这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Invertible and Variable Augmented Network for Pretreatment Patient-Specific Quality Assurance Dose Prediction

  • Published:
Journal of Imaging Informatics in Medicine Aims and scope Submit manuscript

Abstract

Pretreatment patient-specific quality assurance (prePSQA) is conducted to confirm the accuracy of the radiotherapy dose delivered. However, the process of prePSQA measurement is time consuming and exacerbates the workload for medical physicists. The purpose of this work is to propose a novel deep learning (DL) network to improve the accuracy and efficiency of prePSQA. A modified invertible and variable augmented network was developed to predict the three-dimensional (3D) measurement-guided dose (MDose) distribution of 300 cancer patients who underwent volumetric modulated arc therapy (VMAT) between 2018 and 2021, in which 240 cases were randomly selected for training, and 60 for testing. For simplicity, the present approach was termed as “IVPSQA.” The input data include CT images, radiotherapy dose exported from the treatment planning system, and MDose distribution extracted from the verification system. Adam algorithm was used for first-order gradient-based optimization of stochastic objective functions. The IVPSQA model obtained high-quality 3D prePSQA dose distribution maps in head and neck, chest, and abdomen cases, and outperformed the existing U-Net-based prediction approaches in terms of dose difference maps and horizontal profiles comparison. Moreover, quantitative evaluation metrics including SSIM, MSE, and MAE demonstrated that the proposed approach achieved a good agreement with ground truth and yield promising gains over other advanced methods. This study presented the first work on predicting 3D prePSQA dose distribution by using the IVPSQA model. The proposed method could be taken as a clinical guidance tool and help medical physicists to reduce the measurement work of prePSQA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The datasets during the current study are not publicly available due to some research that has not been completed, but is available from the corresponding author on reasonable request.

References

  1. Liu Z, Fan J, Li M, Yan H, Hu Z, Huang P, Tian Y, Miao J, Dai J: A deep learning method for prediction of three-dimensional dose distribution of helical tomotherapy. Med Phys, 46(5): 1972-1983, 2019.

    Article  PubMed  Google Scholar 

  2. Delaney G, Jacob S, Featherstone C, Barton M: The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer, 104(6): 1129-1137, 2005.

    Article  PubMed  Google Scholar 

  3. Das IJ, Cao M, Cheng CW, Misic V, Scheuring K, Schüle E, Johnstone PA: A quality assurance phantom for electronic portal imaging devices. J Appl Clin Med Phys, 12(2): 391-403, 2011.

    Article  PubMed Central  Google Scholar 

  4. Davidson MT, Blake SJ, Batchelar DL, Cheung P, Mah K: Assessing the role of volumetric modulated arc therapy (VMAT) relative to IMRT and helical tomotherapy in the management of localized, locally advanced, and post-operative prostate cancer. Int J Radiat Oncol Biol Phys, 80(5): 1550-1558, 2011.

    Article  PubMed  Google Scholar 

  5. Deng Z, Shen L, Zheng X, Zhou Y, Yi J, Han C, Xie C, Jin X: Dosimetric advantage of volumetric modulated arc therapy in the treatment of intraocular cancer. Radiat Oncol, 12(1): 1-7, 2017.

    Article  Google Scholar 

  6. Nguyen K, Cummings D, Lanza VC, Morris K, Wang C, Sutton J, Garcia J: A dosimetric comparative study: volumetric modulated arc therapy vs intensity-modulated radiation therapy in the treatment of nasal cavity carcinomas. Med Dosim, 38(3):225-232, 2013.

    Article  PubMed  Google Scholar 

  7. Quan EM, Li X, Li Y, Wang X, Kudchadker RJ, Johnson JL, Kuban DA, Lee AK, Zhang X: A comprehensive comparison of IMRT and VMAT plan quality for prostate cancer treatment. Int J Radiat Oncol Biol Phys, 83(4):1169-1178, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tamborra P, Martinucci E, Massafra R, Bettiol M, Capomolla C, Zagari A, Didonna V: The 3D isodose structure-based method for clinical dose distributions comparison in pretreatment patient-QA. Med Phys, 46(2):426-436, 2019.

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen D, Long T, Jia X, Lu W, Gu X, Iqbal Z, Jiang S: A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Sci Rep, 9(1):1076, 2019.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Interian Y, Rideout V, Kearney VP, Gennatas E, Morin O, Cheung J, Solberg T, Valdes G: Deep nets vs expert designed features in medical physics: An IMRT QA case study. Med Phys, 45(6):2672-2680, 2018.

    Article  PubMed  Google Scholar 

  11. Kearney V, Chan JW, Haaf S, Descovich M, Solberg TD: DoseNet: a volumetric dose prediction algorithm using 3D fully-convolutional neural networks. Phys Med Biol, 63(23):235022, 2018.

    Article  PubMed  Google Scholar 

  12. Nguyen M, Chan GH: Quantified VMAT plan complexity in relation to measurement-based quality assurance results. J Appl Clin Med Phys, 21(11):132-140, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tiplica T, Dufreneix S, Legrand C: A Bayesian control chart based on the beta distribution for monitoring the two-dimensional gamma index pass rate in the context of patient-specific quality assurance. Med Phys, 47(11):5408-5418, 2020.

    Article  PubMed  Google Scholar 

  14. Fan J, Wang J, Chen Z, Hu C, Zhang Z, Hu W: Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique. Med Phys, 46(1):370-381, 2019.

    Article  PubMed  Google Scholar 

  15. Kim J, Han MC, Lee E, Park K, Chang KH, Kim DW, Kim JS, Hong CS: Detailed evaluation of Mobius3D dose calculation accuracy for volumetric-modulated arc therapy. Phys Med, 74:125-132, 2020.

    Article  PubMed  Google Scholar 

  16. Ezzell GA, Galvin JM, Low D, Palta JR, Rosen I, Sharpe MB, Xia P, Xiao Y, Xing L, Yu CX; IMRT subcommitte; AAPM Radiation Therapy committee: Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med Phys, 30(8):2089-115, 2003.

    Article  PubMed  Google Scholar 

  17. Ezzell GA, Burmeister JW, Dogan N, LoSasso TJ, Mechalakos JG, Mihailidis D, Molineu A, Palta JR, Ramsey CR, Salter BJ, Shi J, Xia P, Yue NJ, Xiao Y: IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys, 36(11): 5359-5373, 2009.

    Article  PubMed  Google Scholar 

  18. Kimura Y, Kadoya N, Tomori S, Oku Y, Jingu K: Error detection using a convolutional neural network with dose difference maps in patient-specific quality assurance for volumetric modulated arc therapy. Phys Med, 73:57-64, 2020.

    Article  PubMed  Google Scholar 

  19. Kang J, Schwartz R, Flickinger J, Beriwal S: Machine Learning Approaches for Predicting Radiation Therapy Outcomes: A Clinician's Perspective. Int J Radiat Oncol Biol Phys, 93(5): 1127-1135, 2015.

    Article  PubMed  Google Scholar 

  20. Oermann EK, Rubinsteyn A, Ding D, Mascitelli J, Starke RM, Bederson JB, Kano H, Lunsford LD, Sheehan JP, Hammerbacher J, Kondziolka D: Using a Machine Learning Approach to Predict Outcomes after Radiosurgery for Cerebral Arteriovenous Malformations. Sci Rep, 6:21161, 2016.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Valdes G, Solberg TD, Heskel M, Ungar L, Simone CB 2nd: Using machine learning to predict radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy. Phys Med Biol, 61(16):6105-20, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Valdes G, Scheuermann R, Hung CY, Olszanski A, Bellerive M, Solberg TD: A mathematical framework for virtual IMRT QA using machine learning. Med Phys, 43(7): 4323-4334, 2016.

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Wang L, Zhang X, Liu L, Li J, Chan MF, Sui J, Yang R: Machine Learning for Patient-Specific Quality Assurance of VMAT: Prediction and Classification Accuracy. Int J Radiat Oncol Biol Phys, 105(4):893-902, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ma C, Wang R, Zhou S, Wang M, Yue H, Zhang Y, Wu H: The structural similarity index for IMRT quality assurance: radiomics-based error classification. Med Phys, 48(1):80-93, 2021.

    Article  CAS  PubMed  Google Scholar 

  25. Wall PDH, Hirata E, Morin O, Valdes G, Witztum A: Prospective Clinical Validation of Virtual Patient-Specific Quality Assurance of Volumetric Modulated Arc Therapy Radiation Therapy Plans. Int J Radiat Oncol Biol Phys, 113(5):1091-1102, 2022.

    Article  PubMed  Google Scholar 

  26. Schreibmann E, Fox T: Prior-knowledge treatment planning for volumetric arc therapy using feature-based database mining. J Appl Clin Med Phys, 15(2): 19-27, 2014.

    Article  PubMed Central  Google Scholar 

  27. Carlson JN, Park JM, Park SY, Park JI, Choi Y, Ye SJ: A machine learning approach to the accurate prediction of multi-leaf collimator positional errors. Phys Med Biol, 61(6):2514-31, 2016.

    Article  PubMed  Google Scholar 

  28. LeCun Y, Bengio Y, Hinton G: Deep learning. Nature, 521(7553): 436-444, 2015.

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Guerreiro F, Seravalli E, Janssens GO, Maduro JH, Knopf AC, Langendijk JA, Raaymakers BW, Kontaxis C: Deep learning prediction of proton and photon dose distributions for paediatric abdominal tumours. Radiother Oncol, 156:36-42, 2021.

    Article  CAS  PubMed  Google Scholar 

  30. Kajikawa T, Kadoya N, Ito K, Takayama Y, Chiba T, Tomori S, Nemoto H, Dobashi S, Takeda K, Jingu K: A convolutional neural network approach for IMRT dose distribution prediction in prostate cancer patients. J Radiat Res, 60(5):685-693, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Barragán-Montero AM, Nguyen D, Lu W, Lin MH, Norouzi-Kandalan R, Geets X, Sterpin E, Jiang S: Three-dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations. Med Phys, 46(8):3679-3691, 2019.

    Article  PubMed  Google Scholar 

  32. Nguyen D, Jia X, Sher D, Lin MH, Iqbal Z, Liu H, Jiang S: 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture. Phys Med Biol, 64(6):065020, 2019.

    Article  PubMed  Google Scholar 

  33. Ma M, Kovalchuk N, Buyyounouski MK, Xing L, Yang Y: Incorporating dosimetric features into the prediction of 3D VMAT dose distributions using deep convolutional neural network. Phys Med Biol, 64(12):125017, 2019.

    Article  PubMed  Google Scholar 

  34. Zhou J, Peng Z, Song Y, Chang Y, Pei X, Sheng L, Xu XG: A method of using deep learning to predict three-dimensional dose distributions for intensity-modulated radiotherapy of rectal cancer. J Appl Clin Med Phys, 21(5):26-37, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kontaxis C, Bol GH, Lagendijk JJW, Raaymakers BW: DeepDose: Towards a fast dose calculation engine for radiation therapy using deep learning. Phys Med Biol, 65(7):075013, 2020.

    Article  CAS  PubMed  Google Scholar 

  36. Hu J, Song Y, Wang Q, Bai S, Yi Z: Incorporating historical sub-optimal deep neural networks for dose prediction in radiotherapy. Med Image Anal, 67:101886, 2021.

    Article  PubMed  Google Scholar 

  37. Liu CC, Huang HM: A deep learning approach for converting prompt gamma images to proton dose distributions: A Monte Carlo simulation study. Phys Med, 69:110-119, 2020.

    Article  PubMed  Google Scholar 

  38. Zhang J, Cheng Z, Fan Z, Zhang Q, Zhang X, Yang R, Wen J: A feasibility study for in vivo treatment verification of IMRT using Monte Carlo dose calculation and deep learning-based modelling of EPID detector response. Radiat Oncol, 17(1):31, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gong C, Zhu K, Lin C, Han C, Lu Z, Chen Y, Yu C, Hou L, Zhou Y, Yi J, Ai Y, Xiang X, Xie C, Jin X: Efficient dose-volume histogram-based pretreatment patient-specific quality assurance methodology with combined deep learning and machine learning models for volumetric modulated arc radiotherapy. Med Phys, 49(12):7779-7790, 2022.

    Article  PubMed  Google Scholar 

  40. Chen L C, Papandreou G, Schroff F, Adam H: Rethinking atrous convolution for semantic image segmentation[J]. arXiv preprint http://arxiv.org/abs/1706.05587, 2017.

  41. Huang G, Liu Z, Van Der Maaten L, Weinberger K Q: Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017:4700–4708.

  42. Lin B, Zhang S, Yu X: Gait recognition via effective global-local feature representation and local temporal aggregation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021:14648–14656.

  43. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A: Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015:1–9.

  44. Liu Q, Leung H: Variable augmented neural network for decolorization and multi-exposure fusion. Information Fusion, 46: 114-127, 2019.

    Article  Google Scholar 

  45. Xing Y, Qian Z, Chen Q: Invertible image signal processing. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6287–6296, 2021.

  46. Yu H, Torun H M, Rehman M U, Swaminathan M: Design of SIW filters in D-band using invertible neural nets. IEEE, 72–75, 2020.

  47. Xiao M, Zheng S, Liu C, Wang Y, He D, Ke G, Bian J, Lin Z, Liu T: Invertible image rescaling. Computer Vision–ECCV, 2020.

  48. Eilertsen G, Kronander J, Denes G, Mantiuk R K, Unger J: HDR image reconstruction from a single exposure using deep CNNs. ACM transactions on graphics (TOG), 36(6): 1-15, 2017.

    Article  Google Scholar 

  49. Fan J, Xing L, Ma M, Hu W, Yang Y: Verification of the machine delivery parameters of a treatment plan via deep learning. Phys Med Biol, 65(19):195007, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jia M, Wu Y, Yang Y, Wang L, Chuang C, Han B, Xing L: Deep learning-enabled EPID-based 3D dosimetry for dose verification of step-and-shoot radiotherapy. Med Phys, 48(11):6810-6819, 2021.

    Article  CAS  PubMed  Google Scholar 

  51. Zhu J Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE international conference on computer vision. 2017:2223–2232.

  52. Jia M, Yang Y, Wu Y, Li X, Xing L, Wang L. Deep learning-augmented radioluminescence imaging for radiotherapy dose verification. Med Phys. 2021 Nov;48(11):6820-6831.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The Science and Technology Project of Jiangxi Provincial Health Commission of China (No. 202310023).

Author information

Authors and Affiliations

Authors

Contributions

Zhongsheng Zou: data curation, methodology, project administration, and writing—original draft. Changfei Gong: conceptualization, methodology, formal analysis, writing, review, and editing. Lingpeng Zeng: formal analysis and investigation. Yu Guan: investigation and project administration. Bin Huang: data curation and formal analysis. Xiuwen Yu: data curation and investigation. Qiegen Liu: conceptualization, formal analysis, and editing. Minghui Zhang: methodology, formal analysis, and writing—review and editing.

Corresponding authors

Correspondence to Qiegen Liu or Minghui Zhang.

Ethics declarations

Ethics Approval and Consent to Participate

The study has been approved by the Institution Review Board and Ethics Committee of Jiangxi Cancer Hospital, and the approval number is 2022ky012.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Z., Gong, C., Zeng, L. et al. Invertible and Variable Augmented Network for Pretreatment Patient-Specific Quality Assurance Dose Prediction. J Digit Imaging. Inform. med. 37, 60–71 (2024). https://doi.org/10.1007/s10278-023-00930-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10278-023-00930-w

Keywords