Abstract
Aging is the decline of physiological capabilities required for life maintenance and reproduction over time. The human immune cells, including T-cells lymphocytes, undergo dramatic aging-related changes, including those related to telomeres and telomerase. It was demonstrated that telomeres and telomerase play crucial roles in T-cell differentiation, aging, and diseases, including a well-documented link between short telomeres and telomerase activation demonstrated in several T-cells malignancies. Herein, we provide a comprehensive review of the literature regarding T-cells’ telomeres and telomerase in health and age related-diseases.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Akbar AN, Vukmanovic-Stejic M (2007) Telomerase in T lymphocytes: use it and lose it? J Immunol Baltim Md 178:6689–6694. https://doi.org/10.4049/jimmunol.178.11.6689
Akbar AN, Henson SM (2011) Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat Rev Immunol 11:289–295. https://doi.org/10.1038/nri2959
Akbar AN, Beverley PCL, Salmon M (2004) Will telomere erosion lead to a loss of T-cell memory? Nat Rev Immunol 4:737–743. https://doi.org/10.1038/nri1440
Akbar AN, Henson SM, Lanna A (2016) Senescence of T lymphocytes: implications for enhancing human immunity. Trends Immunol 37:866–876. https://doi.org/10.1016/j.it.2016.09.002
Arakawa F, Miyoshi H, Yoshida N et al (2021) Expression of telomerase reverse transcriptase in peripheral T-cell lymphoma. Cancer Med 10:6786–6794. https://doi.org/10.1002/cam4.4200
Bekaert S, De Meyer T, Rietzschel ER et al (2007) Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell 6:639–647. https://doi.org/10.1111/j.1474-9726.2007.00321.x
Bellon M, Nicot C (2007) Telomerase: a crucial player in HTLV-I-induced human T-cell leukemia. Cancer Genom Proteom 4:21–25
Belver L, Ferrando A (2016) The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer 16:494–507. https://doi.org/10.1038/nrc.2016.63
Bennaceur K, Atwill M, Al Zhrany N et al (2014) Atorvastatin induces T cell proliferation by a telomerase reverse transcriptase (TERT) mediated mechanism. Atherosclerosis 236:312–320. https://doi.org/10.1016/j.atherosclerosis.2014.07.020
Billard P, Poncet DA (2019) Replication stress at telomeric and mitochondrial DNA: common origins and consequences on ageing. Int J Mol Sci 20:4959. https://doi.org/10.3390/ijms20194959
Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622. https://doi.org/10.1038/nrg1656
Brunet A, Berger SL (2014) Epigenetics of aging and aging-related disease. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S17-20. https://doi.org/10.1093/gerona/glu042
Buckley MT, Sun ED, George BM et al (2023) Cell-type-specific aging clocks to quantify aging and rejuvenation in neurogenic regions of the brain. Nat Aging 3:121–137. https://doi.org/10.1038/s43587-022-00335-4
Carrasco E, Gómez de Las Heras MM, Gabandé-Rodríguez E et al (2022) The role of T cells in age-related diseases. Nat Rev Immunol 22:97–111. https://doi.org/10.1038/s41577-021-00557-4
Carty CL, Kooperberg C, Liu J et al (2015) Leukocyte telomere length and risks of incident coronary heart disease and mortality in a racially diverse population of postmenopausal women. Arterioscler Thromb Vasc Biol 35:2225–2231. https://doi.org/10.1161/ATVBAHA.115.305838
Chebly A, Chouery E, Ropio J et al (2021) Diagnosis and treatment of lymphomas in the era of epigenetics. Blood Rev 48:100782. https://doi.org/10.1016/j.blre.2020.100782
Chebly A, Ropio J, Peloponese J-M et al (2022) Exploring hTERT promoter methylation in cutaneous T-cell lymphomas. Mol Oncol 16:1931–1946. https://doi.org/10.1002/1878-0261.12946
Cherkas LF, Hunkin JL, Kato BS et al (2008) The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med 168:154–158. https://doi.org/10.1001/archinternmed.2007.39
Chevret E, Andrique L, Prochazkova-Carlotti M et al (2014) Telomerase functions beyond telomere maintenance in primary cutaneous T-cell lymphoma. Blood 123:1850–1859. https://doi.org/10.1182/blood-2013-05-500686
Chistiakov DA, Sobenin IA, Orekhov AN (2013) Regulatory T cells in atherosclerosis and strategies to induce the endogenous atheroprotective immune response. Immunol Lett 151:10–22. https://doi.org/10.1016/j.imlet.2013.01.014
Chou JP, Effros RB (2013) T cell replicative senescence in human aging. Curr Pharm Des 19:1680–1698. https://doi.org/10.2174/138161213805219711
Codd V, Nelson CP, Albrecht E et al (2013) Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet 45:422–427. https://doi.org/10.1038/ng.2528. (427e1-2)
D’Angelo C, Goldeck D, Pawelec G et al (2020) Exploratory study on immune phenotypes in Alzheimer’s disease and vascular dementia. Eur J Neurol 27:1887–1894. https://doi.org/10.1111/ene.14360
Davison GM (2007) Telomeres and telomerase in leukaemia and lymphoma. Transfus Apher Sci off J World Apher Assoc off J Eur Soc Haemapheresis 37:43–47. https://doi.org/10.1016/j.transci.2007.04.006
De Felice B, Annunziata A, Fiorentino G et al (2014) Telomerase expression in amyotrophic lateral sclerosis (ALS) patients. J Hum Genet 59:555–561. https://doi.org/10.1038/jhg.2014.72
de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110. https://doi.org/10.1101/gad.1346005
Demanelis K, Jasmine F, Chen LS et al (2020) Determinants of telomere length across human tissues. Science 369:eaaz6876. https://doi.org/10.1126/science.aaz6876
Deng Y, Li Q, Zhou F et al (2022) Telomere length and the risk of cardiovascular diseases: a mendelian randomization study. Front Cardiovasc Med 9:1012615. https://doi.org/10.3389/fcvm.2022.1012615
Desdín-Micó G, Soto-Heredero G, Aranda JF et al (2020) T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 368:1371–1376. https://doi.org/10.1126/science.aax0860
Elyahu Y, Hekselman I, Eizenberg-Magar I et al (2019) Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci Adv 5:eaaw8330. https://doi.org/10.1126/sciadv.aaw8330
Fessler J, Angiari S (2021) The role of T cell senescence in neurological diseases and its regulation by cellular metabolism. Front Immunol 12:706434. https://doi.org/10.3389/fimmu.2021.706434
Fooksman DR, Vardhana S, Vasiliver-Shamis G et al (2010) Functional anatomy of T cell activation and synapse formation. Annu Rev Immunol 28:79–105. https://doi.org/10.1146/annurev-immunol-030409-101308
Franceschi C, Garagnani P, Parini P et al (2018) Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14:576–590. https://doi.org/10.1038/s41574-018-0059-4
Fumagalli M, Rossiello F, Clerici M et al (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 14:355–365. https://doi.org/10.1038/ncb2466
Furman D, Campisi J, Verdin E et al (2019) Chronic inflammation in the etiology of disease across the life span. Nat Med 25:1822–1832. https://doi.org/10.1038/s41591-019-0675-0
Gao X, Yu X, Zhang C et al (2022) Telomeres and mitochondrial metabolism: implications for cellular senescence and age-related diseases. Stem Cell Rev Rep 18:2315–2327. https://doi.org/10.1007/s12015-022-10370-8
Goronzy JJ, Weyand CM (2013) Understanding immunosenescence to improve responses to vaccines. Nat Immunol 14:428–436. https://doi.org/10.1038/ni.2588
Goronzy JJ, Weyand CM (2019) Mechanisms underlying T cell ageing. Nat Rev Immunol 19:573–583. https://doi.org/10.1038/s41577-019-0180-1
Goronzy JJ, Fang F, Cavanagh MM et al (2015) Naive T cell maintenance and function in human aging. J Immunol Baltim Md 1950 194:4073–4080. https://doi.org/10.4049/jimmunol.1500046
Greenman C, Stephens P, Smith R et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446:153–158. https://doi.org/10.1038/nature05610
Greider CW (1991) Telomeres. Curr Opin Cell Biol 3:444–451. https://doi.org/10.1016/0955-0674(91)90072-7
Gruber H-J, Semeraro MD, Renner W, Herrmann M (2021) Telomeres and age-related diseases. Biomedicines 9:1335. https://doi.org/10.3390/biomedicines9101335
Guo N, Parry EM, Li L-S et al (2011) Short telomeres compromise β-cell signaling and survival. PLoS One 6:e17858. https://doi.org/10.1371/journal.pone.0017858
Hashimoto K, Kouno T, Ikawa T et al (2019) Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proc Natl Acad Sci USA 116:24242–24251. https://doi.org/10.1073/pnas.1907883116
Haycock PC, Heydon EE, Kaptoge S et al (2014) Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 349:g4227. https://doi.org/10.1136/bmj.g4227
Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621. https://doi.org/10.1016/0014-4827(61)90192-6
Henson SM, Macaulay R, Riddell NE et al (2015) Blockade of PD-1 or p38 MAP kinase signaling enhances senescent human CD8+ T-cell proliferation by distinct pathways. Eur J Immunol 45:1441–1451. https://doi.org/10.1002/eji.201445312
Hodes RJ, Hathcock KS, Weng N (2002) Telomeres in T and B cells. Nat Rev Immunol 2:699–706. https://doi.org/10.1038/nri890
Hoffmann J, Richardson G, Haendeler J et al (2021) Telomerase as a therapeutic target in cardiovascular disease. Arterioscler Thromb Vasc Biol 41:1047–1061. https://doi.org/10.1161/ATVBAHA.120.315695
Kahrizi MS, Patra I, Jalil AT et al (2022) Leukocyte telomere length and obesity in children and adolescents: a systematic review and meta-analysis. Front Genet 13:861101. https://doi.org/10.3389/fgene.2022.861101
Klenerman P (2018) The (gradual) rise of memory inflation. Immunol Rev 283:99–112. https://doi.org/10.1111/imr.12653
Kogure Y, Kataoka K (2017) Genetic alterations in adult T-cell leukemia/lymphoma. Cancer Sci 108:1719–1725. https://doi.org/10.1111/cas.13303
Kroupa M, Rachakonda S, Vymetalkova V et al (2020) Telomere length in peripheral blood lymphocytes related to genetic variation in telomerase, prognosis and clinicopathological features in breast cancer patients. Mutagenesis 35:491–497. https://doi.org/10.1093/mutage/geaa030
Kubuki Y, Suzuki M, Sasaki H et al (2005) Telomerase activity and telomere length as prognostic factors of adult T-cell leukemia. Leuk Lymphoma 46:393–399. https://doi.org/10.1080/10428190400018349
Lai T-P, Wright WE, Shay JW (2018) Comparison of telomere length measurement methods. Philos Trans R Soc B Biol Sci 373:20160451. https://doi.org/10.1098/rstb.2016.0451
Lanna A, Vaz B, D’Ambra C et al (2022) An intercellular transfer of telomeres rescues T cells from senescence and promotes long-term immunological memory. Nat Cell Biol 24:1461–1474. https://doi.org/10.1038/s41556-022-00991-z
Li Y, Shen Y, Hohensinner P et al (2016) Deficient activity of the nuclease MRE11A induces T cell aging and promotes arthritogenic effector functions in patients with rheumatoid arthritis. Immunity 45:903–916. https://doi.org/10.1016/j.immuni.2016.09.013
Li C, Wei G-J, Xu L et al (2017) The involvement of senescence induced by the telomere shortness in the decline of osteogenic differentiation in BMSCs. Eur Rev Med Pharmacol Sci 21:1117–1124
López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
Martincorena I, Campbell PJ (2015) Somatic mutation in cancer and normal cells. Science 349:1483–1489. https://doi.org/10.1126/science.aab4082
Martincorena I, Fowler JC, Wabik A et al (2018) Somatic mutant clones colonize the human esophagus with age. Science 362:911–917. https://doi.org/10.1126/science.aau3879
Martínez-Zamudio RI, Dewald HK, Vasilopoulos T et al (2021) Senescence-associated β-galactosidase reveals the abundance of senescent CD8 + T cells in aging humans. Aging Cell 20:e13344. https://doi.org/10.1111/acel.13344
Meyer DH, Schumacher B (2021) BiT age: a transcriptome-based aging clock near the theoretical limit of accuracy. Aging Cell 20:e13320. https://doi.org/10.1111/acel.13320
Minato N, Hattori M, Hamazaki Y (2020) Physiology and pathology of T-cell aging. Int Immunol 32:223–231. https://doi.org/10.1093/intimm/dxaa006
Mittelbrunn M, Kroemer G (2021) Hallmarks of T cell aging. Nat Immunol 22:687–698. https://doi.org/10.1038/s41590-021-00927-z
Mogilenko DA, Shpynov O, Andhey PS et al (2021) Comprehensive Profiling of an aging immune system reveals clonal GZMK + CD8 + T cells as conserved hallmark of inflammaging. Immunity 54:99-115e12. https://doi.org/10.1016/j.immuni.2020.11.005
Montpetit AJ, Alhareeri AA, Montpetit M et al (2014) Telomere length: a review of methods for measurement. Nurs Res 63:289–299. https://doi.org/10.1097/NNR.0000000000000037
Mozaffarian D, Benjamin EJ, Go AS et al (2015) Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation 131:e29-322. https://doi.org/10.1161/CIR.0000000000000152
Nikolouzakis TK, Vakonaki E, Stivaktakis PD et al (2021) Novel prognostic biomarkers in metastatic and locally advanced colorectal cancer: micronuclei frequency and telomerase activity in peripheral blood lymphocytes. Front Oncol 11:683605
Olovnikov AM (1971) Principle of marginotomy in template synthesis of polynucleotides. Dokl Akad Nauk SSSR 201:1496–1499
Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181–190. https://doi.org/10.1016/0022-5193(73)90198-7
Olovnikov AM (1996) Telomeres, telomerase, and aging: origin of the theory. Exp Gerontol 31:443–448. https://doi.org/10.1016/0531-5565(96)00005-8
Ovadya Y, Landsberger T, Leins H et al (2018) Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat Commun 9:5435. https://doi.org/10.1038/s41467-018-07825-3
Palmer S, Albergante L, Blackburn CC, Newman TJ (2018) Thymic involution and rising disease incidence with age. Proc Natl Acad Sci USA 115:1883–1888. https://doi.org/10.1073/pnas.1714478115
Panossian LA, Porter VR, Valenzuela HF et al (2003) Telomere shortening in T cells correlates with Alzheimer’s disease status. Neurobiol Aging 24:77–84. https://doi.org/10.1016/s0197-4580(02)00043-x
Passos JF, Saretzki G, von Zglinicki T (2007) DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res 35:7505–7513. https://doi.org/10.1093/nar/gkm893
Peters MJ, Joehanes R, Pilling LC et al (2015) The transcriptional landscape of age in human peripheral blood. Nat Commun 6:8570. https://doi.org/10.1038/ncomms9570
Petersen C, Bell R, Klag KA et al (2019) T cell-mediated regulation of the microbiota protects against obesity. Science 365:eaat9351. https://doi.org/10.1126/science.aat9351
Plunkett FJ, Franzese O, Finney HM et al (2007) The loss of telomerase activity in highly differentiated CD8 + CD28-CD27- T cells is associated with decreased akt (Ser473) phosphorylation. J Immunol Baltim Md 178:7710–7719. https://doi.org/10.4049/jimmunol.178.12.7710
Ropio J, Chebly A, Ferrer J et al (2020) Reliable blood cancer cells’ telomere length evaluation by qPCR. Cancer Med 9:3153–3162. https://doi.org/10.1002/cam4.2816
Ropio J, Prochazkova-Carlotti M, Batista R et al (2023) Spotlight on hTERT complex regulation in cutaneous T-cell lymphomas. Genes 14:439. https://doi.org/10.3390/genes14020439
Rufer N, Brümmendorf TH, Kolvraa S et al (1999) Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med 190:157–167. https://doi.org/10.1084/jem.190.2.157
Sampson MJ, Winterbone MS, Hughes JC et al (2006) Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care 29:283–289. https://doi.org/10.2337/diacare.29.02.06.dc05-1715
Sanchez-Espiridion B, Chen M, Chang JY et al (2014) Telomere length in peripheral blood leukocytes and lung cancer risk: a large case-control study in caucasians. Cancer Res 74:2476–2486. https://doi.org/10.1158/0008-5472.CAN-13-2968
Sanderson SL, Simon AK (2017) In aged primary T cells, mitochondrial stress contributes to telomere attrition measured by a novel imaging flow cytometry assay. Aging Cell 16:1234–1243. https://doi.org/10.1111/acel.12640
Schönland SO, Lopez C, Widmann T et al (2003) Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. Proc Natl Acad Sci USA 100:13471–13476. https://doi.org/10.1073/pnas.2233561100
Shankaran V, Ikeda H, Bruce AT et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111. https://doi.org/10.1038/35074122
Shao L, Wood CG, Zhang D et al (2007) Telomere dysfunction in peripheral lymphocytes as a potential predisposition factor for renal cancer. J Urol 178:1492–1496. https://doi.org/10.1016/j.juro.2007.05.112
Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer Oxf Engl 33:787–791. https://doi.org/10.1016/S0959-8049(97)00062-2
Shay JW, Wright WE (2019) Telomeres and telomerase: three decades of progress. Nat Rev Genet 20:299–309. https://doi.org/10.1038/s41576-019-0099-1
Strandberg TE, Saijonmaa O, Fyhrquist F et al (2011) Telomere length in old age and cholesterol across the life course. J Am Geriatr Soc 59:1979–1981. https://doi.org/10.1111/j.1532-5415.2011.03610_13.x
Strandberg TE, Strandberg AY, Saijonmaa O et al (2012) Association between alcohol consumption in healthy midlife and telomere length in older men. The Helsinki businessmen study. Eur J Epidemiol 27:815–822. https://doi.org/10.1007/s10654-012-9728-0
Strazhesko ID, Tkacheva ON, Akasheva DU et al (2016) Atorvastatin therapy modulates telomerase activity in patients free of atherosclerotic cardiovascular diseases. Front Pharmacol 7:347. https://doi.org/10.3389/fphar.2016.00347
Victorelli S, Lagnado A, Halim J et al (2019) Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. EMBO J 38:e101982. https://doi.org/10.15252/embj.2019101982
Vida C, Kobayashi H, Garrido A et al (2019) Lymphoproliferation impairment and oxidative stress in blood cells from early Parkinson’s disease patients. Int J Mol Sci 20:771. https://doi.org/10.3390/ijms20030771
von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344. https://doi.org/10.1016/s0968-0004(02)02110-2
Wan T, Weir EJ, Johnson M et al (2021) Increased telomerase improves motor function and alpha-synuclein pathology in a transgenic mouse model of Parkinson’s disease associated with enhanced autophagy. Prog Neurobiol 199:101953. https://doi.org/10.1016/j.pneurobio.2020.101953
Weng NP, Levine BL, June CH, Hodes RJ (1995) Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc Natl Acad Sci USA 92:11091–11094. https://doi.org/10.1073/pnas.92.24.11091
Weng N-P, Akbar AN, Goronzy J (2009) CD28– T cells: their role in the age-associated decline of immune function. Trends Immunol 30:306–312. https://doi.org/10.1016/j.it.2009.03.013
Wu KD, Hansen ER (2001) Shortened telomere length is demonstrated in T-cell subsets together with a pronounced increased telomerase activity in CD4 positive T cells from blood of patients with mycosis fungoides and parapsoriasis. Exp Dermatol 10:329–336. https://doi.org/10.1034/j.1600-0625.2001.100505.x
Yeh J-K, Wang C-Y (2016) Telomeres and telomerase in cardiovascular diseases. Genes 7:58. https://doi.org/10.3390/genes7090058
Zhang W, Chen Y, Wang Y et al (2013) Short telomere length in blood leucocytes contributes to the presence of atherothrombotic stroke and haemorrhagic stroke and risk of post-stroke death. Clin Sci Lond Engl 1979 125:27–36. https://doi.org/10.1042/CS20120691
Zheng K, Zheng X, Yang W (2022) The role of metabolic dysfunction in T-cell exhaustion during chronic viral Infection. Front Immunol 13:843242. https://doi.org/10.3389/fimmu.2022.843242
Author information
Authors and Affiliations
Contributions
AC wrote the main manuscript. AC and EC prepared the figures. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chebly, A., Khalil, C., Kuzyk, A. et al. T-cell lymphocytes’ aging clock: telomeres, telomerase and aging. Biogerontology 25, 279–288 (2024). https://doi.org/10.1007/s10522-023-10075-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10522-023-10075-6