这是indexloc提供的服务,不要输入任何密码
Skip to main content

Advertisement

Log in

Ophthalmic Image Synthesis and Analysis with Generative Adversarial Network Artificial Intelligence

  • Review
  • Published:
Journal of Imaging Informatics in Medicine Aims and scope Submit manuscript

Abstract

Generative adversarial networks (GANs), introduced by Ian Goodfellow in 2014, have revolutionized adversarial machine learning, particularly in data synthesis. This manuscript explores their application in ophthalmic diagnostics, addressing the scarcity of annotated datasets and the need for improved early disease detection. By leveraging GAN architectures, the goal is to enhance the quality of synthetic ophthalmic images, ultimately improving diagnostic algorithm training. A systematic review was conducted from January to April 2024 across PubMed, Embase, and Scopus. Search terms included “Generative Adversarial Networks” and “ophthalmic image synthesis.” Articles were selected based on relevance to retinal image generation and diagnostic improvement in ophthalmology. GANs show considerable promise in generating high-resolution retinal and optical coherence tomography (OCT) images. Models like DR-GAN and Pix2Pix have successfully synthesized images that resemble real diagnostic data, proving valuable when annotated datasets are scarce. GAN-generated images enhance training for algorithms detecting diseases such as diabetic retinopathy, glaucoma, and age-related macular degeneration. Recent advances, including conditional GANs and CycleGANs, have enabled disease-specific image generation, boosting the diversity of training datasets, particularly in resource-limited settings. Integrating GANs into ophthalmic diagnostics represents a significant leap in medical AI, offering high-quality synthetic images to improve diagnostic algorithms. Despite their potential, challenges such as the need for larger datasets, improved image interpretability, and noise reduction must be addressed. Future research should focus on optimizing these models and incorporating multi-modal data to enhance diagnostic accuracy in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial networks [Internet]. arXiv; 2014 [cited 2023 Feb 4]. Available from: http://arxiv.org/abs/1406.2661

  2. S Karthika, Durgadevi M. Generative adversarial network (GAN): a general review on different variants of GAN and applications. In: 2021 6th International Conference on Communication and Electronics Systems (ICCES). 2021. p. 1–8.

  3. Laino ME, Cancian P, Politi LS, Della Porta MG, Saba L, Savevski V. Generative adversarial networks in brain imaging: a narrative review. Journal of Imaging. 2022;8(4):83. https://doi.org/10.3390/jimaging8040083

    Article  PubMed  PubMed Central  Google Scholar 

  4. You A, Kim JK, Ryu IH, Yoo TK. Application of generative adversarial networks (GAN) for ophthalmology image domains: A survey. Eye and Vision. 2022;9(1). https://doi.org/10.1186/s40662-022-00277-3

  5. Waisberg E, Ong J, Masalkhi M, Zaman N, Sarker P, Lee AG, et al. Google’s AI chatbot “Bard”: a side-by-side comparison with ChatGPT and its utilization in ophthalmology. Eye [Internet]. 2023 Sep 28 [cited 2023 Dec 19]; Available from: https://www.nature.com/articles/s41433-023-02760-0

  6. Masalkhi M, Ong J, Waisberg E, Zaman N, Sarker P, Lee AG, et al. A side-by-side evaluation of Llama 2 by meta with ChatGPT and its application in ophthalmology. Eye [Internet]. 2024 Feb 12 [cited 2024 Feb 13]; Available from: https://www.nature.com/articles/s41433-024-02972-y

  7. Kamran SA, Hossain KF, Ong J, Waisberg E, Zaman N, Baker SA, et al. FA4SANS-GAN: a novel machine learning generative adversarial network to further understand ophthalmic changes in Spaceflight Associated Neuro-Ocular Syndrome (SANS). Ophthalmology Science [Internet]. 2024 Feb [cited 2024 Feb 21];100493. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666914524000290

  8. Coyner AS, Chen JS, Chang K, Singh P, Ostmo S, Chan RVP, et al. Synthetic medical images for robust, privacy-preserving training of artificial intelligence: application to retinopathy of prematurity diagnosis. Ophthalmology Science. 2022 Jun 1;2(2):100126.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Salvi M, Branciforti F, Veronese F, Zavattaro E, Tarantino V, Savoia P, et al. DermoCC-GAN: a new approach for standardizing dermatological images using generative adversarial networks. Computer Methods and Programs in Biomedicine. 2022 Oct 1;225:107040.

    Article  Google Scholar 

  10. Huang Y, Lu Z, Shao Z, Ran M, Zhou J, Fang L, et al. Simultaneous denoising and super-resolution of optical coherence tomography images based on generative adversarial network. Opt Express, OE. 2019 Apr 29;27(9):12289–307.

    Article  Google Scholar 

  11. Axial super-resolution study for optical coherence tomography images via deep learning | IEEE Journals & Magazine | IEEE Xplore [Internet]. [cited 2024 Feb 11]. Available from: https://ieeexplore.ieee.org/abstract/document/9252899

  12. Das V, Dandapat S, Bora PK. Unsupervised super-resolution of OCT images using generative adversarial network for improved age-related macular degeneration diagnosis. IEEE Sensors Journal. 2020 Aug;20(15):8746–56.

    Article  Google Scholar 

  13. Hao Q, Zhou K, Yang J, Hu Y, Chai Z, Ma Y, et al. High signal-to-noise ratio reconstruction of low bit-depth optical coherence tomography using deep learning. JBO. 2020 Nov;25(12):123702.

    PubMed  PubMed Central  Google Scholar 

  14. Jeihouni P, Dehzangi O, Amireskandari A, Rezai A, Nasrabadi NM. Gan-based super-resolution and segmentation of retinal layers in optical coherence tomography scans. In: 2021 IEEE International Conference on Image Processing (ICIP) [Internet]. 2021 [cited 2024 Feb 11]. p. 46–50. Available from: https://ieeexplore.ieee.org/abstract/document/9506291

  15. Zhang T, Cheng J, Fu H, Gu Z, Xiao Y, Zhou K, et al. Noise adaptation generative adversarial network for medical image analysis. IEEE Transactions on Medical Imaging. 2020 Apr;39(4):1149–59.

    Article  PubMed  Google Scholar 

  16. Chai Z, Zhou K, Yang J, Ma Y, Chen Z, Gao S, et al. Perceptual-assisted adversarial adaptation for choroid segmentation in optical coherence tomography. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) [Internet]. 2020 [cited 2024 Feb 11]. p. 1966–70. Available from: https://ieeexplore.ieee.org/abstract/document/9098346

  17. Kugelman J, Alonso-Caneiro D, Read SA, Vincent SJ, Chen FK, Collins MJ. Data augmentation for patch-based OCT chorio-retinal segmentation using generative adversarial networks. Neural Comput & Applic. 2021 Jul 1;33(13):7393–408.

    Article  Google Scholar 

  18. Mahapatra D, Bozorgtabar B, Shao L. Pathological retinal region segmentation from OCT images using geometric relation based augmentation. In 2020 [cited 2024 Feb 11]. p. 9611–20. Available from: https://openaccess.thecvf.com/content_CVPR_2020/html/Mahapatra_Pathological_Retinal_Region_Segmentation_From_OCT_Images_Using_Geometric_Relation_CVPR_2020_paper.html

  19. Kugelman J, Alonso-Caneiro D, Read SA, Vincent SJ, Chen FK, Collins MJ. Constructing synthetic chorio-retinal patches using generative adversarial networks. In: 2019 Digital Image Computing: Techniques and Applications (DICTA) [Internet]. 2019 [cited 2024 Feb 11]. p. 1–8. Available from: https://ieeexplore.ieee.org/abstract/document/8946089

  20. Kugelman J, Alonso-Caneiro D, Read SA, Vincent SJ, Chen FK, Collins MJ. Dual image and mask synthesis with GANs for semantic segmentation in optical coherence tomography. In: 2020 Digital Image Computing: Techniques and Applications (DICTA) [Internet]. 2020 [cited 2024 Feb 11]. p. 1–8. Available from: https://ieeexplore.ieee.org/abstract/document/9363402

  21. Wu M, Cai X, Chen Q, Ji Z, Niu S, Leng T, et al. Geographic atrophy segmentation in SD-OCT images using synthesized fundus autofluorescence imaging. Computer Methods and Programs in Biomedicine. 2019 Dec 1;182:105101.

    Article  Google Scholar 

  22. Chen X, Li Y, Yao L, Adeli E, Zhang Y. Generative adversarial U-Net for domain-free medical image augmentation [Internet]. arXiv; 2021 [cited 2024 Feb 11]. Available from: http://arxiv.org/abs/2101.04793

  23. Yoo TK, Choi JY, Kim HK. Feasibility study to improve deep learning in OCT diagnosis of rare retinal diseases with few-shot classification. Med Biol Eng Comput. 2021 Feb 1;59(2):401–15.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Paladugu PS, Ong J, Nelson N, Kamran SA, Waisberg E, Zaman N, et al. Generative Adversarial networks in medicine: important considerations for this emerging innovation in artificial intelligence. Ann Biomed Eng [Internet]. 2023 Jul 24 [cited 2023 Aug 6]; Available from: https://link.springer.com/https://doi.org/10.1007/s10439-023-03304-z

  25. Yoo TK, Ryu IH, Kim HK. Early experience of adopting a generative diffusion model for the synthesis of fundus photographs. ResearchSquare. Published online October 20, 2022. https://doi.org/10.21203/rs.3.rs-2183608/v1

  26. Wang R, Bashyam V, Yang Z, Yu F, Tassopoulou V, Chintapalli SS, et al. Applications of generative adversarial networks in neuroimaging and clinical neuroscience. NeuroImage. 2023 Apr 1;269:119898.

    Article  Google Scholar 

  27. Bellemo V, Burlina P, Yong L, Wong TY, Ting DSW. Generative adversarial networks (GANs) for retinal fundus image synthesis. In: Carneiro G, You S, editors. Computer Vision – ACCV 2018 Workshops. Cham: Springer International Publishing; 2019. p. 289–302. (Lecture Notes in Computer Science).

  28. Zhao H, Li H, Maurer-Stroh S, Cheng L. Synthesizing retinal and neuronal images with generative adversarial nets. Medical Image Analysis. 2018 Oct 1;49:14–26.

    Article  Google Scholar 

  29. Chen Y, Long J, Guo J. RF-GANs: a method to synthesize retinal fundus images based on generative adversarial network. Comput Intell Neurosci. 2021 Nov 10;2021:3812865.

    Article  Google Scholar 

  30. Zhou Y, Wang B, He X, Cui S, Shao L. DR-GAN: conditional generative adversarial network for fine-grained lesion synthesis on diabetic retinopathy images. IEEE Journal of Biomedical and Health Informatics. 2022 Jan;26(1):56–66.

    Article  PubMed  Google Scholar 

  31. Welander P, Karlsson S, Eklund A. Generative adversarial networks for image-to-image translation on multi-contrast MR images - a comparison of CycleGAN and UNIT [Internet]. arXiv; 2018 [cited 2024 Feb 10]. Available from: http://arxiv.org/abs/1806.07777

  32. Costa P, Galdran A, Meyer MI, Niemeijer M, Abràmoff M, Mendonça AM, et al. End-to-end adversarial retinal image synthesis. IEEE Transactions on Medical Imaging. 2018 Mar;37(3):781–91.

    Article  PubMed  Google Scholar 

  33. Guibas JT, Virdi TS, Li PS. Synthetic medical images from dual generative adversarial networks [Internet]. arXiv; 2018 [cited 2024 Feb 7]. Available from: http://arxiv.org/abs/1709.01872

  34. Yu Z, Xiang Q, Meng J, Kou C, Ren Q, Lu Y. Retinal image synthesis from multiple-landmarks input with generative adversarial networks. BioMedical Engineering OnLine. 2019 May 21;18(1):62.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Diaz-Pinto A, Colomer A, Naranjo V, Morales S, Xu Y, Frangi AF. Retinal image synthesis and semi-supervised learning for glaucoma assessment. IEEE Transactions on Medical Imaging. 2019 Sep;38(9):2211–8.

    Article  PubMed  Google Scholar 

  36. Jameel SK, Aydin S, Ghaeb NH, Majidpour J, Rashid TA, Salih SQ, et al. Exploiting the generative adversarial network approach to create a synthetic topography corneal image. Biomolecules. 2022 Dec;12(12):1888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yıldız E, Arslan AT, Yıldız Taş A, Acer AF, Demir S, Şahin A, et al. Generative adversarial network based automatic segmentation of corneal subbasal nerves on in vivo confocal microscopy images. Translational Vision Science & Technology. 2021 May 26;10(6):33.

    Article  Google Scholar 

  38. Zemborain ZZ, Soifer M, Azar NS, Murillo S, Mousa HM, Perez VL, et al. Open-source automated segmentation of neuronal structures in corneal confocal microscopy images of the subbasal nerve plexus with accuracy on par with human segmentation. Cornea. 2023 Oct;42(10):1309.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Khan ZK, Umar AI, Shirazi SH, Rasheed A, Qadir A, Gul S. Image based analysis of meibomian gland dysfunction using conditional generative adversarial neural network. BMJ Open Ophthalmology. 2021 Feb 1;6(1):e000436.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zheng C, Xie X, Zhou K, Chen B, Chen J, Ye H, et al. Assessment of generative adversarial networks model for synthetic optical coherence tomography images of retinal disorders. Translational Vision Science & Technology. 2020 May 27;9(2):29.

    Article  Google Scholar 

  41. Sreejith Kumar AJ, Chong RS, Crowston JG, et al. Evaluation of generative adversarial networks for high-resolution synthetic image generation of circumpapillary optical coherence tomography images for glaucoma. JAMA Ophthalmol. 2022;140(10):974-981. https://doi.org/10.1001/jamaophthalmol.2022.3375

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen Z, Zeng Z, Shen H, Zheng X, Dai P, Ouyang P. DN-GAN: denoising generative adversarial networks for speckle noise reduction in optical coherence tomography images. Biomedical Signal Processing and Control. 2019;55:101632. https://doi.org/10.1016/j.bspc.2019.101632

    Article  Google Scholar 

  43. Ma Y, Chen X, Zhu W, Cheng X, Xiang D, Shi F. Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN. Biomed Opt Express, BOE. 2018 Nov 1;9(11):5129–46.

    Article  PubMed  Google Scholar 

  44. Cheong H, Devalla SK, Pham TH, Zhang L, Tun TA, Wang X, et al. DeshadowGAN: a deep learning approach to remove shadows from optical coherence tomography images. Translational Vision Science & Technology. 2020 Apr 15;9(2):23.

    Article  Google Scholar 

  45. Cheong H, Devalla SK, Chuangsuwanich T, Tun TA, Wang X, Aung T, et al. OCT-GAN: single step shadow and noise removal from optical coherence tomography images of the human optic nerve head. Biomed Opt Express, BOE. 2021 Mar 1;12(3):1482–98.

    Article  PubMed  Google Scholar 

  46. Lee H, Kim S, Kim MA, Chung H, Kim HC. Post-treatment prediction of optical coherence tomography using a conditional generative adversarial network in age-related macular degeneration. RETINA. 2021 Mar;41(3):572.

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y, Yang J, Zhou Y, Wang W, Zhao J, Yu W, et al. Prediction of OCT images of short-term response to anti-VEGF treatment for neovascular age-related macular degeneration using generative adversarial network. British Journal of Ophthalmology. 2020 Dec 1;104(12):1735–40.

    Article  PubMed  Google Scholar 

  48. Moon S, Lee Y, Hwang J, Kim CG, Kim JW, Yoon WT, et al. Prediction of anti-vascular endothelial growth factor agent-specific treatment outcomes in neovascular age-related macular degeneration using a generative adversarial network. Sci Rep. 2023 Apr 6;13(1):5639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu F, Yu X, Gao Y, Ning X, Huang Z, Wei M, et al. Predicting OCT images of short-term response to anti-VEGF treatment for retinal vein occlusion using generative adversarial network. Frontiers in Bioengineering and Biotechnology [Internet]. 2022 [cited 2024 Feb 11];10. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fbioe.2022.914964

  50. Liu S, Hu W, Xu F, Chen W, Liu J, Yu X, et al. Prediction of OCT images of short-term response to anti-VEGF treatment for diabetic macular edema using different generative adversarial networks. Photodiagnosis and Photodynamic Therapy. 2023 Mar 1;41:103272.

    Article  Google Scholar 

  51. Tavakkoli A, Kamran SA, Hossain KF, Zuckerbrod SL. A novel deep learning conditional generative adversarial network for producing angiography images from retinal fundus photographs. Sci Rep. 2020 Dec 9;10(1):21580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, H.K., Ryu, I.H., Choi, J.Y. et al. A feasibility study on the adoption of a generative denoising diffusion model for the synthesis of fundus photographs using a small dataset. Discov Appl Sci 6, 188 (2024). https://doi.org/10.1007/s42452-024-05871-9

    Article  Google Scholar 

  53. Go S, Ji Y, Park SJ, Lee S. Generation of structurally realistic retinal fundus images with diffusion models. arXiv.org. Published May 11, 2023. Accessed April 19, 2025. https://arxiv.org/abs/2305.06813

  54. Ilanchezian I, Boreiko V, Kühlewein L, et al. Generating realistic counterfactuals for retinal fundus and OCT images using diffusion models. arXiv.org. Published December 4, 2023. Accessed April 19, 2025. https://arxiv.org/abs/2311.11629

  55. Wu Y, He W, Eschweiler D, et al. Retinal OCT synthesis with denoising diffusion probabilistic models for layer segmentation. arXiv.org. Published March 6, 2023. Accessed April 19, 2025. https://arxiv.org/abs/2311.05479

  56. Alimanov A, Islam MB. Denoising diffusion probabilistic model for retinal image generation and segmentation. arXiv.org. Published August 16, 2023. Accessed April 19, 2025. https://arxiv.org/abs/2308.08339

  57. Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. In: Proceedings of the 34th International Conference on Neural Information Processing Systems (NeurIPS 2020). Curran Associates Inc.; 2020:6840–6851.

  58. Tavakkoli, A., Kamran, S.A., Hossain, K.F. et al. A novel deep learning conditional generative adversarial network for producing angiography images from retinal fundus photographs. Sci Rep 10, 21580 (2020). https://doi.org/10.1038/s41598-020-78696-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sonmez SC, Sevgi M, Antaki F, Huemer J, Keane PA. Generative artificial intelligence in ophthalmology: current innovations, future applications and challenges. Br J Ophthalmol. 2024;108(10):1335–1340. Published 2024 Sep 20. https://doi.org/10.1136/bjo-2024-325458

  60. Jayasumana S, Ramalingam S, Veit A, Glasner D, Chakrabarti A, Sanji Kumar. Rethinking FID: towards a better evaluation metric for image generation. November 30, 2023. Accessed February 5, 2025. https://arxiv.org/html/2401.09603v1/#S4.

  61. Herman JD, Roca RE, O'Neill AG, Wong ML, Goud Lingala S, Pineda AR. Task-based assessment for neural networks: evaluating undersampled MRI reconstructions based on human observer signal detection. J Med Imaging (Bellingham). 2024;11(4):045503. https://doi.org/10.1117/1.JMI.11.4.045503

    Article  PubMed  Google Scholar 

  62. Nilsson J, Akenine-Möller T. Understanding SSIM. ARXIV. June 29, 2020. Accessed February 6, 2025. https://arxiv.org/pdf/2006.13846.

  63. Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X. Improved techniques for training gans | proceedings of the 30th International Conference on Neural Information Processing Systems. Accessed February 6, 2025. https://dl.acm.org/doi/https://doi.org/10.5555/3157096.3157346.

  64. Barratt S, Sharma R. A note on the inception score. ARXIV. June 21, 2018. Accessed February 6, 2025. http://arxiv.org/pdf/1801.01973.

  65. Dehghani M, Arnab A, Beyer L, Vaswani A, Tay Y. The efficiency misnomer. ARXIV. March 16, 2022. Accessed February 6, 2025. https://arxiv.org/pdf/2110.12894.

  66. Young Choi E, Han SH, Hee Ryu I, et al. Automated detection of crystalline retinopathy via fundus photography using multistage generative adversarial networks. Biocybernetics and Biomedical Engineering. 2023;43(4):725-735. https://doi.org/10.1016/j.bbe.2023.10.005

    Article  CAS  Google Scholar 

  67. Gatys LA, Ecker AS, Bethge M. Image style transfer using convolutional neural networks. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Published online June 2016:2414–2423. https://doi.org/10.1109/cvpr.2016.265

  68. Waisberg E, Micieli JA. Neuro-ophthalmological optic nerve cupping: an overview. EB [Internet]. 2021 Dec [cited 2022 Oct 19];Volume 13:255–68. Available from: https://www.dovepress.com/neuro-ophthalmological-optic-nerve-cupping-an-overview-peer-reviewed-fulltext-article-EB

  69. Sahyoun J-Y, Sabeti S, Robert M-C. Drug-induced corneal deposits: an up-to-date review. BMJ Open Ophthalmology. 2022;7(1). https://doi.org/10.1136/bmjophth-2021-000943

  70. Hazem Abdelmotaal, Ahmed A. Abdou, Ahmed F. Omar, Dalia Mohamed El-Sebaity, Khaled Abdelazeem; Pix2pix conditional generative adversarial networks for scheimpflug camera color-coded corneal tomography image generation. Trans. Vis. Sci. Tech. 2021;10(7):21. https://doi.org/10.1167/tvst.10.7.21.

    Article  Google Scholar 

  71. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. arXiv.org. November 26, 2018. Accessed February 5, 2025. https://arxiv.org/abs/1611.07004.

  72. Burlina PM, Joshi N, Pacheco KD, Liu TYA, Bressler NM. Assessment of deep generative models for high-resolution synthetic retinal image generation of age-related macular degeneration. JAMA Ophthalmology. 2019 Mar 1;137(3):258–64.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cheong H, Krishna Devalla S, Chuangsuwanich T, et al. OCT-GAN: single step shadow and noise removal from optical coherence tomography images of the human optic nerve head. Biomed Opt Express. 2021;12(3):1482–1498. Published 2021 Feb 19. https://doi.org/10.1364/BOE.412156

  74. Peter Woodward-Court, Pearse Andrew Keane, Daniel Alexander, Yukun Zhou; Generative adversarial networks for OCT counterfactual visual explanations in ophthalmic imaging. Invest. Ophthalmol. Vis. Sci. 2022;63(7):190 – F0037.

    Google Scholar 

  75. Kim, M., Kim, Y.N., Jang, M. et al. Synthesizing realistic high-resolution retina image by style-based generative adversarial network and its utilization. Sci Rep 12, 17307 (2022). https://doi.org/10.1038/s41598-022-20698-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Melnik A, Miasayedzenkau M, Makaravets D, et al. Face generation and editing with stylegan: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2024;46(5):3557-3576. https://doi.org/10.1109/tpami.2024.3350004

    Article  PubMed  Google Scholar 

  77. Manakov I, Rohm M, Kern C, Schworm B, Kortuem K, Tresp V. Noise as domain shift: denoising medical images by unpaired image translation. Lecture Notes in Computer Science. Published online 2019:3–10. https://doi.org/10.1007/978-3-030-33391-1_1

  78. Ruia S, Tripathy K. Fluorescein angiography. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 Feb 18]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK576378/

  79. Li P, He Y, Wang P, Wang J, Shi G, Chen Y. Synthesizing multi-frame high-resolution fluorescein angiography images from retinal fundus images using generative adversarial networks. BioMedical Engineering OnLine. 2023 Feb 21;22(1):16.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Huang K, Li M, Yu J, Miao J, Hu Z, Yuan S, et al. Lesion-aware generative adversarial networks for color fundus image to fundus fluorescein angiography translation. Computer Methods and Programs in Biomedicine. 2023 Feb 1;229:107306.

    Article  Google Scholar 

  81. Ye H, Yang Y, Mao K, Wang Y, Hu Y, Xu Y, et al. Generating synthesized ultrasound biomicroscopy images from anterior segment optical coherent tomography images by generative adversarial networks for iridociliary assessment. Ophthalmol Ther. 2022 Oct 1;11(5):1817–31.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Müller-Franzes, G., Niehues, J.M., Khader, F. et al. A multimodal comparison of latent denoising diffusion probabilistic models and generative adversarial networks for medical image synthesis. Sci Rep 13, 12098 (2023). https://doi.org/10.1038/s41598-023-39278-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang P, Kamel Boulos MN. Generative AI in medicine and healthcare: promises, opportunities and challenges. Future Internet. 2023 Sep;15(9):286.

    Article  CAS  Google Scholar 

  84. Sajeeda A, Hossain BM. Exploring generative adversarial networks and adversarial training. International Journal of Cognitive Computing in Engineering. March 8, 2022. Accessed February 7, 2025. https://www.sciencedirect.com/science/article/pii/S2666307422000080.

  85. Arjovsky M, Chintala S, Bottou L. Wasserstein Gan. ARXIV. December 6, 2017. Accessed February 6, 2025. https://arxiv.org/pdf/1701.07875.

  86. Lucic M, Kurach J, Michalski M, Bousquet O, Gelly S. Are Gans created equal? A large-scale study. ARXIV. October 29, 2018. Accessed February 6, 2025. https://arxiv.org/pdf/1711.10337.

  87. Schlegl T, Seebock P, Waldstein SM, Schmidt-Erfurth U, Lang G. Unsupervised anomaly detection with generative adversarial ... March 17, 2017. Accessed February 6, 2025. https://arxiv.org/pdf/1703.05921.

  88. Chen JS, Coyner AS, Chan RVP, et al. Deepfakes in ophthalmology: applications and realism of synthetic retinal images from generative adversarial networks. Ophthalmol Sci. 2021;1(4):100079. Published 2021 Nov 16. https://doi.org/10.1016/j.xops.2021.100079

  89. Oniani D, Hilsman J, Peng Y, Poropatich RK, Pamplin JC, Legault GL, et al. Adopting and expanding ethical principles for generative artificial intelligence from military to healthcare. NPJ Digit Med. 2023 Dec 2;6:225.

    Article  Google Scholar 

  90. Ou Y, Guo S. Safety risks and ethical governance of biomedical applications of synthetic biology. Front Bioeng Biotechnol. 2023;11:1292029. Published 2023 Oct 24. https://doi.org/10.3389/fbioe.2023.1292029

  91. Chi Liu, Tianqing Zhu, Sheng Shen, and Wanlei Zhou. 2023. Towards robust gan-generated image detection: a multi-view completion representation. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI '23). Article 52, 464–472. https://doi.org/10.24963/ijcai.2023/52

  92. Arora A, Arora A. Generative adversarial networks and synthetic patient data: current challenges and future perspectives. Future Healthc J. 2022;9(2):190-193. https://doi.org/10.7861/fhj.2022-0013

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gwilt R, O’Connor K. Nixon Law Group. Nixon Law Group. Published November 16, 2023. Accessed April 19, 2025. https://nixonlawgroup.com/nlg-blog/2023/11/16/generative-ai-healthcare-innovations-and-legal-challenges

  94. Malen S. RxCe - ethical legal challenges of ai in healthcare materials. Rxce.com. Published 2025. Accessed April 19, 2025. https://rxce.com/WebMaterials/Ethical-Legal-Challenges-of-AI-in-Healthcare

  95. Liu TYA, Wu JH. The ethical and societal considerations for the rise of artificial intelligence and big data in ophthalmology. Frontiers in Medicine [Internet]. 2022 [cited 2024 Feb 10];9. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fmed.2022.845522

  96. Chen Y, Esmaeilzadeh P. Generative AI in medical practice: in-depth exploration of privacy and security challenges. J Med Internet Res. 2024;26:e53008. Published 2024 Mar 8. https://doi.org/10.2196/53008

  97. Center. Ophthalmology program: research on ophthalmology medical devices. U.S. Food and Drug Administration. Published March 24, 2021. Accessed April 19, 2025. https://www.fda.gov/medical-devices/medical-device-regulatory-science-research-programs-conducted-osel/ophthalmology-program-research-ophthalmology-medical-devices

  98. Muralidharan, V., Adewale, B.A., Huang, C.J. et al. A scoping review of reporting gaps in FDA-approved AI medical devices. npj Digit. Med. 7, 273 (2024). https://doi.org/10.1038/s41746-024-01270-x

  99. FDA. Step 3: pathway to approval. FDA. Published online February 9, 2018. Accessed April 19, 2025. https://www.fda.gov/patients/device-development-process/step-3-pathway-approval

  100. Hayes C, Blitz J. Demystifying regulatory hurdles: how to navigate FDA approval for AI-enabled medical devices. MedTech Intelligence. Published May 1, 2024. Accessed April 19, 2025. https://medtechintelligence.com/feature_article/demystifying-regulatory-hurdles-how-to-navigate-fda-approval-for-ai-enabled-medical-devices/

  101. King M. The future of AI in medical devices: FDA guidelines and global perspectives. https://www.iqvia.com/blogs/2024/10/the-future-of-ai-in-medical-devices-fda-guidelines-and-global-perspectives. Published October 22, 2024. Accessed April 19, 2025. https://www.iqvia.com/blogs/2024/10/the-future-of-ai-in-medical-devices-fda-guidelines-and-global-perspectives

  102. GAN Integrity. Compliance considerations for the life sciences industry. Ganintegrity.com. Published August 7, 2024. Accessed April 19, 2025. https://www.ganintegrity.com/resources/blog/compliance-considerations-for-the-life-sciences-industry/

  103. Koornwinder A, Zhang Y, Ravindranath R, Chang RT, Bernstein IA, Wang SY. Multimodal artificial intelligence models predicting glaucoma progression using electronic health records and retinal nerve fiber layer scans. Transl Vis Sci Technol. 2025;14(3):27. https://doi.org/10.1167/tvst.14.3.27

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ziller, A., Mueller, T.T., Stieger, S. et al. Reconciling privacy and accuracy in AI for medical imaging. Nat Mach Intell 6, 764–774 (2024). https://doi.org/10.1038/s42256-024-00858-y

    Article  Google Scholar 

  105. Loftus TJ, Ruppert MM, Shickel B, et al. Federated learning for preserving data privacy in collaborative healthcare research. Digit Health. 2022;8:20552076221134455. Published 2022 Oct 27. https://doi.org/10.1177/20552076221134455

  106. Sadilek, A., Liu, L., Nguyen, D. et al. Privacy-first health research with federated learning. npj Digit. Med. 4, 132 (2021). https://doi.org/10.1038/s41746-021-00489-2

  107. Borji A. Generated faces in the wild: quantitative comparison of stable diffusion, Midjourney and dall-e 2. arXiv.org. June 5, 2023. Accessed February 5, 2025. https://arxiv.org/abs/2210.00586.

  108. Tjoa, E. & Guan, C. (2020). A survey on explainable artificial intelligence (XAI) : toward medical XAI. IEEE Transactions On Neural Networks and Learning Systems, 32(11), 4793‑4813. https://doi.org/10.1109/TNNLS.2020.3027314

    Article  Google Scholar 

  109. Amritanjali, Gupta R. Federated learning for privacy-preserving intelligent healthcare application to breast cancer detection. In: Proceedings of the 26th International Conference on Distributed Computing and Networking (ICDCN '25). Association for Computing Machinery; 2025:302–306. https://doi.org/10.1145/3700838.3703679

  110. Hou J, Liu S, Bie Y, et al. Self-eXplainable AI for medical image analysis: a survey and new outlooks. Arxiv.org. Published October 3, 2024. Accessed April 19, 2025. https://arxiv.org/html/2410.02331v1

  111. Ennab M, Mcheick H. Designing an interpretability-based model to explain the artificial intelligence algorithms in healthcare. Diagnostics (Basel). 2022;12(7):1557. Published 2022 Jun 26. https://doi.org/10.3390/diagnostics12071557

  112. Sounderajah V, Ashrafian H, Golub RM, et alDeveloping a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocolBMJ Open 2021;11:e047709. https://doi.org/10.1136/bmjopen-2020-047709

  113. Klontzas M. Guidelines for reporting AI research (Blog Post 9/28/2022). Radiology: Artificial Intelligence. Published September 28, 2022. Accessed April 20, 2025. https://pubs.rsna.org/page/ai/blog/2022/09/ryai_editorsblog0928

  114. He S, Joseph S, Bulloch G, et al. Bridging the camera domain gap with image-to-image translation improves glaucoma diagnosis. Translational Vision Science & Technology. 2023;12(20):20-20. https://doi.org/10.1167/tvst.12.12.20

    Article  Google Scholar 

  115. Wu Y, Olvera-Barrios A, Yanagihara R, Kung TH, Lu R, Leung I, Mishra AV, Nussinovitch H, Grimaldi G, Blazes M, Lee CS, Egan C, Tufail A, Lee AY. Training deep learning models to work on multiple devices by cross-domain learning with no additional annotations. Ophthalmology. 2023 Feb;130(2):213-222.

    Article  PubMed  Google Scholar 

  116. Nouri H, Nasri R, Abtahi SH. Addressing inter-device variations in optical coherence tomography angiography: will image-to-image translation systems help?. Int J Retina Vitreous. 2023;9(1):51. Published 2023 Aug 29. https://doi.org/10.1186/s40942-023-00491-8

  117. Rashidisabet H, Sethi A, Jindarak P, et al. Validating the generalizability of ophthalmic artificial intelligence models on real-world clinical data. Translational Vision Science & Technology. 2023;12(11):8. https://doi.org/10.1167/tvst.12.11.8

    Article  Google Scholar 

  118. Waisberg E, Ong J, Kamran SA, et al. Generative artificial intelligence in ophthalmology. Surv Ophthalmol. 2025;70(1):1-11. https://doi.org/10.1016/j.survophthal.2024.04.009

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.M. contributed to the conceptualization of the study, writing of the manuscript, and revising the material. K.S. contributed to content analysis, writing portions of the manuscript, and revising the manuscript and tables and information. R.K. contributed to content analysis, writing portions of the manuscript, and revising the tables and information. J.O. contributed to the conceptualization of the study, writing of the manuscript, and reviewing the content. T.N. contributed to the conceptualization of the study, writing of the manuscript, and reviewing the content. E.W. contributed to the conceptualization of the study, writing of the manuscript, and reviewing the content. N.Z. contributed to the literature review, manuscript drafting, and analysis of related studies in ophthalmic imaging. A.G.L. provided intellectual support, supervision, and review of the content. A.T. provided intellectual support, supervision, and review of the content.

Corresponding author

Correspondence to Mouayad Masalkhi.

Ethics declarations

Ethical Approval

No ethical approval was required for any aspect of conducting this research manuscript.

Conflict of interest

The authors declare no conflicts of interest or competing interests related to the content of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masalkhi, M., Sporn, K., Kumar, R. et al. Ophthalmic Image Synthesis and Analysis with Generative Adversarial Network Artificial Intelligence. J Digit Imaging. Inform. med. (2025). https://doi.org/10.1007/s10278-025-01519-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10278-025-01519-1

Keywords

Profiles

  1. Mouayad Masalkhi