这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Empty convex polygons in almost convex sets

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

A finite set of points, in general position in the plane, is almost convex if every triple determines a triangle with at most one point in its interior. For every ℓ ≥ 3, we determine the maximum size of an almost convex set that does not contain the vertex set of an empty convex ℓ-gon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Erdős, On some problems of elementary and combinatorial geometry, Ann. Mat. Pura Appl. (4), 103 (1975), 99–108.

    Article  MathSciNet  Google Scholar 

  2. P. Erdős and Gy. Szekeres, A combinatorial problem in geometry, Compositio Math., 2 (1935), 464–470.

    Google Scholar 

  3. T. Gerken, Empty convex hexagons in planar point sets, Discrete Comput. Geom., to appear.

  4. H. Harborth, Konvexe Fünfecke in ebenen Punktmengen, Elem. Math., 33 (1978), 116–118.

    MATH  MathSciNet  Google Scholar 

  5. J. D. Horton, Sets with no empty convex 7-gons, Canad. Math. Bull., 26 (1983), 482–484.

    MATH  MathSciNet  Google Scholar 

  6. Gy. Károlyi, J. Pach and G. Tóth, A modular version of the Erdős-Szekeres theorem, Studia Sci. Math. Hungar., 38 (2001), 245–259.

    MATH  MathSciNet  Google Scholar 

  7. G. Kun and G. Lippner, Large convex empty polygons in k-convex sets, Period. Math. Hungar., 46 (2003), 81–88.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. M. Nicolás, The empty hexagon theorem, Discrete Comput. Geom., 38 (2007), 389–397.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Valtr, A sufficient condition for the existence of large empty convex polygons, Discrete Comput. Geom., 28 (2002), 671–682.

    MATH  MathSciNet  Google Scholar 

  10. P. Valtr, Open caps and cups in planar point sets, Discrete Comput. Geom., 37 (2007), 565–576.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Valtr, On the empty hexagons, submitted.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Valtr.

Additional information

Communicated by Imre Bárány

Research was supported by project LN00A056 of The Ministry of Education of the Czech Republic.

Partially supported by grants T043631 and NK67867 of the Hungarian NFSR (OTKA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valtr, P., Lippner, G. & Károlyi, G. Empty convex polygons in almost convex sets. Period Math Hung 55, 121–127 (2007). https://doi.org/10.1007/s10998-007-4121-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10998-007-4121-z

Mathematics subject classification number

Key words and phrases

Profiles

  1. Gábor Lippner