Abstract
The practical Domain Adaptation (DA) tasks, e.g., Partial DA (PDA), open-set DA, universal DA, and test-time adaptation, have gained increasing attention in the machine learning community. In this paper, we propose a novel approach, dubbed Adversarial Reweighting with \(\alpha \)-Power Maximization (ARPM), for PDA where the source domain contains private classes absent in target domain. In ARPM, we propose a novel adversarial reweighting model that adversarially learns to reweight source domain data to identify source-private class samples by assigning smaller weights to them, for mitigating potential negative transfer. Based on the adversarial reweighting, we train the transferable recognition model on the reweighted source distribution to be able to classify common class data. To reduce the prediction uncertainty of the recognition model on the target domain for PDA, we present an \(\alpha \)-power maximization mechanism in ARPM, which enriches the family of losses for reducing the prediction uncertainty for PDA. Extensive experimental results on five PDA benchmarks, e.g., Office-31, Office-Home, VisDA-2017, ImageNet-Caltech, and DomainNet, show that our method is superior to recent PDA methods. Ablation studies also confirm the effectiveness of components in our approach. To theoretically analyze our method, we deduce an upper bound of target domain expected error for PDA, which is approximately minimized in our approach. We further extend ARPM to open-set DA, universal DA, and test time adaptation, and verify the usefulness through experiments.
Similar content being viewed by others
Data Availibility Statement
The data that support the findings of this study are available from the authors upon request.
Notes
In this paper, by “prediction uncertainty”, we refer to the uncertainty of the classification probability distribution (classification score) outputted by the recognition model, e.g., the uniform distribution has larger uncertainty while the one-hot distribution has smaller uncertainty.
Following Yang et al. (2021b), we use the cosine distance to find the neighbors.
As in Yang et al. (2021b), we set \(K=M=5\) for VisDA-2017 dataset and \(K=4\), \(M=3\) for the other datasets in experiments.
We set the norm as in Gu et al. (2020).
On VisDA-2017 dataset, we do not normalize the weight of C. We empirically find that on VisDA dataset, the unnormalized weight of C yields better result.
References
Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. In ICML.
Baktashmotlagh, M., Faraki, M., Drummond, T., & Salzmann, M. (2019). Learning factorized representations for open-set domain adaptation. In ICLR.
Balgi, S., & Dukkipati, A. (2022). Contradistinguisher: A vapnik’s imperative to unsupervised domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9), 4730–4747.
Brock, A., Donahue, J., & Simonyan, K. (2019). Large scale GAN training for high fidelity natural image synthesis. In ICLR.
Bucci, S., Loghmani, M. R., & Tommasi, T. (2020). On the effectiveness of image rotation for open set domain adaptation. In ECCV.
Cai, T., Gao, R., Lee, J., & Lei, Q. (2021). A theory of label propagation for subpopulation shift. In ICML.
Cao, Z., Long, M., Wang, J., & Jordan, M. I. (2018). Partial transfer learning with selective adversarial networks. In CVPR.
Cao, Z., Ma, L., Long, M., & Wang, J. (2018). Partial adversarial domain adaptation. In ECCV.
Cao, Z., You, K., Long, M., Wang, J., & Yang, Q. (2019). Learning to transfer examples for partial domain adaptation. In CVPR.
Cao, Z., You, K., Zhang, Z., Wang, J., & Long, M. (2023). From big to small: Adaptive learning to partial-set domains. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(2), 1766–1780.
Chang, W., Shi, Y., Tuan, H., & Wang, J. (2022). Unified optimal transport framework for universal domain adaptation. In NeurIPS.
Chen, L., Lou, Y., He, J., Bai, T., & Deng, M. (2022). Geometric anchor correspondence mining with uncertainty modeling for universal domain adaptation. In CVPR.
Chen, M., Xue, H., & Cai, D. (2019). Domain adaptation for semantic segmentation with maximum squares loss. In ICCV.
Cui, S., Wang, S., Zhuo, J., Li, L., Huang, Q., & Tian, Q. (2020). Towards discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations. In CVPR.
Diamond, S., & Boyd, S. (2016). Cvxpy: A python-embedded modeling language for convex optimization. Journal of Machine Learning Research, 17(1), 2909–2913.
Du, Z., Li, J., Su, H., Zhu, L., & Lu, K. (2021). Cross-domain gradient discrepancy minimization for unsupervised domain adaptation. In CVPR.
Feng, Q., Kang, G., Fan, H., & Yang, Y. (2019). Attract or distract: Exploit the margin of open set. In ICCV.
Fu, B., Cao, Z., Long, M., & Wang, J. (2020). Learning to detect open classes for universal domain adaptation. In ECCV.
Ganin, Y., & Lempitsky, V. (2015). Unsupervised domain adaptation by backpropagation. In ICML.
Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., & Lempitsky, V. (2016). Domain-adversarial training of neural networks. Journal of Machine Learning Research, 17(1), 2030–2096.
Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In AISTATS.
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial networks. arXiv preprint arXiv:1406.2661
Grandvalet, Y., & Bengio, Y. (2005). Semi-supervised learning by entropy minimization. In NeurIPS.
Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., & Smola, A. (2006). A kernel method for the two-sample-problem. In NeurIPS.
Griffin, G., Holub, A., & Perona, P. (2007). Caltech-256 object category dataset. Pasadena: California Institute of Technology.
Gu, X., Sun, J., & Xu, Z. (2020). Spherical space domain adaptation with robust pseudo-label loss. In CVPR.
Gu, X., Yu, X., Yang, Y., Sun, J., & Xu, Z. (2021). Adversarial reweighting for partial domain adaptation. In NeurIPS.
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of wasserstein gans. In NeurIPS.
Guo, P., Zhu, J., & Zhang, Y. (2022). Selective partial domain adaptation. In BMVC.
Gu, X., Sun, J., & Xu, Z. (2022). Unsupervised and semi-supervised robust spherical space domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2022.3158637
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In CVPR.
He, C., Li, X., Xia, Y., Tang, J., Yang, J., & Ye, Z. (2023). Addressing the overfitting in partial domain adaptation with self-training and contrastive learning. IEEE Transactions on Circuits and Systems for Video Technology. https://doi.org/10.1109/TCSVT.2023.3296617
Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F., Dorundo, E., Desai, R., Zhu, T., Parajuli, S., Guo, M., Song, D., Steinhardt, J., & Gilmer, J. (2021). The many faces of robustness: A critical analysis of out-of-distribution generalization. In ICCV.
Hoffman, J., Tzeng, E., Park, T., Zhu, J. -Y., Isola, P., Saenko, K., Efros, A., & Darrell, T. (2018). Cycada: Cycle-consistent adversarial domain adaptation. In ICML.
Jing, M., Li, J., Zhu, L., Ding, Z., Lu, K., & Yang, Y. (2021). Balanced open set domain adaptation via centroid alignment. In AAAI.
Jing, T., Liu, H., & Ding, Z. (2021). Towards novel target discovery through open-set domain adaptation. In ICCV.
Kang, G., Jiang, L., Wei, Y., Yang, Y., & Hauptmann, A. (2022). Contrastive adaptation network for single- and multi-source domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(4), 1793–1804.
Koniusz, P., Tas, Y., & Porikli, F. (2017). Domain adaptation by mixture of alignments of second-or higher-order scatter tensors. In CVPR.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In NeurIPS.
Kundu, J. N., Bhambri, S., Kulkarni, A. R., Sarkar, H., Jampani, V., & Radhakrishnan, V. B. (2022). Subsidiary prototype alignment for universal domain adaptation. In NeurIPS.
Kundu, J. N., Venkat, N., Babu, R. V. (2020). Universal source-free domain adaptation. In CVPR.
Kundu, J. N., Venkat, N., Revanur, A., Babu, R. V. et al. (2020). Towards inheritable models for open-set domain adaptation. In CVPR.
Li, G., Kang, G., Zhu, Y., Wei, Y., & Yang, Y. (2021). Domain consensus clustering for universal domain adaptation. In CVPR.
Li, W., Liu, J., Han, B., & Yuan, Y. (2023). Adjustment and alignment for unbiased open set domain adaptation. In CVPR.
Liang, J., Hu, D., & Feng, J. (2020). Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation. In ICML.
Liang, J., Hu, D., Feng, J., & He, R. (2021). Umad: Universal model adaptation under domain and category shift. arXiv preprint arXiv:2112.08553
Liang, J., Wang, Y., Hu, D., He, R., & Feng, J. (2020) A balanced and uncertainty-aware approach for partial domain adaptation. In ECCV.
Liang, J., Hu, D., Wang, Y., He, R., & Feng, J. (2021). Source data-absent unsupervised domain adaptation through hypothesis transfer and labeling transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2021.3103390
Li, W., & Chen, S. (2022). Unsupervised domain adaptation with progressive adaptation of subspaces. Pattern Recognition, 132, 108918.
Li, W., & Chen, S. (2023). Partial domain adaptation without domain alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(7), 8787–8797.
Li, S., Liu, C. H., Lin, Q., Wen, Q., Su, L., Huang, G., & Ding, Z. (2020). Deep residual correction network for partial domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(7), 2329–2344.
Lin, K. -Y., Zhou, J., Qiu, Y., & Zheng, W. -S. (2022). Adversarial partial domain adaptation by cycle inconsistency. In ECCV.
Liu, H., Cao, Z., Long, M., Wang, J., & Yang, Q. (2019). Separate to adapt: Open set domain adaptation via progressive separation. In CVPR.
Liu, X., Guo, Z., Li, S., Xing, F., You, J., Kuo, C. -C. J., El Fakhri, G., & Woo, J. (2021). Adversarial unsupervised domain adaptation with conditional and label shift: Infer, align and iterate. In ICCV.
Liu, H., Wang, J., & Long, M. (2021). Cycle self-training for domain adaptation. Advances in Neural Information Processing Systems, 34, 22968–22981.
Li, H., Wan, R., Wang, S., & Kot, A. C. (2021). Unsupervised domain adaptation in the wild via disentangling representation learning. International Journal of Computer Vision, 129, 267–283.
Long, M., Cao, Y., Wang, J., & Jordan, M. (2015). Learning transferable features with deep adaptation networks. In ICML.
Long, M., Cao, Z., Wang, J., & Jordan, M. I. (2018). Conditional adversarial domain adaptation. In NeurIPS.
Luo, Y.-W., & Ren, C.-X. (2023). Mot: Masked optimal transport for partial domain adaptation. In: CPVR.
Luo, Y., Wang, Z., Huang, Z., & Baktashmotlagh, M. (2020). Progressive graph learning for open-set domain adaptation. In ICML.
Maaten, L., & Hinton, G. (2008). Visualizing data using t-sne. JMLR Journal of Machine Learning Research, 9(86), 2579–2605.
Mirza, M. J., Micorek, J., Possegger, H., & Bischof, H. (2022). The norm must go on: Dynamic unsupervised domain adaptation by normalization. In CVPR.
Miyato, T., Kataoka, T., Koyama, M., & Yoshida, Y. (2018). Spectral normalization for generative adversarial networks. In ICLR.
Pan, Y., Yao, T., Li, Y., Ngo, C.-W., & Mei, T. (2020). Exploring category-agnostic clusters for open-set domain adaptation. In CVPR.
Panareda Busto, P., & Gall, J. (2017). Open set domain adaptation. In ICCV.
Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE TKDE, 22(10), 1345–1359.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning library. In NeurIPS.
Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., & Wang, B. (2019). Moment matching for multi-source domain adaptation. In ICCV.
Peng, X., Usman, B., Kaushik, N., Hoffman, J., Wang, D., & Saenko, K. (2017). Visda: The visual domain adaptation challenge. arXiv preprint arXiv:1710.06924
Qu, S., Zou, T., Röhrbein, F., Lu, C., Chen, G., Tao, D., & Jiang, C. (2023). Upcycling models under domain and category shift. In CVPR.
Qu, S., Zou, T., Röhrbein, F., Lu, C., Chen, G., Tao, D., & Jiang, C. (2023). Upcycling models under domain and category shift. In CVPR.
Rakshit, S., Tamboli, D., Meshram, P.S., Banerjee, B., Roig, G., & Chaudhuri, S. (2020). Multi-source open-set deep adversarial domain adaptation. In ECCV.
Reddi, S., Ramdas, A., Póczos, B., Singh, A., & Wasserman, L. (2015). On the high dimensional power of a linear-time two sample test under mean-shift alternatives. In AISTATS.
Ren, C.-X., Ge, P., Yang, P., & Yan, S. (2020). Learning target-domain-specific classifier for partial domain adaptation. IEEE Transactions on Neural Networks and Learning Systems, 32(5), 1989–2001.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252.
Saenko, K., Kulis, B., Fritz, M., & Darrell, T. (2010). Adapting visual category models to new domains. In ECCV.
Sahoo, A., Panda, R., Feris, R., Saenko, K., & Das, A. (2023). Select, label, and mix: Learning discriminative invariant feature representations for partial domain adaptation. In WACV.
Saito, K., & Saenko, K. (2021). Ovanet: One-vs-all network for universal domain adaptation. In ICCV.
Saito, K., Kim, D., Sclaroff, S., & Saenko, K. (2020). Universal domain adaptation through self supervision. In NeurIPS.
Saito, K., Kim, D., Sclaroff, S., Darrell, T., & Saenko, K. (2019). Semi-supervised domain adaptation via minimax entropy. In ICCV.
Saito, K., Yamamoto, S., Ushiku, Y., & Harada, T. (2018). Open set domain adaptation by backpropagation. In ECCV.
Schneider, S., Rusak, E., Eck, L., Bringmann, O., Brendel, W., & Bethge, M. (2020). Improving robustness against common corruptions by covariate shift adaptation. In NeurIPS.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556
Sun, B., & Saenko, K. (2016). Deep coral: Correlation alignment for deep domain adaptation. In ECCV.
Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., & Hardt, M. (2020). Test-time training with self-supervision for generalization under distribution shifts. In ICML.
Tang, S., Chang, A., Zhang, F., Zhu, X., Ye, M., & Zhang, C. (2023). Source-free domain adaptation via target prediction distribution searching. International Journal of Computer Vision, 132(3), 654–672.
Tzeng, E., Hoffman, J., Darrell, T., & Saenko, K. (2015). Simultaneous deep transfer across domains and tasks. In ICCV.
Tzeng, E., Hoffman, J., Saenko, K., & Darrell, T. (2017). Adversarial discriminative domain adaptation. In CVPR.
Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., & Darrell, T. (2014). Deep domain confusion: Maximizing for domain invariance. arXiv preprint. arXiv:1412.3474
Venkateswara, H., Eusebio, J., Chakraborty, S., & Panchanathan, S. (2017). Deep hashing network for unsupervised domain adaptation. In CVPR.
Wang, X., Li, L., Ye, W., Long, M., & Wang, J. (2019). Transferable attention for domain adaptation. In AAAI.
Wang, D., Shelhamer, E., Liu, S., Olshausen, B., & Darrell, T. (2021). Tent: Fully test-time adaptation by entropy minimization. In ICLR.
Wang, Y., Zhang, L., Song, R., Li, H., Rosin, P. L., & Zhang, W. (2023). Exploiting inter-sample affinity for knowability-aware universal domain adaptation. International Journal of Computer Vision, 132(5), 1800–1816.
Wei, C., Shen, K., Chen, Y., & Ma, T. (2021). Theoretical analysis of self-training with deep networks on unlabeled data. In ICLR.
Wu, K., Wu, M., Chen, Z., Jin, R., Cui, W., Cao, Z., & Li, X. (2023). Reinforced adaptation network for partial domain adaptation. IEEE Transactions on Circuits and Systems for Video Technology, 33(5), 2370–2380.
Xiao, W., Ding, Z., & Liu, H. (2021). Implicit semantic response alignment for partial domain adaptation. In NeurIPS.
Xu, T., Chen, W., WANG, P., Wang, F., Li, H., & Jin, R. (2022). CDTrans: Cross-domain transformer for unsupervised domain adaptation. In ICLR.
Yan, J., Jing, Z., & Leung, H. (2020). Discriminative partial domain adversarial network. In ECCV.
Yang, Y., Gu, X., & Sun, J. (2023). Prototypical partial optimal transport for universal domain adaptation. In AAAI.
Yang, S., Wang, Y., Van De Weijer, J., Herranz, L., & Jui, S. (2021). Generalized source-free domain adaptation. In ICCV.
Yang, S., Wang, Y., weijer, J., Herranz, L., & Jui, S. (2021). Exploiting the intrinsic neighborhood structure for source-free domain adaptation. In NeurIPS.
Yang, C., Cheung, Y.-M., Ding, J., Tan, K. C., Xue, B., & Zhang, M. (2023). Contrastive learning assisted-alignment for partial domain adaptation. IEEE Transactions on Neural Networks and Learning Systems, 34(10), 7621–7634.
You, K., Long, M., Cao, Z., Wang, J., & Jordan, M. I. (2019). Universal domain adaptation. In CVPR.
Zellinger, W., Grubinger, T., Lughofer, E., Natschläger, T., & Saminger-Platz, S. (2017). Central moment discrepancy (CMD) for domain-invariant representation learning. arXiv preprint arXiv:1702.08811
Zhang, J., Ding, Z., Li, W., & Ogunbona, P. (2018). Importance weighted adversarial nets for partial domain adaptation. In CVPR.
Zhong, Z., Zheng, L., Cao, D., & Li, S. (2017). Re-ranking person re-identification with k-reciprocal encoding. In CVPR.
Acknowledgements
The work was supported by National Key R &D Program 2021YFA1003002, Key-Area Research and Development Program of Guangdong Province 2022B0303020003, NSFC (12125104, U20B2075, 12326615, 623B2084), Postdoctoral Fellowship Program of CPSF GZB20230582, and Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences.
Funding
National Key R &D Program 2021YFA1003002, Key-Area Research and Development Program of Guangdong Province 2022B0303020003, NSFC (12125104, U20B2075, 12326615, 623B2084), Postdoctoral Fellowship Program of CPSF GZB20230582, and Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Communicated by ZHUN ZHONG.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
We first give some lemmas and then provide the proof of Theorem 1.
Lemma 1
Divide \(\mathcal {Y}_\textrm{com}\) into \(S_1\) and \(S_2\) such that \(S_1 = \{i\in \mathcal {Y}_\textrm{com}:\mathbb {E}_{(\textbf{x},y)\sim \frac{P^\textrm{c}_i+Q_i}{2}}{\mathbb {I}}(\exists \textbf{x}'\in {\mathcal {N}}(\textbf{x}), {\tilde{f}}(\textbf{x})\ne {\tilde{f}}(\textbf{x}'))<\min \{\epsilon ,q\}\}\) and \(S_2 = \{i\in \mathcal {Y}_\textrm{com}:\mathbb {E}_{(\textbf{x},y)\sim \frac{P^\textrm{c}_i+Q_i}{2}}{\mathbb {I}}(\exists \textbf{x}'\in {\mathcal {N}}(\textbf{x}),{\tilde{f}}(\textbf{x}) \ne {\tilde{f}}(\textbf{x}'))\ge \min \{\epsilon ,q\}\}\). Under the condition of Theorem 1, we have
Proof
Suppose \(\sum _{i\in S_2} \frac{P^\textrm{c}+Q}{2}(y=i) > \frac{R(f)}{\min \{\epsilon ,q\}}\), which implies
\(R_{\frac{P^\textrm{c}+Q}{2}}(f)>R_{\frac{P^\textrm{c}+Q}{2}}(f)\) forms a contradiction. \(\square \)
Lemma 2
(Lemma 2 in Liu et al. (2021)) Under the condition of Theorem 1, if sub-populations \(P^\textrm{c}_i\) and \(Q_i\) satisfy \(\mathbb {E}_{(\textbf{x},y)\sim \frac{P^\textrm{c}_i+Q_i}{2}}{\mathbb {I}}(\exists \textbf{x}'\in {\mathcal {N}}(\textbf{x}),{\tilde{f}}(\textbf{x}) \ne {\tilde{f}}(\textbf{x}'))<\min \{\epsilon ,q\}\), we have
Lemma 3
(Lemma 3 in Liu et al. (2021)) For any distribution P, if f is L-Lipschiz w.r.t. \(d(\cdot ,\cdot )\), we have
Proof of Theorem 1
From the definition of \(\varepsilon _Q(f)\) in PDA, we have
The second inequality uses Lemma 2 and \(\frac{Q(y=i)}{P^\textrm{c}(y=i)}\le r\) for \(i\in \mathcal {Y}_\textrm{com}\). Since
we have
Using Lemma 1, we have
Applying Lemma 3, for any \(\eta \in [0,1]\), we have
Combining Eqs. (20) and (24), we have
where the coeffcients \(c_1 = \frac{2\eta r}{\min \{\epsilon ,q\}(1+r)}\) and \(c_2 = \frac{2r(1-\eta ) }{\min \{\epsilon ,q\}(1-2\,L\xi )(1+r)}\) are constants to f. \(\square \)
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gu, X., Yu, X., Yang, Y. et al. Adversarial Reweighting with \(\alpha \)-Power Maximization for Domain Adaptation. Int J Comput Vis 132, 4768–4791 (2024). https://doi.org/10.1007/s11263-024-02107-6
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1007/s11263-024-02107-6