Abstract
The spatial-temporal evolution of coronal plasma parameters of the solar outer atmosphere at global scales, derived from solar full-disk imaging spectroscopic observation in the extreme-ultraviolet band, is critical for understanding and forecasting solar eruptions. We propose a multi-slits extreme ultraviolet imaging spectrograph for global coronal diagnostics with high cadence and present the preliminary instrument designs for the wavelength range from 18.3 to 19.8 nm. The instrument takes a comprehensive approach to obtain global coronal spatial and spectral information, improve the detected cadence and avoid overlapping. We first describe the relationship between optical properties and structural parameters, especially the relationship between the overlapping and the number of slits, and give a general multi-slits extreme-ultraviolet imaging spectrograph design process. The multilayer structure is optimized to enhance the effective areas in the observation band. Five distantly-separated slits are set to divide the entire solar field of view, which increase the cadence for raster scanning the solar disk by 5 times relative to a single slit. The spectral resolving power of the optical system with an aperture diameter of 150 mm are optimized to be greater than 1461. The spatial resolution along the slits direction and the scanning direction are about \(4.4^{\prime \prime }\) and \(6.86^{\prime \prime }\), respectively. The Al/Mo/B\(_4\)C multilayer structure is optimized and the peak effective area is about 1.60 cm\(^2\) at 19.3 nm with a full width at half maximum of about 1.3 nm. The cadence to finish full-disk raster scan is about 5 minutes. Finally, the instrument performance is evaluated by an end-to-end calculation of the system photon budget and a simulation of the observational image and spectra. Our investigation shows that this approach is promising for global coronal plasma diagnostics.
Similar content being viewed by others
Data Availability
No datasets were generated or analysed during the current study.
Materials Availability
Not applicable.
Code Availability
Not applicable.
References
Anan, T., Jaeggli, S., Lin, H., et al.: Implementation of the 36 \(\mu \)m machined image slicer integral field unit for DKIST/DL-NIRSP. In: Bryant, J.J., Motohara, K., Vernet, J.R.D. (eds.) Ground-based and Airborne Instrumentation for Astronomy X, International Society for Optics and Photonics, vol. 13096. SPIE, p. 1309626 (2024). https://doi.org/10.1117/12.3019649
Bai, X., Tian, H., Deng, Y., et al.: The Solar Upper Transition Region Imager (SUTRI) Onboard the SATech-01 Satellite. Res. Astron. Astrophys. 23(6), 06501 (2023). https://doi.org/10.1088/1674-4527/accc74. arXiv:2303.03669 [astro-ph.SR]
Beutler, H.G.: The theory of the concave grating. Journal of the Optical Society of America (1917-1983) 35(5), 311 (1945)
Brooks, D.H., Ugarte-Urra, I., Warren, H.P.: Full-sun observations for identifying the source of the slow solar wind. Nat. Commun. 6, 5947 (2015). https://doi.org/10.1038/ncomms6947, https://europepmc.org/articles/PMC4354106
Calcines Rosario, A., Reid, H.A.S., Matthews, S., et al.: Sisa: the first extreme-ultraviolet solar integral field spectrograph using slicers (2023). https://doi.org/10.20944/preprints202311.1854.v1
Chamberlin, P.C., Gong, Q.: An integral field spectrograph utilizing mirrorlet arrays. Journal of Geophysical Research (Space Physics) 121(9), 8250–825 (2016). https://doi.org/10.1002/2016JA022487
Chan, L., Tian, H., Liu, X., et al.: Global Coronal Plasma Diagnostics Based on Multislit Extreme-ultraviolet Spectroscopy. apj 967(2), 162 (2024). https://doi.org/10.3847/1538-4357/ad4114, arXiv:2404.13120 [astro-ph.SR]
Cheung, M.C.M., Boerner, P., Schrijver, C.J., et al.: Thermal Diagnostics with the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory: A Validated Method for Differential Emission Measure Inversions. apj 807(2), 143 (2015). https://doi.org/10.1088/0004-637X/807/2/143, arXiv:1504.03258 [astro-ph.SR]
Cheung, M.C.M., De Pontieu, B., Martínez-Sykora, J., et al.: Multi-component Decomposition of Astronomical Spectra by Compressed Sensing. apj 882(1), 13 (2019). https://doi.org/10.3847/1538-4357/ab263d, arXiv:1902.03890 [astro-ph.SR]
Cheung, M.C.M., Martínez-Sykora, J., Testa, P., et al.: Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). II. Flares and Eruptions. apj 926(1), 5 (2022). https://doi.org/10.3847/1538-4357/ac4223. arXiv:2106.15591 [astro-ph.SR]
Corso, A.J., Pelizzo, M.G.: Extreme ultraviolet multilayer nanostructures and their application to solar plasma observations: A review. J Nanoscience Nanotechnology 19(1), 532–545 (2019). https://api.semanticscholar.org/CorpusID:53528482
Culhane, J.L., Harra, L.K., James, A.M., et al.: The EUV Imaging Spectrometer for Hinode. solphys 243(1), 19–61 (2007). https://doi.org/10.1007/s01007-007-0293-1
De Pontieu, B., Martínez-Sykora, J., Testa, P., et al.: The Multi-slit Approach to Coronal Spectroscopy with the Multi-slit Solar Explorer (MUSE). apj 888(1), 3 (2020). https://doi.org/10.3847/1538-4357/ab5b03, arXiv:1909.08818 [astro-ph.IM]
De Pontieu, B., Testa, P., Martínez-Sykora, J., et al.: Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). I. Coronal Heating. apj 926(1), 52 (2022). https://doi.org/10.3847/1538-4357/ac4222. arXiv:2106.15584 [astro-ph.SR]
Del Zanna, G., Mason, H.E.: Solar UV and X-ray spectral diagnostics. Living Rev. Solar Phys. 15(1), 5 (2018). https://doi.org/10.1007/s41116-018-0015-3, arXiv:1809.01618 [astro-ph.SR]
Delmotte, F., Meltchakov, E., de Rossi, S., et al.: Development of multilayer coatings for solar orbiter EUV imaging telescopes. In: Fineschi, S., Fennelly, J. (eds.) Solar physics and space weather instrumentation V, p 88620A (2013). https://doi.org/10.1117/12.2036050
Dere, K.P., Landi, E., Mason, H.E., et al.: CHIANTI - an Atomic Database For Emission Lines Paper I: Wavelengths Greater than 50 Angstroms. In: Brandt, J.C., Ake, T.B., Petersen, C.C. (eds.) The Scientific Impact of the Goddard High Resolution Spectrograph, p. 390 (1998)
Domingo, V., Fleck, B., Poland, A.I.: The SOHO Mission: an Overview. solphys 162(1–2), 1–37 (1995). https://doi.org/10.1007/BF00733425
Dominguez-Tagle, C., Collados, M., Lopez, R., et al.: First Light of the Integral Field Unit of GRIS on the GREGOR Solar Telescope. J. Astronomical Instrum. 11(3), 2250014 (2022). https://doi.org/10.1142/S2251171722500143. arXiv:2206.14294 [astro-ph.IM]
Feng, Y., Huang, Q., Zhuang, Y., et al.: Mo/Si lamellar multilayer gratings with high efficiency and enhanced resolution for the x-ray region of 1000–1700eV. Opt. Express 29(9), 13416 (2021). https://doi.org/10.1364/OE.422483
Fox, J.L.: Snapshot imaging spectroscopy of the solar transition region: The Multi-Order Solar EUV Spectrograph (MOSES) sounding rocket mission. PhD thesis, Montana State University System (2011)
Golub, L., Cheimets, P., DeLuca, E.E., et al.: EUV imaging and spectroscopy for improved space weather forecasting. J. Space Weather Space Climate 10, 37 (2020). https://doi.org/10.1051/swsc/2020040
Harada, T., Sakuma, H., Ikawa, Y., et al.: Design of high-resolution XUV imaging spectrometer using spherical varied line-space grating. In: Fineschi, S. (ed.) X-Ray and EUV/FUV Spectroscopy and Polarimetry, pp. 107–115 (1995). https://doi.org/10.1117/12.224928
Harada, T., Sakuma, H., Takahashi, K., et al.: Design of a high-resolution extreme-ultraviolet imaging spectrometer with aberration-corrected concave gratings. ao 37(28), 6803–6810 (1998). https://doi.org/10.1364/AO.37.006803
Korendyke, C.M., Brown, C.M., Thomas, R.J., et al.: Optics and mechanisms for the Extreme-Ultraviolet Imaging Spectrometer on the Solar-B satellite. ao 45(34), 8674–8688 (2006). https://doi.org/10.1364/AO.45.008674
Laurent, G.T., Hassler, D.M., Deforest, C., et al.: The Rapid Acquisition Imaging Spectrograph Experiment (RAISE) Sounding Rocket Investigation. Journal of Astronomical Instrumentation 5(1), 1640006–34 (2016). https://doi.org/10.1142/S2251171716400067
Lin, H., Sukegawa, T., Bonnet, M.B., et al.: MISI-36: Machined image slicer integral field units for the Diffraction-Limited Near-IR Spectropolarimeter. In: Navarro, R., Geyl, R. (eds.) Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation V, International Society for Optics and Photonics, vol 12188. SPIE, p. 1218828 (2022). https://doi.org/10.1117/12.2629979
Lu, H., Tian, H., chao Chen H, et al.: Full velocities and propagation directions of coronal mass ejections inferred from simultaneous full-disk imaging and sun-as-a-star spectroscopic observations. Astrophys. J. 953(1), 68 (2023). https://doi.org/10.3847/1538-4357/acd6a1
Mahmoud, A.H.K., de Rossi, S., Meltchakov, E., et al.: Al/Mo/SiC multilayer diffraction gratings with broadband efficiency in the extreme ultraviolet. Opt. Express 30(21), 38319 (2022). https://doi.org/10.1364/OE.468568
Mariska, J.T., Warren, H.P., Ugarte-Urra, I., et al.: Hinode EUV Imaging Spectrometer Observations of Solar Active Region Dynamics. pasj 59, S713 (2007). https://doi.org/10.1093/pasj/59.sp3.S713, arXiv:0708.4309 [astro-ph]
Rachmeler, L.A., Winebarger, A.R., Savage, S.L., et al.: The High-Resolution Coronal Imager. Flight 2.1. solphys 294(12), 174 (2019). https://doi.org/10.1007/s11207-019-1551-2, arXiv:1909.05942 [astro-ph.SR]
Reeves, K., Seaton, D.B., Golub, L., et al.: ECCCO: The EUV CME and Coronal Connectivity Observatory. In: AGU Fall Meeting Abstracts, pp. SH23A–06 (2022)
Schmelz, J.T., Reames, D.V., von Steiger, R., et al.: Composition of the Solar Corona, Solar Wind, and Solar Energetic Particles. apj 755(1), 33 (2012). https://doi.org/10.1088/0004-637X/755/1/33
SPICE Consortium, Anderson, M., Appourchaux, T., et al.: The Solar Orbiter SPICE instrument. An extreme UV imaging spectrometer. aap 642, A14 (2020). https://doi.org/10.1051/0004-6361/201935574. arXiv:1909.01183 [astro-ph.IM]
Sukegawa, T., Lin, H., Bonnet, M.: Ultra-compact machined slicer IFU. In: Minoglou, K., Karafolas, N., Cugny, B. (eds.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p 127773V (2023). https://doi.org/10.1117/12.2690568
Thomas, R.J.: Toroidal varied-line space (TVLS) gratings. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, pp. 411–418 (2003). https://doi.org/10.1117/12.460375
Thomas, R.J.: Elliptical varied line-space (EVLS) gratings. In: Hasinger, G., Turner, M.J.L. (eds.) UV and Gamma-Ray Space Telescope Systems, pp. 755–762 (2004). https://doi.org/10.1117/12.552131
Tian, H., Harra, L., Baker, D., et al.: Upflows in the Upper Solar Atmosphere. solphys 296(3), 47 (2021). https://doi.org/10.1007/s11207-021-01792-7, arXiv:2102.02429 [astro-ph.SR]
Tousey, R., Bartoe, J.D.F., Brueckner, G.E., et al.: Extreme ultraviolet spectroheliograph ATM experiment S082A. ao 16, 870–878 (1977). https://doi.org/10.1364/AO.16.000870
Ugarte-Urra, I., Young, P.R., Brooks, D.H., et al.: The Case for Solar Full-disk Spectral Diagnostics: chromosphere to Corona. Front. Astronomy Space Sci. 9, 42 (2023). https://doi.org/10.3389/fspas.2022.1064192
Voronov, D.L., Gawlitza, P., Cambie, R., et al.: Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering. J. Appl. Phys. 111(9), 093521-093521-9 (2012). https://doi.org/10.1063/1.4710985
Wilhelm, K., Curdt, W., Marsch, E., et al.: SUMER - Solar Ultraviolet Measurements of Emitted Radiation. solphys 162(1–2), 189–231 (1995). https://doi.org/10.1007/BF00733430
Windt, D.L.: IMD—Software for modeling the optical properties of multilayer films. Comput. Phys. 12(4), 360–370 (1998). https://doi.org/10.1063/1.168689
Winebarger, A.R., Weber, M., Bethge, C., et al.: Unfolding Overlapped Slitless Imaging Spectrometer Data for Extended Sources. apj 882(1), 12 (2019). https://doi.org/10.3847/1538-4357/ab21db, arXiv:1811.08329 [astro-ph.SR]
Xu, Y., Tian, H., Hou, Z., et al.: Sun-as-a-star Spectroscopic Observations of the Line-of-sight Velocity of a Solar Eruption on 2021 October 28. apj 931(2), 76 (2022). https://doi.org/10.3847/1538-4357/ac69d5, arXiv:2204.11722 [astro-ph.SR]
Yang, Z., Tian, H., Bai, X., et al.: Can we detect coronal mass ejections through asymmetries of sun-as-a-star extreme-ultraviolet spectral line profiles? Astrophys. J. Suppl. Ser. 260(2), 36 (2022). https://doi.org/10.3847/1538-4365/ac6607
Young, P.R.: Future Prospects for Solar EUV and Soft X-ray Solar Spectroscopy Missions. Frontiers in Astronomy and Space Sciences 8, 50 (2021). https://doi.org/10.3389/fspas.2021.662790. arXiv:2102.02943 [astro-ph.SR]
Young, P.R., Del Zanna, G., Landi, E., et al.: CHIANTI-An Atomic Database for Emission Lines. VI. Proton Rates and Other Improvements. apjs 144(1), 135–152 (2003). https://doi.org/10.1086/344365, arXiv:astro-ph/0209493 [astro-ph]
Acknowledgements
This work was supported by National Key R&D Program of China No. 2021YFA1600500, National Natural Science Foundation of China No. 12303088. CHIANTI is a collaborative project involving George Mason University, the University of Michigan (USA), University of Cambridge (UK) and NASA Goddard Space Flight Center (USA).
Funding
This work was supported by National Key R&D Program of China No. 2021YFA1600500, National Natural Science Foundation of China No. 12303088.
Author information
Authors and Affiliations
Contributions
Conceptualization: Yufei Feng, Xianyong Bai, Hui Tian. Methodology: Yufei Feng, Xianyong Bai, Hui Tian. Formal analysis and investigation: Sifan Guo, Lami Chan, Qi Yang, Wei Duan. Writing - original draft preparation: Yufei Feng Writing - review and editing: Xiaoming Zhu, Xiao Yang, Zhiwei Feng, and Zhiyong Zhang. Supervision: Hui Tian, Yuanyong Deng.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Ethics approval and consent to participate
Not applicable.
Consent for publication
The authors confirm that this article has not been previously published in any journal.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Feng, Y., Bai, X., Guo, S. et al. Optical optimization of a multi-slit extreme ultraviolet spectrograph for global solar corona diagnostics. Exp Astron 58, 13 (2024). https://doi.org/10.1007/s10686-024-09961-9
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1007/s10686-024-09961-9