这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Toward Practical Weakly Supervised Semantic Segmentation via Point-Level Supervision

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Weakly supervised semantic segmentation (WSSS) aims to reduce the cost of collecting dense pixel-level annotations for segmentation models by adopting weak labels to train. Although WSSS methods have achieved great success, recent approaches mainly concern the image-level label-based WSSS, which is limited to object-centric datasets instead of more challenging practical datasets that contain many co-occurrent classes. In comparison, point-level labels could provide some spatial information to address the class co-occurrent confusion problem. Meanwhile, it only requires an additional click when recognizing the targets, which is of negligible annotation overhead. Thus, we choose to study utilizing point labels for the general-purpose WSSS. The main difficulty of utilizing point-level labels is bridging the gap between the sparse point-level labels and the dense pixel-level predictions. To alleviate this problem, we propose a superpixel augmented pseudo-mask generation strategy and a class-aware contrastive learning approach, which manages to recover reliable dense constraints and apply them both to the segmentation models’ final prediction and the intermediate features. Diagnostic experiments on the challenging Pascal VOC, Cityscapes, and the ADE20k datasets demonstrate that our approach can efficiently and effectively compensate for the sparse point-level labels and achieve cutting-edge performance on the point-based segmentation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the Pascal VOChttp://host.robots.ox.ac.uk/pascal/VOC/, the Cityscapeshttps://www.cityscapes-dataset.com/, and the ADE20khttp://sceneparsing.csail.mit.edu/data/LID2019/.

References

  • Ahn, J., Cho, S., & Kwak, S. (2019). Weakly supervised learning of instance segmentation with inter-pixel relations. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 2209–2218).

  • Ahn, J. & Kwak, S. (2018). Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. arXiv preprint arXiv:1803.10464.

  • Araslanov, N. & Roth, S. (2020). Single-stage semantic segmentation from image labels. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 4253–4262).

  • Bearman, A., Russakovsky, O., Ferrari, V., & Fei-Fei, L. (2016). What’s the point: Semantic segmentation with point supervision. In European conference on computer vision (pp. 549–565). Springer.

  • Chaudhry, A., Dokania, P. K., & Torr, P. H. (2017). Discovering class-specific pixels for weakly-supervised semantic segmentation. arXiv preprint arXiv:1707.05821.

  • Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2014). Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:1412.7062.

  • Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2018). DeepLab: Semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 834–848.

    Article  Google Scholar 

  • Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking Atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587.

  • Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018b). Encoder-decoder with Atrous separable convolution for semantic image segmentation. In Proceedings of the European conference on computer vision (ECCV) (pp. 801–818).

  • Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709.

  • Chen, X., Yuan, Y., Zeng, G., & Wang, J. (2021). Semi-supervised semantic segmentation with cross pseudo supervision. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 2613–2622).

  • Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., & Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3213–3223).

  • Dai, J., He, K., & Sun, J. (2015). BoxSup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In Proceedings of the IEEE international conference on computer vision (pp. 1635–1643).

  • Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In Computer vision and pattern recognition, 2009. CVPR 2009. IEEE conference on (pp. 248–255). IEEE.

  • Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The Pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 88(2), 303–338.

    Article  Google Scholar 

  • Fan, J., Zhang, Z., Song, C., & Tan, T. (2020a). Learning integral objects with intra-class discriminator for weakly-supervised semantic segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 4283–4292).

  • Fan, J., Zhang, Z., & Tan, T. (2020b). Employing multi-estimations for weakly-supervised semantic segmentation. In European conference on computer vision (pp. 332–348). Springer.

  • Fan, J., Zhang, Z., Tan, T., Song, C., & Xiao, J. (2020). CIAN: Cross-image affinity net for weakly supervised semantic segmentation. In Proceedings of the AAAI conference on artificial intelligence (vol. 34, pp. 10762–10769).

  • Fan, R., Hou, Q., Cheng, M.-M., Yu, G., Martin, R. R., & Hu, S.-M. (2018). Associating inter-image salient instances for weakly supervised semantic segmentation. In Proceedings of the European conference on computer vision (ECCV) (pp. 367–383).

  • Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation. International Journal of Computer Vision, 59(2), 167–181.

    Article  MATH  Google Scholar 

  • Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., & Lu, H. (2018). Dual attention network for scene segmentation. arXiv preprint arXiv:1809.02983.

  • Ge, W., Guo, S., Huang, W., & Scott, M. R. (2019). Label-PEnet: Sequential label propagation and enhancement networks for weakly supervised instance segmentation. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 3345–3354).

  • Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., & Smola, A. (2012). A kernel two-sample test. The Journal of Machine Learning Research, 13(1), 723–773.

    MathSciNet  MATH  Google Scholar 

  • Hadsell, R., Chopra, S., & LeCun, Y. (2006). Dimensionality reduction by learning an invariant mapping. In 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06) (vol. 2, pp. 1735–1742). IEEE.

  • Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., & Malik, J. (2011). Semantic contours from inverse detectors. In 2011 international conference on computer vision (pp. 991–998). IEEE.

  • He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition (pp. 9729–9738).

  • He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. In Proceedings of the IEEE international conference on computer vision (pp. 2961–2969).

  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).

  • Hénaff, O. J., Srinivas, A., De Fauw, J., Razavi, A., Doersch, C., Eslami, S., & Oord, A. v. d. (2019). Data-efficient image recognition with contrastive predictive coding. arXiv preprint arXiv:1905.09272.

  • Hoffer, E. & Ailon, N. (2015). Deep metric learning using triplet network. In International workshop on similarity-based pattern recognition (pp. 84–92). Springer.

  • Hou, Q., Cheng, M.-M., Hu, X., Borji, A., Tu, Z., & Torr, P. H. (2017). Deeply supervised salient object detection with short connections. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3203–3212).

  • Hou, Q., Jiang, P.-T., Wei, Y., & Cheng, M.-M. (2018). Self-erasing network for integral object attention. arXiv preprint arXiv:1810.09821.

  • Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., & Liu, W. (2019). CCNet: Criss-cross attention for semantic segmentation. In Proceedings of the IEEE international conference on computer vision (pp. 603–612).

  • Huang, Z., Wang, X., Wang, J., Liu, W., & Wang, J. (2018). Weakly-supervised semantic segmentation network with deep seeded region growing. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7014–7023).

  • Hung, W.-C., Tsai, Y.-H., Liou, Y.-T., Lin, Y.-Y., & Yang, M.-H. (2018). Adversarial learning for semi-supervised semantic segmentation. arXiv preprint arXiv:1802.07934.

  • Hwang, J., Kim, S., Son, J., & Han, B. (2021). Weakly supervised instance segmentation by deep community learning. In Proceedings of the IEEE/CVF winter conference on applications of computer vision (pp. 1020–1029).

  • Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., & Li, S. (2013). Salient object detection: A discriminative regional feature integration approach. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2083–2090).

  • Jiang, P.-T., Hou, Q., Cao, Y., Cheng, M.-M., Wei, Y., & Xiong, H.-K. (2019). Integral object mining via online attention accumulation. In Proceedings of the IEEE international conference on computer vision (pp. 2070–2079).

  • Jin, Z., Gong, T., Yu, D., Chu, Q., Wang, J., Wang, C., & Shao, J. (2021). Mining contextual information beyond image for semantic segmentation. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 7231–7241).

  • Ke, Z., Qiu, D., Li, K., Yan, Q., & Lau, R. W. (2020). Guided collaborative training for pixel-wise semi-supervised learning. In European conference on computer vision (pp. 429–445). Springer.

  • Khoreva, A., Benenson, R., Hosang, J., Hein, M., & Schiele, B. (2017). Simple does it: Weakly supervised instance and semantic segmentation. In CVPR (vol. 1, p. 3).

  • Kim, B., Yoo, Y., Rhee, C. E., & Kim, J. (2022). Beyond semantic to instance segmentation: Weakly-supervised instance segmentation via semantic knowledge transfer and self-refinement. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 4278–4287).

  • Kolesnikov, A. & Lampert, C. H. (2016). Seed, expand and constrain: Three principles for weakly-supervised image segmentation. In European conference on computer vision (pp. 695–711). Springer.

  • Krähenbühl, P. & Koltun, V. (2011a). Efficient inference in fully connected CRFs with gaussian edge potentials. In Advances in neural information processing systems (pp. 109–117)

  • Krähenbühl, P. & Koltun, V. (2011b). Efficient inference in fully connected CRFs with gaussian edge potentials. In Advances in neural information processing systems (pp. 109–117).

  • Kwak, S., Hong, S., & Han, B. (2017). Weakly supervised semantic segmentation using superpixel pooling network. In Proceedings of the AAAI conference on artificial intelligence (vol. 31).

  • Laradji, I. H., Vazquez, D., & Schmidt, M. (2019). Where are the masks: Instance segmentation with image-level supervision. arXiv preprint arXiv:1907.01430.

  • Lee, J., Kim, E., Lee, S., Lee, J., & Yoon, S. (2019). FickleNet: Weakly and semi-supervised semantic image segmentation using stochastic inference. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5267–5276).

  • Lee, J., Kim, E., & Yoon, S. (2021). Anti-adversarially manipulated attributions for weakly and semi-supervised semantic segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 4071–4080).

  • Lee, M., Kim, D., & Shim, H. (2022). Threshold matters in WSSS: Manipulating the activation for the robust and accurate segmentation model against thresholds. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 4330–4339).

  • Li, Q., Arnab, A., & Torr, P. H. (2018). Weakly-and semi-supervised panoptic segmentation. In Proceedings of the European conference on computer vision (ECCV) (pp. 102–118).

  • Lin, D., Dai, J., Jia, J., He, K., & Sun, J. (2016). ScribbleSup: Scribble-supervised convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3159–3167).

  • Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117–2125).

  • Liu, Y., Wu, Y.-H., Wen, P., Shi, Y., Qiu, Y., & Cheng, M.-M. (2020). Leveraging instance-, image-and dataset-level information for weakly supervised instance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(3), 1415–1428.

    Article  Google Scholar 

  • Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431–3440).

  • Maninis, K.-K., Caelles, S., Pont-Tuset, J., & Van Gool, L. (2018). Deep extreme cut: From extreme points to object segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 616–625).

  • Mittal, S., Tatarchenko, M., & Brox, T. (2019). Semi-supervised semantic segmentation with high-and low-level consistency. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(4), 1369–1379.

    Article  Google Scholar 

  • Moghalles, K., Li, H.-C., Al-Huda, Z., Raza, A., & Malik, A. (2022). Weakly supervised building semantic segmentation via superpixel-CRF with initial deep seeds guiding. IET Image Processing, 16(12), 3258–3267.

    Article  Google Scholar 

  • Papandreou, G., Chen, L.-C., Murphy, K., & Yuille, A. L. (2015). Weakly- and semi-supervised learning of a DCNN for semantic image segmentation. arXiv preprint arXiv:1502.02734.

  • Pathak, D., Krähenbühl, P., & Darrell, T. (2015). Constrained convolutional neural networks for weakly supervised segmentation. In Proceedings of the IEEE international conference on computer vision (pp. 1796–1804).

  • Pinheiro, P. O. & Collobert, R. (2015). From image-level to pixel-level labeling with convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1713–1721).

  • Pont-Tuset, J., Arbelaez, P., Barron, J. T., Marques, F., & Malik, J. (2016). Multiscale combinatorial grouping for image segmentation and object proposal generation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(1), 128–140.

    Article  Google Scholar 

  • Qian, R., Wei, Y., Shi, H., Li, J., Liu, J., & Huang, T. (2019). Weakly supervised scene parsing with point-based distance metric learning. In Proceedings of the AAAI conference on artificial intelligence (vol. 33, pp. 8843–8850).

  • Ru, L., Zhan, Y., Yu, B., & Du, B. (2022). Learning affinity from attention: End-to-end weakly-supervised semantic segmentation with transformers. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 16846–16855).

  • Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 815–823).

  • Simonyan, K. & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

  • Song, C., Huang, Y., Ouyang, W., & Wang, L. (2019). Box-driven class-wise region masking and filling rate guided loss for weakly supervised semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3136–3145).

  • Su, H., Deng, J., & Fei-Fei, L. (2012). Crowdsourcing annotations for visual object detection. In Workshops at the twenty-sixth AAAI conference on artificial intelligence.

  • Sun, G., Wang, W., Dai, J., & Van Gool, L. (2020). Mining cross-image semantics for weakly supervised semantic segmentation. In European conference on computer vision (pp. 347–365). Springer.

  • Tang, M., Perazzi, F., Djelouah, A., Ayed, I. B., Schroers, C., & Boykov, Y. (2018). On regularized losses for weakly-supervised CNN segmentation. In Proceedings of the European conference on computer vision (ECCV).

  • Vernaza, P. & Chandraker, M. (2017). Learning random-walk label propagation for weakly-supervised semantic segmentation. In The IEEE conference on computer vision and pattern recognition (CVPR) (vol 3, p 3).

  • Wang, W., Zhou, T., Yu, F., Dai, J., Konukoglu, E., & Van Gool, L. (2021). Exploring cross-image pixel contrast for semantic segmentation. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 7303–7313).

  • Wang, X., Ma, H., & You, S. (2020). Deep clustering for weakly-supervised semantic segmentation in autonomous driving scenes. Neurocomputing, 381, 20–28.

    Article  Google Scholar 

  • Wang, X., You, S., Li, X., & Ma, H. (2018). Weakly-supervised semantic segmentation by iteratively mining common object features. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1354–1362).

  • Wei, Y., Feng, J., Liang, X., Cheng, M.-M., Zhao, Y., & Yan, S. (2017a). Object region mining with adversarial erasing: A simple classification to semantic segmentation approach. In IEEE CVPR (vol. 1, p. 3).

  • Wei, Y., Liang, X., Chen, Y., Shen, X., Cheng, M.-M., Feng, J., Zhao, Y., & Yan, S. (2017). STC: A simple to complex framework for weakly-supervised semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(11), 2314–2320.

    Article  Google Scholar 

  • Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., & Huang, T. S. (2018). Revisiting dilated convolution: A simple approach for weakly- and semi-supervised semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7268–7277).

  • Wen, Y., Zhang, K., Li, Z., & Qiao, Y. (2016). A discriminative feature learning approach for deep face recognition. In European conference on computer vision (pp. 499–515). Springer.

  • Wu, T., Huang, J., Gao, G., Wei, X., Wei, X., Luo, X., & Liu, C. H. (2021). Embedded discriminative attention mechanism for weakly supervised semantic segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 16765–16774).

  • Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J. M., & Luo, P. (2021). SegFormer: Simple and efficient design for semantic segmentation with transformers. Advances in Neural Information Processing Systems, 34, 12077–12090.

    Google Scholar 

  • Xie, J., Hou, X., Ye, K., & Shen, L. (2022). CLIMS: Cross language image matching for weakly supervised semantic segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 4483–4492).

  • Xing, F. Z., Cambria, E., Huang, W.-B., & Xu, Y. (2016). Weakly supervised semantic segmentation with superpixel embedding. In 2016 IEEE international conference on image processing (ICIP) (pp. 1269–1273). IEEE.

  • Yang, F., Sun, Q., Jin, H., & Zhou, Z. (2020). Superpixel segmentation with fully convolutional networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 13964–13973).

  • Yi, S., Ma, H., Wang, X., Hu, T., Li, X., & Wang, Y. (2022). Weakly-supervised semantic segmentation with superpixel guided local and global consistency. Pattern Recognition, 124, 108504.

    Article  Google Scholar 

  • Yuan, Y. & Wang, J. (2018). OCNet: Object context network for scene parsing. arXiv preprint arXiv:1809.00916

  • Zeng, Y., Zhuge, Y., Lu, H., & Zhang, L. (2019). Joint learning of saliency detection and weakly supervised semantic segmentation. In Proceedings of the IEEE international conference on computer vision (pp. 7223–7233).

  • Zhang, B., Xiao, J., Wei, Y., Sun, M., & Huang, K. (2020). Reliability does matter: An end-to-end weakly supervised semantic segmentation approach. In Proceedings of the AAAI Conference on Artificial Intelligence (vol. 34, pp. 12765–12772).

  • Zhang, F., Torr, P., Ranftl, R., & Richter, S. (2021). Looking beyond single images for contrastive semantic segmentation learning. Advances in Neural Information Processing Systems, 34, 3285–3297.

    Google Scholar 

  • Zhang, S., Liew, J. H., Wei, Y., Wei, S., & Zhao, Y. (2020b). Interactive object segmentation with inside-outside guidance. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 12234–12244).

  • Zhang, X., Peng, Z., Zhu, P., Zhang, T., Li, C., Zhou, H., & Jiao, L. (2021b). Adaptive affinity loss and erroneous pseudo-label refinement for weakly supervised semantic segmentation. In Proceedings of the 29th ACM international conference on multimedia (pp. 5463–5472).

  • Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2881–2890).

  • Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016a). Learning deep features for discriminative localization. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2921–2929).

  • Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., & Torralba, A. (2016b). Semantic understanding of scenes through the ade20k dataset. arXiv preprint arXiv:1608.05442.

  • Zhou, Y., Zhu, Y., Ye, Q., Qiu, Q., & Jiao, J. (2018). Weakly supervised instance segmentation using class peak response. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3791–3800).

  • Zhu, Y., Zhou, Y., Xu, H., Ye, Q., Doermann, D., & Jiao, J. (2019). Learning instance activation maps for weakly supervised instance segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 3116–3125).

Download references

Funding

This work was supported in part by the Major Project for New Generation of AI (No. 2018AAA0100400), the National Natural Science Foundation of China (Nos. 61836014, U21B2042, 62072457, 62006231), and the InnoHK program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxiang Zhang.

Additional information

Communicated by Rynson W.H. Lau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Zhang, Z. Toward Practical Weakly Supervised Semantic Segmentation via Point-Level Supervision. Int J Comput Vis 131, 3252–3271 (2023). https://doi.org/10.1007/s11263-023-01862-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11263-023-01862-2

Keywords