这是indexloc提供的服务,不要输入任何密码
Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Machine Learning
  3. Article

Combining instance-based learning and logistic regression for multilabel classification

  • Published: 23 July 2009
  • Volume 76, pages 211–225, (2009)
  • Cite this article
Download PDF
Machine Learning Aims and scope Submit manuscript
Combining instance-based learning and logistic regression for multilabel classification
Download PDF
  • Weiwei Cheng1 &
  • Eyke Hüllermeier1 
  • 6968 Accesses

  • 352 Citations

  • Explore all metrics

Abstract

Multilabel classification is an extension of conventional classification in which a single instance can be associated with multiple labels. Recent research has shown that, just like for conventional classification, instance-based learning algorithms relying on the nearest neighbor estimation principle can be used quite successfully in this context. However, since hitherto existing algorithms do not take correlations and interdependencies between labels into account, their potential has not yet been fully exploited. In this paper, we propose a new approach to multilabel classification, which is based on a framework that unifies instance-based learning and logistic regression, comprising both methods as special cases. This approach allows one to capture interdependencies between labels and, moreover, to combine model-based and similarity-based inference for multilabel classification. As will be shown by experimental studies, our approach is able to improve predictive accuracy in terms of several evaluation criteria for multilabel prediction.

Article PDF

Download to read the full article text

Similar content being viewed by others

Interdependence Model for Multi-label Classification

Chapter © 2019

Assessing the Multi-labelness of Multi-label Data

Chapter © 2020

Extracting Label Importance Information for Multi-label Classification

Chapter © 2018

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Categorization
  • Learning algorithms
  • Learning Theory
  • Machine Learning
  • Multivariate Analysis
  • Statistical Learning
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Aha, D., Kibler, D., & Alber, M. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 37–66.

    Google Scholar 

  • Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004). Learning multilabel scene classification. Pattern Recognition, 37(9), 1757–1771.

    Article  Google Scholar 

  • Clare, A., & King, R. D. (2001). Knowledge discovery in multilabel phenotype data. In L. D. Raedt & A. Siebes (Eds.), Lecture notes in computer science (Vol. 2168, pp. 42–53). Berlin: Springer.

    Google Scholar 

  • Comite, F. D., Gilleron, R., & Tommasi, M. (2003). Learning multilabel alternating decision tree from texts and data. In P. Perner & A. Rosenfeld (Eds.), Lecture notes in computer science (Vol. 2734, pp. 35–49). Berlin: Springer.

    Google Scholar 

  • Dasarathy, B. V., editor (1991). Nearest neighbor (NN) norms: NN pattern classification techniques. Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1–30.

    MathSciNet  Google Scholar 

  • Elisseeff, A., & Weston, J. (2002). A kernel method for multilabelled classification. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems (Vol. 14, pp. 681–687). Cambridge: MIT Press.

    Google Scholar 

  • Getoor, L., & Taskar, B., editors (2007). Introduction to statistical relational learning. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Ghamrawi, N., & McCallum, A. (2005). Collective multilabel classification. In Proc. CIKM-05, Bremen, Germany.

  • Godbole, S., & Sarawagi, S. (2004). Discriminative methods for multilabeled classification. In LNCS: Vol. 3056. Advances in knowledge discovery and data mining (pp. 20–33). Berlin: Springer.

    Google Scholar 

  • Kazawa, H., Izumitani, T., Taira, H., & Maeda, E. (2005). Maximal margin labeling for multi-topic text categorization. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural inf. proc. syst. (Vol. 17). Cambridge: MIT Press.

    Google Scholar 

  • Lu, Q., & Getoor, L. (2003). Link-based classification. In Proc. ICML-03 (pp. 496–503) Washington.

  • Maron, O., & Ratan, A. L. (1998). Multiple-instance learning for natural scene classification. In Proc. ICML (pp. 341–349), Madison, WI.

  • Schapire, R. E., & Singer, Y. (2000). Boostexter: a boosting-based system for text categorization. Machine Learning, 39(2), 135–168.

    Article  MATH  Google Scholar 

  • Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34(1), 1–47.

    Article  Google Scholar 

  • Snoek, C. G. M., Worring, M., van Gemert, J. C., Geusebroek, J. M., & Smeulders, A. W. M. (2006). The challenge problem for automated detection of 101 semantic concepts in multimedia. In Proc. ACM multimedia (pp. 421–430), Santa Barbara, USA.

  • Trohidis, K., Tsoumakas, G., Kalliris, G., & Vlahavas, I. (2008). Multilabel classification of music into emotions. In Proc. int. conf. music information retrieval.

  • Tsoumakas, G., & Katakis, I. (2007). Multi-label classification: An overview. International Journal of Data Warehousing and Mining, 3(3), 1–13.

    Google Scholar 

  • Ueda, N., & Saito, K. (2003). Parametric mixture models for multilabel text. In S. Becker & S. Thrun (Eds.), Advances in neural information processing (Vol. 15, pp. 721–728). Cambridge: MIT Press.

    Google Scholar 

  • Vens, C., Struyf, J., Schietgat, L., Dzeroski, S., & Blockeel, H. (2008). Decision trees for hierarchical multilabel classification. Machine Learning, 73, 185–214.

    Article  Google Scholar 

  • Witten, I., & Frank, E. (2005). Data mining: practical machine learning tools and techniques (2nd ed.). San Francisco: Morgan Kaufmann.

    MATH  Google Scholar 

  • Zhang, M.-L., & Zhou, Z.-H. (2006). Multi-label neural networks with applications to functional genomics and text categorization. In IEEE transactions on knowledge and data engineering (Vol. 18, pp. 1338–1351).

  • Zhang, M.-L., & Zhou, Z.-H. (2007). ML-kNN: A lazy learning approach to multilabel learning. Pattern Recognition, 40(7), 2038–2048.

    Article  MATH  Google Scholar 

  • Zhou, Z.-H., & Zhang, M.-L. (2007). Multi-instance multilabel learning with application to scene classification. In B. Schölkopf, J. Platt, & T. Hofmann (Eds.), Advances in neural inf. proc. syst. (Vol. 19, pp. 1609–1616). Cambridge: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics and Computer Science, University of Marburg, Marburg, Germany

    Weiwei Cheng & Eyke Hüllermeier

Authors
  1. Weiwei Cheng
    View author publications

    Search author on:PubMed Google Scholar

  2. Eyke Hüllermeier
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Eyke Hüllermeier.

Additional information

Editors: Aleksander Kołcz, Dunja Mladenić, Wray Buntine, Marko Grobelnik, and John Shawe-Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, W., Hüllermeier, E. Combining instance-based learning and logistic regression for multilabel classification. Mach Learn 76, 211–225 (2009). https://doi.org/10.1007/s10994-009-5127-5

Download citation

  • Received: 12 June 2009

  • Revised: 12 June 2009

  • Accepted: 16 June 2009

  • Published: 23 July 2009

  • Issue date: September 2009

  • DOI: https://doi.org/10.1007/s10994-009-5127-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Multilabel classification
  • Instance-based learning
  • Nearest neighbor classification
  • Logistic regression
  • Bayesian inference
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

23.94.208.52

Not affiliated

Springer Nature

© 2025 Springer Nature