Springer, pp 740–755

  • Liu, H., Zhang, L., Guan, J., & Zhou, S. (2023). Zero-shot object detection by semantics-aware detr with adaptive contrastive loss, in proceedings of the 31st ACM international conference on multimedia, pp 4421–4430

  • Liu, J., Sun, Y., Zhu, F., Pei, H., Yang, Y., & Li, W. (2022). Learning memory-augmented unidirectional metrics for cross-modality person re-identification, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 19366–19375

  • Liu, N., Nan, K., Zhao, W., Liu, Y., Yao, X., Khan, S., Cholakkal, H., Anwer, R.M., Han, J,. & Khan, F.S. (2023). Multi-grained temporal prototype learning for few-shot video object segmentation, In proceedings of the IEEE/CVF international conference on computer vision, pp 18862–18871

  • Liu, R., Ge, Y., Choi, C.L., Wang, X., & Li, H. (2021). Divco: Diverse conditional image synthesis via contrastive generative adversarial network, In proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 16377–16386

  • Liu, Y., Dang, Y., Gao, X., Han, J., & Shao, L. (2022). Zero-shot learning with attentive region embedding and enhanced semantics. IEEE Transactions on Neural Networks and Learning Systems

  • Liu, Y., Liu, N., Yao, X., & Han, J. (2022). Intermediate prototype mining transformer for few-shot semantic segmentation. Advances in Neural Information Processing Systems, 35, 38020–38031.

    Google Scholar 

  • Liu, Y., Dang, Y., Gao, X., Han, J., & Shao, L. (2024). Zero-shot sketch-based image retrieval via adaptive relation-aware metric learning. Pattern Recognition, 152, 110452.

    Article  Google Scholar 

  • Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows, in proceedings of the IEEE/CVF international conference on computer vision, pp 10012–10022

  • Maas, A. L., Hannun, A. Y., Ng, A. Y., et al. (2013). Rectifier nonlinearities improve neural network acoustic models. Citeseer, 30, 3.

    Google Scholar 

  • Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning Research, 9(11), 18.

    Google Scholar 

  • Mao, Q., Lee, H.Y., Tseng, H.Y., Ma, S., & Yang, M.H. (2019). Mode seeking generative adversarial networks for diverse image synthesis, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 1429–1437

  • Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 26, 13.

    Google Scholar 

  • Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., & Joulin, A. (2018). Advances in pre-training distributed word representations. In: LREC

  • Nie, H., Wang, R., & Chen, X. (2022). From node to graph: Joint reasoning on visual-semantic relational graph for zero-shot detection, in proceedings of the IEEE/CVF winter conference on applications of computer vision, pp 1109–1118

  • Pambala, A., Dutta, T., & Biswas, S. (2020). Generative model with semantic embedding and integrated classifier for generalized zero-shot learning, in proceedings of the IEEE/CVF winter conference on applications of computer vision, pp 1237–1246

  • Pan, J., Zhu, P., Zhang, K., Cao, B., Wang, Y., Zhang, D., Han, J., & Hu, Q. (2022). Learning self-supervised low-rank network for single-stage weakly and semi-supervised semantic segmentation. International Journal of Computer Vision, 130(5), 1181–1195.

    Article  Google Scholar 

  • Pourpanah, F., Abdar, M., Luo, Y., Zhou, X., Wang, R., Lim, C. P., Wang, X. Z., & Wu, Q. J. (2023). A review of generalized zero-shot learning methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4), 4051–4070.

    Google Scholar 

  • Rahman, S., Khan, S., & Barnes, N. (2018). Polarity loss for zero-shot object detection. arXiv preprint arXiv:1811.08982

  • Rahman, S., Khan, S., & Porikli, F. (2018). Zero-shot object detection: Learning to simultaneously recognize and localize novel concepts, in Asian conference on computer vision, Springer, pp 547–563

  • Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, 39(6), 1137–1149.

    Google Scholar 

  • Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149.

    Article  Google Scholar 

  • Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115, 211–252.

    Article  MathSciNet  Google Scholar 

  • Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. Advances in Neural Information Processing Systems, 29, 16.

    Google Scholar 

  • Sarma, S., KUMAR, S., & Sur, A. (2022). Resolving semantic confusions for improved zero-shot detection. In: 33rd British Machine Vision Conference 2022, BMVC 2022, London, UK, November 21-24, 2022, BMVA Press

  • Schonfeld, E., Ebrahimi, S., Sinha, S., Darrell, T., & Akata, Z. (2019). Generalized zero-and few-shot learning via aligned variational autoencoders, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8247–8255

  • Sohn, K., Lee, H., & Yan, X. (2015). Learning structured output representation using deep conditional generative models. Advances in Neural Information Processing Systems, 28, 2015.

    Google Scholar 

  • Song, Y., Wang, T., Cai, P., Mondal, S. K., & Sahoo, J. P. (2023). A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities. ACM Computing Surveys, 55, 1–40.

    Article  Google Scholar 

  • Su, H., Li, J., Chen, Z., Zhu, L., & Lu, K. (2022). Distinguishing unseen from seen for generalized zero-shot learning, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7885–7894

  • Sukhbaatar, S., Weston, J., Fergus, R., et al. (2015). End-to-end memory networks. Advances in Neural Information Processing Systems, 28, 15.

    Google Scholar 

  • Suo, Y., Zhu, L., & Yang, Y. (2023). Text augmented spatial-aware zero-shot referring image segmentation. arXiv preprint arXiv:2310.18049

  • Trosten, D.J., Chakraborty, R., Løkse, S., Wickstrøm, K.K., & Jenssen, R., Kampffmeyer, M.C. (2023). Hubs and hyperspheres: Reducing hubness and improving transductive few-shot learning with hyperspherical embeddings, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7527–7536

  • Wang, C.Y., Bochkovskiy, A., & Liao, H.Y.M. (2023). Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7464–7475

  • Wang, X., & Qi, G. J. (2022). Contrastive learning with stronger augmentations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5), 5549–5560.

    Google Scholar 

  • Wang, X., Zhang, H., Huang, W., Scott, M.R. (2020). Cross-batch memory for embedding learning, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 6388–6397

  • Wang, Z., Hao, Y., Mu, T., Li, O., Wang, S., & He, X. (2023). Bi-directional distribution alignment for transductive zero-shot learning, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 19893–19902

  • Wu, J., Zhang, T., Zha, Z.J., Luo, J., Zhang, Y., & Wu, F. (2020). Self-supervised domain-aware generative network for generalized zero-shot learning, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 12767–12776

  • Xian, Y., Akata, Z., Sharma, G., Nguyen, Q., Hein, M., & Schiele, B. (2016). Latent embeddings for zero-shot classification, in proceedings of the IEEE conference on computer vision and pattern recognition, pp 69–77

  • Xian, Y., Lorenz, T., Schiele, B., & Akata, Z. (2018). Feature generating networks for zero-shot learning. in proceedings of the IEEE conference on computer vision and pattern recognition, pp 5542–5551

  • Xu, B., Zeng, Z., Lian, C., & Ding, Z. (2022). Generative mixup networks for zero-shot learning. IEEE transactions on neural networks and learning systems

  • Xu, J., & Le, H. (2022). Generating representative samples for few-shot classification, in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 9003–9013

  • Yan, C., Chang, X., Luo, M., Liu, H., Zhang, X., & Zheng, Q. (2022). Semantics-guided contrastive network for zero-shot object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence

  • Yao, J., Han, L., Guo, G., Zheng, Z., Cong, R., Huang, X., Ding, J., Yang, K., Zhang, D., & Han, J. (2024). Position-based anchor optimization for point supervised dense nuclei detection. Neural Networks, 171, 159–170.

    Article  Google Scholar 

  • Zhang, D., Zeng, W., Yao, J., & Han, J. (2020). Weakly supervised object detection using proposal-and semantic-level relationships. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(6), 3349.

    Article  Google Scholar 

  • Zhang, D., Han, J., Cheng, G., & Yang, M. H. (2021). Weakly supervised object localization and detection: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9), 5866–5885.

    Google Scholar 

  • Zhang, D., Guo, G., Zeng, W., Li, L., & Han, J. (2022). Generalized weakly supervised object localization. IEEE Transactions on Neural Networks and Learning Systems

  • Zhang, D., Li, H., Zeng, W., Fang, C., Cheng, L., Cheng, M.M., & Han, J. (2023). Weakly supervised semantic segmentation via alternate self-dual teaching. IEEE Transactions on Image Processing

  • Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., & Metaxas, D. N. (2018). Stackgan++: Realistic image synthesis with stacked generative adversarial networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(8), 1947–1962.

    Article  Google Scholar 

  • Zhang, L., Xiang, T., & Gong, S. (2017). Learning a deep embedding model for zero-shot learning, in: proceedings of the IEEE conference on computer vision and pattern recognition, pp 2021–2030

  • Zhang, L., Wang, X., Yao, L., Wu, L., & Zheng, F. (2020). Zero-shot object detection via learning an embedding from semantic space to visual space. In: Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence \(\{\)IJCAI-PRICAI-20\(\}\), International Joint Conferences on Artificial Intelligence Organization

  • Zhang, W., Janson, P., Yi, K., Skorokhodov, I., & Elhoseiny, M. (2023). Continual zero-shot learning through semantically guided generative random walks, in proceedings of the IEEE/CVF international conference on computer vision, pp 11574–11585

  • Zhang, X., Liu, Y., Dang, Y., Gao, X., Han, J., & Shao, L. (2024). Adaptive relation-aware network for zero-shot classification. Neural Networks, 174, 106227.

  • Zhao, S., Gao, C., Shao, Y., Li, L., Yu, C., Ji, Z., & Sang, N. (2020). Gtnet: Generative transfer network for zero-shot object detection. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12967–12974.

  • Zhao, X., Shen, Y., Wang, S., & Zhang, H. (2022). Boosting generative zero-shot learning by synthesizing diverse features with attribute augmentation. Proceedings of the AAAI Conference on Artificial Intelligence, 36, 3454–3462.

    Article  Google Scholar 

  • Zheng, Y., Huang, R., Han, C., Huang, X., & Cui, L. (2020). Background learnable cascade for zero-shot object detection, in proceedings of the asian conference on computer vision

  • Zhu, P., Wang, H., & Saligrama, V. (2020). Don’t even look once: Synthesizing features for zero-shot detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 11693–11702

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dingwen Zhang or Junwei Han.

Additional information

Communicated by Esa Rahtu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the Key-Area Research and Development Program of Guangdong Province (No. 2021B0101200001), the National Natural Science Foundation of China (Nos. U21B2048, 62322605, 62293543, 62202015), and the Institute of Artificial Intelligence, Hefei Comprehensive National Science Center Project Grant (21KT008).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Zhang, D., Cheng, D. et al. M-RRFS: A Memory-Based Robust Region Feature Synthesizer for Zero-Shot Object Detection. Int J Comput Vis 132, 4651–4672 (2024). https://doi.org/10.1007/s11263-024-02112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11263-024-02112-9

Keywords