这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Optical optimization of a multi-slit extreme ultraviolet spectrograph for global solar corona diagnostics

  • Research
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The spatial-temporal evolution of coronal plasma parameters of the solar outer atmosphere at global scales, derived from solar full-disk imaging spectroscopic observation in the extreme-ultraviolet band, is critical for understanding and forecasting solar eruptions. We propose a multi-slits extreme ultraviolet imaging spectrograph for global coronal diagnostics with high cadence and present the preliminary instrument designs for the wavelength range from 18.3 to 19.8 nm. The instrument takes a comprehensive approach to obtain global coronal spatial and spectral information, improve the detected cadence and avoid overlapping. We first describe the relationship between optical properties and structural parameters, especially the relationship between the overlapping and the number of slits, and give a general multi-slits extreme-ultraviolet imaging spectrograph design process. The multilayer structure is optimized to enhance the effective areas in the observation band. Five distantly-separated slits are set to divide the entire solar field of view, which increase the cadence for raster scanning the solar disk by 5 times relative to a single slit. The spectral resolving power of the optical system with an aperture diameter of 150 mm are optimized to be greater than 1461. The spatial resolution along the slits direction and the scanning direction are about \(4.4^{\prime \prime }\) and \(6.86^{\prime \prime }\), respectively. The Al/Mo/B\(_4\)C multilayer structure is optimized and the peak effective area is about 1.60 cm\(^2\) at 19.3 nm with a full width at half maximum of about 1.3 nm. The cadence to finish full-disk raster scan is about 5 minutes. Finally, the instrument performance is evaluated by an end-to-end calculation of the system photon budget and a simulation of the observational image and spectra. Our investigation shows that this approach is promising for global coronal plasma diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Materials Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Anan, T., Jaeggli, S., Lin, H., et al.: Implementation of the 36 \(\mu \)m machined image slicer integral field unit for DKIST/DL-NIRSP. In: Bryant, J.J., Motohara, K., Vernet, J.R.D. (eds.) Ground-based and Airborne Instrumentation for Astronomy X, International Society for Optics and Photonics, vol. 13096. SPIE, p. 1309626 (2024). https://doi.org/10.1117/12.3019649

  2. Bai, X., Tian, H., Deng, Y., et al.: The Solar Upper Transition Region Imager (SUTRI) Onboard the SATech-01 Satellite. Res. Astron. Astrophys. 23(6), 06501 (2023). https://doi.org/10.1088/1674-4527/accc74. arXiv:2303.03669 [astro-ph.SR]

  3. Beutler, H.G.: The theory of the concave grating. Journal of the Optical Society of America (1917-1983) 35(5), 311 (1945)

    Article  MathSciNet  Google Scholar 

  4. Brooks, D.H., Ugarte-Urra, I., Warren, H.P.: Full-sun observations for identifying the source of the slow solar wind. Nat. Commun. 6, 5947 (2015). https://doi.org/10.1038/ncomms6947, https://europepmc.org/articles/PMC4354106

  5. Calcines Rosario, A., Reid, H.A.S., Matthews, S., et al.: Sisa: the first extreme-ultraviolet solar integral field spectrograph using slicers (2023). https://doi.org/10.20944/preprints202311.1854.v1

  6. Chamberlin, P.C., Gong, Q.: An integral field spectrograph utilizing mirrorlet arrays. Journal of Geophysical Research (Space Physics) 121(9), 8250–825 (2016). https://doi.org/10.1002/2016JA022487

    Article  ADS  Google Scholar 

  7. Chan, L., Tian, H., Liu, X., et al.: Global Coronal Plasma Diagnostics Based on Multislit Extreme-ultraviolet Spectroscopy. apj 967(2), 162 (2024). https://doi.org/10.3847/1538-4357/ad4114, arXiv:2404.13120 [astro-ph.SR]

  8. Cheung, M.C.M., Boerner, P., Schrijver, C.J., et al.: Thermal Diagnostics with the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory: A Validated Method for Differential Emission Measure Inversions. apj 807(2), 143 (2015). https://doi.org/10.1088/0004-637X/807/2/143, arXiv:1504.03258 [astro-ph.SR]

  9. Cheung, M.C.M., De Pontieu, B., Martínez-Sykora, J., et al.: Multi-component Decomposition of Astronomical Spectra by Compressed Sensing. apj 882(1), 13 (2019). https://doi.org/10.3847/1538-4357/ab263d, arXiv:1902.03890 [astro-ph.SR]

  10. Cheung, M.C.M., Martínez-Sykora, J., Testa, P., et al.: Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). II. Flares and Eruptions. apj 926(1), 5 (2022). https://doi.org/10.3847/1538-4357/ac4223. arXiv:2106.15591 [astro-ph.SR]

  11. Corso, A.J., Pelizzo, M.G.: Extreme ultraviolet multilayer nanostructures and their application to solar plasma observations: A review. J Nanoscience Nanotechnology 19(1), 532–545 (2019). https://api.semanticscholar.org/CorpusID:53528482

  12. Culhane, J.L., Harra, L.K., James, A.M., et al.: The EUV Imaging Spectrometer for Hinode. solphys 243(1), 19–61 (2007). https://doi.org/10.1007/s01007-007-0293-1

  13. De Pontieu, B., Martínez-Sykora, J., Testa, P., et al.: The Multi-slit Approach to Coronal Spectroscopy with the Multi-slit Solar Explorer (MUSE). apj 888(1), 3 (2020). https://doi.org/10.3847/1538-4357/ab5b03, arXiv:1909.08818 [astro-ph.IM]

  14. De Pontieu, B., Testa, P., Martínez-Sykora, J., et al.: Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). I. Coronal Heating. apj 926(1), 52 (2022). https://doi.org/10.3847/1538-4357/ac4222. arXiv:2106.15584 [astro-ph.SR]

  15. Del Zanna, G., Mason, H.E.: Solar UV and X-ray spectral diagnostics. Living Rev. Solar Phys. 15(1), 5 (2018). https://doi.org/10.1007/s41116-018-0015-3, arXiv:1809.01618 [astro-ph.SR]

  16. Delmotte, F., Meltchakov, E., de Rossi, S., et al.: Development of multilayer coatings for solar orbiter EUV imaging telescopes. In: Fineschi, S., Fennelly, J. (eds.) Solar physics and space weather instrumentation V, p 88620A (2013). https://doi.org/10.1117/12.2036050

  17. Dere, K.P., Landi, E., Mason, H.E., et al.: CHIANTI - an Atomic Database For Emission Lines Paper I: Wavelengths Greater than 50 Angstroms. In: Brandt, J.C., Ake, T.B., Petersen, C.C. (eds.) The Scientific Impact of the Goddard High Resolution Spectrograph, p. 390 (1998)

  18. Domingo, V., Fleck, B., Poland, A.I.: The SOHO Mission: an Overview. solphys 162(1–2), 1–37 (1995). https://doi.org/10.1007/BF00733425

    Article  Google Scholar 

  19. Dominguez-Tagle, C., Collados, M., Lopez, R., et al.: First Light of the Integral Field Unit of GRIS on the GREGOR Solar Telescope. J. Astronomical Instrum. 11(3), 2250014 (2022). https://doi.org/10.1142/S2251171722500143. arXiv:2206.14294 [astro-ph.IM]

  20. Feng, Y., Huang, Q., Zhuang, Y., et al.: Mo/Si lamellar multilayer gratings with high efficiency and enhanced resolution for the x-ray region of 1000–1700eV. Opt. Express 29(9), 13416 (2021). https://doi.org/10.1364/OE.422483

    Article  ADS  Google Scholar 

  21. Fox, J.L.: Snapshot imaging spectroscopy of the solar transition region: The Multi-Order Solar EUV Spectrograph (MOSES) sounding rocket mission. PhD thesis, Montana State University System (2011)

  22. Golub, L., Cheimets, P., DeLuca, E.E., et al.: EUV imaging and spectroscopy for improved space weather forecasting. J. Space Weather Space Climate 10, 37 (2020). https://doi.org/10.1051/swsc/2020040

    Article  ADS  Google Scholar 

  23. Harada, T., Sakuma, H., Ikawa, Y., et al.: Design of high-resolution XUV imaging spectrometer using spherical varied line-space grating. In: Fineschi, S. (ed.) X-Ray and EUV/FUV Spectroscopy and Polarimetry, pp. 107–115 (1995). https://doi.org/10.1117/12.224928

  24. Harada, T., Sakuma, H., Takahashi, K., et al.: Design of a high-resolution extreme-ultraviolet imaging spectrometer with aberration-corrected concave gratings. ao 37(28), 6803–6810 (1998). https://doi.org/10.1364/AO.37.006803

  25. Korendyke, C.M., Brown, C.M., Thomas, R.J., et al.: Optics and mechanisms for the Extreme-Ultraviolet Imaging Spectrometer on the Solar-B satellite. ao 45(34), 8674–8688 (2006). https://doi.org/10.1364/AO.45.008674

  26. Laurent, G.T., Hassler, D.M., Deforest, C., et al.: The Rapid Acquisition Imaging Spectrograph Experiment (RAISE) Sounding Rocket Investigation. Journal of Astronomical Instrumentation 5(1), 1640006–34 (2016). https://doi.org/10.1142/S2251171716400067

    Article  ADS  Google Scholar 

  27. Lin, H., Sukegawa, T., Bonnet, M.B., et al.: MISI-36: Machined image slicer integral field units for the Diffraction-Limited Near-IR Spectropolarimeter. In: Navarro, R., Geyl, R. (eds.) Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation V, International Society for Optics and Photonics, vol 12188. SPIE, p. 1218828 (2022). https://doi.org/10.1117/12.2629979

  28. Lu, H., Tian, H., chao Chen H, et al.: Full velocities and propagation directions of coronal mass ejections inferred from simultaneous full-disk imaging and sun-as-a-star spectroscopic observations. Astrophys. J. 953(1), 68 (2023). https://doi.org/10.3847/1538-4357/acd6a1

    Article  ADS  Google Scholar 

  29. Mahmoud, A.H.K., de Rossi, S., Meltchakov, E., et al.: Al/Mo/SiC multilayer diffraction gratings with broadband efficiency in the extreme ultraviolet. Opt. Express 30(21), 38319 (2022). https://doi.org/10.1364/OE.468568

    Article  ADS  Google Scholar 

  30. Mariska, J.T., Warren, H.P., Ugarte-Urra, I., et al.: Hinode EUV Imaging Spectrometer Observations of Solar Active Region Dynamics. pasj 59, S713 (2007). https://doi.org/10.1093/pasj/59.sp3.S713, arXiv:0708.4309 [astro-ph]

  31. Rachmeler, L.A., Winebarger, A.R., Savage, S.L., et al.: The High-Resolution Coronal Imager. Flight 2.1. solphys 294(12), 174 (2019). https://doi.org/10.1007/s11207-019-1551-2, arXiv:1909.05942 [astro-ph.SR]

  32. Reeves, K., Seaton, D.B., Golub, L., et al.: ECCCO: The EUV CME and Coronal Connectivity Observatory. In: AGU Fall Meeting Abstracts, pp. SH23A–06 (2022)

  33. Schmelz, J.T., Reames, D.V., von Steiger, R., et al.: Composition of the Solar Corona, Solar Wind, and Solar Energetic Particles. apj 755(1), 33 (2012). https://doi.org/10.1088/0004-637X/755/1/33

  34. SPICE Consortium, Anderson, M., Appourchaux, T., et al.: The Solar Orbiter SPICE instrument. An extreme UV imaging spectrometer. aap 642, A14 (2020). https://doi.org/10.1051/0004-6361/201935574. arXiv:1909.01183 [astro-ph.IM]

  35. Sukegawa, T., Lin, H., Bonnet, M.: Ultra-compact machined slicer IFU. In: Minoglou, K., Karafolas, N., Cugny, B. (eds.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p 127773V (2023). https://doi.org/10.1117/12.2690568

  36. Thomas, R.J.: Toroidal varied-line space (TVLS) gratings. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, pp. 411–418 (2003). https://doi.org/10.1117/12.460375

  37. Thomas, R.J.: Elliptical varied line-space (EVLS) gratings. In: Hasinger, G., Turner, M.J.L. (eds.) UV and Gamma-Ray Space Telescope Systems, pp. 755–762 (2004). https://doi.org/10.1117/12.552131

  38. Tian, H., Harra, L., Baker, D., et al.: Upflows in the Upper Solar Atmosphere. solphys 296(3), 47 (2021). https://doi.org/10.1007/s11207-021-01792-7, arXiv:2102.02429 [astro-ph.SR]

  39. Tousey, R., Bartoe, J.D.F., Brueckner, G.E., et al.: Extreme ultraviolet spectroheliograph ATM experiment S082A. ao 16, 870–878 (1977). https://doi.org/10.1364/AO.16.000870

  40. Ugarte-Urra, I., Young, P.R., Brooks, D.H., et al.: The Case for Solar Full-disk Spectral Diagnostics: chromosphere to Corona. Front. Astronomy Space Sci. 9, 42 (2023). https://doi.org/10.3389/fspas.2022.1064192

    Article  Google Scholar 

  41. Voronov, D.L., Gawlitza, P., Cambie, R., et al.: Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering. J. Appl. Phys. 111(9), 093521-093521-9 (2012). https://doi.org/10.1063/1.4710985

  42. Wilhelm, K., Curdt, W., Marsch, E., et al.: SUMER - Solar Ultraviolet Measurements of Emitted Radiation. solphys 162(1–2), 189–231 (1995). https://doi.org/10.1007/BF00733430

  43. Windt, D.L.: IMD—Software for modeling the optical properties of multilayer films. Comput. Phys. 12(4), 360–370 (1998). https://doi.org/10.1063/1.168689

    Article  ADS  Google Scholar 

  44. Winebarger, A.R., Weber, M., Bethge, C., et al.: Unfolding Overlapped Slitless Imaging Spectrometer Data for Extended Sources. apj 882(1), 12 (2019). https://doi.org/10.3847/1538-4357/ab21db, arXiv:1811.08329 [astro-ph.SR]

  45. Xu, Y., Tian, H., Hou, Z., et al.: Sun-as-a-star Spectroscopic Observations of the Line-of-sight Velocity of a Solar Eruption on 2021 October 28. apj 931(2), 76 (2022). https://doi.org/10.3847/1538-4357/ac69d5, arXiv:2204.11722 [astro-ph.SR]

  46. Yang, Z., Tian, H., Bai, X., et al.: Can we detect coronal mass ejections through asymmetries of sun-as-a-star extreme-ultraviolet spectral line profiles? Astrophys. J. Suppl. Ser. 260(2), 36 (2022). https://doi.org/10.3847/1538-4365/ac6607

    Article  ADS  Google Scholar 

  47. Young, P.R.: Future Prospects for Solar EUV and Soft X-ray Solar Spectroscopy Missions. Frontiers in Astronomy and Space Sciences 8, 50 (2021). https://doi.org/10.3389/fspas.2021.662790. arXiv:2102.02943 [astro-ph.SR]

  48. Young, P.R., Del Zanna, G., Landi, E., et al.: CHIANTI-An Atomic Database for Emission Lines. VI. Proton Rates and Other Improvements. apjs 144(1), 135–152 (2003). https://doi.org/10.1086/344365, arXiv:astro-ph/0209493 [astro-ph]

Download references

Acknowledgements

This work was supported by National Key R&D Program of China No. 2021YFA1600500, National Natural Science Foundation of China No. 12303088. CHIANTI is a collaborative project involving George Mason University, the University of Michigan (USA), University of Cambridge (UK) and NASA Goddard Space Flight Center (USA).

Funding

This work was supported by National Key R&D Program of China No. 2021YFA1600500, National Natural Science Foundation of China No. 12303088.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Yufei Feng, Xianyong Bai, Hui Tian. Methodology: Yufei Feng, Xianyong Bai, Hui Tian. Formal analysis and investigation: Sifan Guo, Lami Chan, Qi Yang, Wei Duan. Writing - original draft preparation: Yufei Feng Writing - review and editing: Xiaoming Zhu, Xiao Yang, Zhiwei Feng, and Zhiyong Zhang. Supervision: Hui Tian, Yuanyong Deng.

Corresponding author

Correspondence to Xianyong Bai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

The authors confirm that this article has not been previously published in any journal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Bai, X., Guo, S. et al. Optical optimization of a multi-slit extreme ultraviolet spectrograph for global solar corona diagnostics. Exp Astron 58, 13 (2024). https://doi.org/10.1007/s10686-024-09961-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s10686-024-09961-9

Keywords