这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Fuzzy methods for case-based recommendation and decision support

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

The paper proposes two case-based methods for recommending decisions to users on the basis of information stored in a database. In both approaches, fuzzy sets and related (approximate) reasoning techniques are used for modeling user preferences and decision principles in a flexible manner. The first approach, case-based decision making, can principally be seen as a case-based counterpart to classical decision principles well-known from statistical decision theory. The second approach, called case-based elicitation, combines aspects from flexible querying of databases and case-based prediction. Roughly, imagine a user who aims at choosing an optimal alternative among a given set of options. The preferences with respect to these alternatives are formalized in terms of flexible constraints, the expression of which refers to cases stored in a database. As both types of decision support might provide useful tools for recommender systems, we also place the methods in a broader context and discuss the role of fuzzy set theory in some related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 37–66.

    Google Scholar 

  • Bellmann, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17, 141–164.

    Article  MathSciNet  Google Scholar 

  • Bosc, P., & Pivert, O. (1992). Some approaches for relational databases flexible querying. Journal of Intelligent Information Systems, 1, 323–354.

    Article  Google Scholar 

  • Bosc, P., & Pivert, O. (1995). SQLf: A relational database language for fuzzy querying. IEEE Transactions on Fuzzy Systems, 3(1), 1–17.

    Article  MathSciNet  Google Scholar 

  • Bosc, P., Lietard, L., & Prade, H. (1998). An ordinal approach to the processing of fuzzy queries with flexible quantifiers. In A. Hunter & S. Parsons (Eds.), Applications of uncertainty formalisms, volume 1455 of Lecture Notes in Computer Science (pp. 58–75). Berlin: Springer-Verlag.

    Google Scholar 

  • Brafmann, R., & Tennenholtz, M. (1996). On the foundations of qualitative decision theory. In Proceedings AAAI-96, 13th National Conference on Artificial Intelligence (pp. 1291–1296). Cambridge, USA: AAAI-Press.

    Google Scholar 

  • Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for collarborative filtering. In Proceedings UAI–98. Madison, WI.

  • Chow, C. K. (1970). On optimum recognition error and reject tradeoff. IEEE Transactions on Information Theory, IT-16, 41–46.

    Article  Google Scholar 

  • Cross, V., & Sudkamp, T. (2002). Similarity and computability in fuzzy set theory: Assessments and applications, Studies in Fuzziness and Soft Computing, volume 93, Heidelberg: Physica Verlag.

    Google Scholar 

  • Dasarathy, B. V. (Ed.) (1991). Nearest Neighbor (NN) norms: NN pattern classification techniques. Los Alamitos, California: IEEE Computer Society Press.

    Google Scholar 

  • de Calmés, M., Dubois, D., Hüllermeier, E., Prade, H., & Sédes, F. (2003). Flexibility and case-based evaluation in querying: An illustration in an experimental setting. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11(1), 43–66.

    Article  MATH  Google Scholar 

  • Dubois, D., & Prade, H. (1995). Possibility theory as a basis for qualitative decision theory. In Proceedings IJCAI-95, 14th International Joint Conference on Artificial Intelligence (pp. 1924–1930). Montreal.

  • Dubois, D., & Prade, H. (1996). Semantics of quotient operators in fuzzy relational databases. Fuzzy Sets and Systems, 78, 89–93.

    Article  MathSciNet  Google Scholar 

  • Dubois, D., & Prade, H. (1997a). A fuzzy set approach to case-based decision. In R. Felix (Ed.), EFDAN-97, 2nd European Workshop on Fuzzy Decision Analysis and Neural Networks for Management, Planning and Optimization (pp. 1–9). Dortmund, Germany.

  • Dubois, D., & Prade, H. (1997b). The three semantics of fuzzy sets. Fuzzy Sets and Systems, 90(2), 141–150.

    Article  MATH  MathSciNet  Google Scholar 

  • Dubois, D., Prade, H., & Testemale, C. (1988). Weighted fuzzy pattern matching. Fuzzy Sets and Systems, 28, 313–331.

    Article  MATH  MathSciNet  Google Scholar 

  • Dubois, D., Fargier, H., & Prade, H. (1994). Propagation and satisfaction of flexible constraints. In R. R. Yager & L. A. Zadeh (Eds.), Fuzzy sets, neural networks and soft computing (pp. 166–187). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Dubois, D., Fargier, H., & Prade, H. (1996a). Possibility theory in constraint satisfaction problems: Handling priority, preference and uncertainty. Applied Intelligence, 6, 287–309.

    Article  Google Scholar 

  • Dubois, D., Fargier, H., & Prade, H. (1996b). Refinements of the maximin approach to decisionmaking in fuzzy environment. Fuzzy Sets and Systems, 81, 103–122.

    Article  MATH  MathSciNet  Google Scholar 

  • Dubois, D., Esteva, F., Garcia, P., Godo, L., de Mantaras, R. L., & Prade, H. (1997). Fuzzy modelling of case-based reasoning and decision. In D. B. Leake & E. Plaza (Eds.), Case-based reasoning research and development, Proceedings ICCBR-97 (pp. 599–610). Berlin: Springer-Verlag.

    Google Scholar 

  • Dubois, D., Esteva, F., Garcia, P., Godo, L., Lopez de Mantaras, R., & Prade, H. (1998). Fuzzy set modelling in case-based reasoning. International Journal of Intelligent Systems, 13, 345–373.

    Article  MATH  Google Scholar 

  • Dubois, D., Prade, H., & Sédes, F. (2001). Fuzzy logic techniques in multimedia database querying: A preliminary investigation of potentials. IEEE Transactions on Knowledge and Data Engineering, 13(3), 383–392.

    Article  Google Scholar 

  • Dubois, D., Hüllermeier, E., & Prade, H. (2002). Fuzzy set-based methods in instance-based reasoning. IEEE Transactions on Fuzzy Systems, 10(3), 322–332.

    Article  Google Scholar 

  • Dubois, D., Kaci, S., & Prade, H. (2004). Bipolarity in reasoning and decision: An introduction. The case of the possibility framework. In IPMU–04, 10th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Perugia, Italy.

  • Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave and information tapestry. Communications of the ACM, 35(12), 61–70.

    Article  Google Scholar 

  • Gilboa, I., & Schmeidler, D. (1995). Case-based decision theory. Quarterly Journal of Economics, 110(4), 605–639.

    Article  MATH  Google Scholar 

  • Hellman, M. E. (1970). The nearest neighbor classification rule with a reject option. IEEE Transactions on Systems, Man, and Cybernetics, SMC-6, 179–185.

    MathSciNet  Google Scholar 

  • Kautz, H. (1998). Recommender systems. Menlo Park, CA: AAAI Press.

    Google Scholar 

  • Klement, E. P., Mesiar, R., & Pap, E. (2002). Triangular norms. Dordrecht: Kluwer Academic Publishers.

    MATH  Google Scholar 

  • Lakoff, G. (1973). Hedges: A study in meaning criteria and the logic of fuzzy concepts. Journal of Philosophical Logic, 2, 458–508.

    Article  MATH  MathSciNet  Google Scholar 

  • Larsen, H., Kacprzyk, J., Zadrozny, S., Andreasen, T., & Christiansen, H. (Eds.) (2001). Flexible query answering systems, recent advances. Heidelberg: Physica Verlag.

    Google Scholar 

  • Lin, W., Alvarez, S. A., & Ruiz, C. (2002). Efficient adaptive-support association rule mining for recommender systems. Data Mining and Knowledge Discovery, 6, 83–105.

    Article  MathSciNet  Google Scholar 

  • MacVicar-Whelan, P. J. (1978). Fuzzy sets, the concept of height, and the hedge very. IEEE Transactions on Systems, Man, and Cybernetics, 8, 507–511.

    Google Scholar 

  • Prade, H., & Yager, R. R. (1994). Estimations of expectedness and potential surprize in possibility theory. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2, 417–428.

    Article  MathSciNet  Google Scholar 

  • Resnik, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3).

  • Ruspini, E. H. (1991). On the semantics of fuzzy logic. International Journal of Approximate Reasoning, 5, 45–88.

    Article  MATH  MathSciNet  Google Scholar 

  • Yager, R. R. (1985). Aggregating evidence using quantified statements. Information Sciences, 36, 179–206.

    Article  MATH  MathSciNet  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Article  MATH  MathSciNet  Google Scholar 

  • Zadeh, L. A. (1972). A fuzzy-set theoretic interpretation of linguistic hedges. Journal of Cybernetics, 2(3), 4–32.

    Article  MathSciNet  Google Scholar 

  • Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1(1).

  • Zadeh, L. A. (1996). Fuzzy logic = computing with words. IEEE Transactions on Fuzzy Systems, 2, 103–111.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyke Hüllermeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubois, D., Hüllermeier, E. & Prade, H. Fuzzy methods for case-based recommendation and decision support. J Intell Inf Syst 27, 95–115 (2006). https://doi.org/10.1007/s10844-006-0976-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10844-006-0976-x

Keywords