这是indexloc提供的服务,不要输入任何密码
Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Discrete & Computational Geometry
  3. Article

Edge insertion for optimal triangulations

  • Published: 01 July 1993
  • Volume 10, pages 47–65, (1993)
  • Cite this article
Download PDF
Discrete & Computational Geometry Aims and scope Submit manuscript
Edge insertion for optimal triangulations
Download PDF
  • M. Bern1,
  • H. Edelsbrunner2,
  • D. Eppstein3,
  • S. Mitchell4 &
  • …
  • T. S. Tan5 
  • 628 Accesses

  • 38 Citations

  • 3 Altmetric

  • Explore all metrics

Abstract

Edge insertion iteratively improves a triangulation of a finite point set in ℜ2 by adding a new edge, deleting old edges crossing the new edge, and retriangulating the polygonal regions on either side of the new edge. This paper presents an abstract view of the edge insertion paradigm, and then shows that it gives polynomial-time algorithms for several types of optimal triangulations, including minimizing the maximum slope of a piecewise-linear interpolating surface.

Article PDF

Download to read the full article text

Similar content being viewed by others

On the Construction of Planar Embedding for a Class of Orthogonal Polyhedra

Chapter © 2023

Weighted Triangle-Free 2-Matching Problem with Edge-Disjoint Forbidden Triangles

Chapter © 2020

Research on edge-control methods in CNC polishing

Article Open access 16 September 2017

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Cartography
  • Computational Geometry
  • Discrete Optimization
  • Geoinformatics
  • Geometry
  • Graph Theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. R. E. Barnhill. Representation and approximation of surfaces. InMath. Software III, J. R. Rice, ed., Academic Press, New York, 1977, pp. 69–120.

    Google Scholar 

  2. M. W. Bern and D. Eppstein. Mesh generation and optimal triangulation. InComputing in Euclidean Geometry, D. Z. Du and F. K. Hwang, eds., World Scientific, Singapore, 1992, pp. 23–90.

    Chapter  Google Scholar 

  3. K. Q. Brown. Voronoi diagrams from convex hulls.Inform. Process. Lett. 9 (1979), 223–228.

    Article  Google Scholar 

  4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. MIT Press, Cambridge, MA, 1990.

    Google Scholar 

  5. E. F. D'Azevedo and R. B. Simpson. On optimal interpolation triangle incidences.SIAM J. Sci. Statist. Comput. 10 (1989), 1063–1075.

    Article  MathSciNet  Google Scholar 

  6. B. Delaunay. Sur la sphère vide.Izv. Akad. Nauk SSSR, Otdel. Mat. Estestv. Nauk 7 (1934), 793–800.

    Google Scholar 

  7. N. Dyn, D. Levin, and S. Rippa. Data dependent triangulations for piecewise linear interpolation.IMA J. Numer. Anal. 10 (1990), 137–154.

    Article  MathSciNet  Google Scholar 

  8. H. Edelsbrunner.Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, 1987.

    Book  Google Scholar 

  9. H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms.ACM Trans. Graphics 9 (1990), 66–104.

    Article  Google Scholar 

  10. H. Edelsbrunner, T. S. Tan, and R. Waupotitsch. AnO(n 2 logn) time algorithm for the minmax angle triangulation.SIAM J. Statist. Sci. Comput. 13 (1992), 994–1008.

    Article  MathSciNet  Google Scholar 

  11. H. Edelsbrunner and R. Waupotitsch. Optimal two-dimensional triangulations. InAnimation of Geometric Algorithms: A Video Review, M. Brown and J. Hershberger, eds. (Technical Report 87a), Systems Research Center, DEC, Palo Alto, CA, 1992, pp. 7–8.

    Google Scholar 

  12. S. Fortune. A sweepline algorithm for Voronoi diagrams.Algorithmica 2 (1987), 153–174.

    Article  MathSciNet  Google Scholar 

  13. J. A. George. Computer implementation of the finite element method. Ph.D. Thesis, Technical Report STAN-CS-71-208, Computer Science Dept., Stanford University, 1971.

  14. L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay and Voronoi diagrams.Algorithmica 7 (1992), 381–413.

    Article  MathSciNet  Google Scholar 

  15. L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams.ACM Trans. Graphics 4 (1985), 74–123.

    Article  Google Scholar 

  16. G. T. Klincsek. Minimal triangulations of polygonal domains.Ann. Discrete Math. 9 (1980), 121–123.

    Article  MathSciNet  Google Scholar 

  17. C. L. Lawson. Generation of a triangular grid with applications to contour plotting. Technical Memo 299, Jet Propulsion Laboratory, California Institute of Technology, Pasadana, CA, 1972.

    Google Scholar 

  18. C. L. Lawson. Software forC 1 surface interpolation. InMath. Software III, J. R. Rice, ed., Academic Press, New York, 1977, pp. 161–194.

    Google Scholar 

  19. D. A. Lindholm. Automatic triangular mesh generation on surfaces of polyhedra.IEEE Trans. Magnetics 19 (1983), 2539–2542.

    Article  Google Scholar 

  20. E. L. Lloyd. On triangulations of a set of points in the plane. InProc. 18th Annual IEEE Symposium on the Foundations of Computer Science, 1977, pp. 228–240.

  21. F. P. Preparata and M. I. Shamos.Computational Geometry—an Introduction. Springer-Verlag, New York, 1985.

    Google Scholar 

  22. V. T. Rajan. Optimality of the Delaunay triangulation in ℜd. InProc. 7th Annual Symposium on Computational Geometry, 1991, pp. 357–363.

  23. S. Rippa. Minimal roughness property of the Delaunay triangulation.Comput. Aided Geom. Design 7 (1990), 489–497.

    Article  MathSciNet  Google Scholar 

  24. L. L. Schumaker. Triangulation methods. InTopics in Multivariate Approximation, C. K. Chui, L. L. Schumaker, and F. L. Utreras, eds., Academic Press, New York, 1987, pp. 219–232.

    Google Scholar 

  25. M. I. Shamos and D. Hoey. Closest point problems. InProc. 16th Annual IEEE Symposium on the Foundations of Computer Science, 1975, pp. 151–162.

  26. R. Sibson. Locally equiangular triangulations.Comput. J. 21 (1978), 243–245.

    Article  MathSciNet  Google Scholar 

  27. G. Strang and G. Fix.An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, NJ, 1973.

    Google Scholar 

  28. D. F. Watson and G. M. Philip. Systematic triangulations.Comput. Vision Graphics Image Process.26 (1984), 217–223.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Xerox Palo Alto Research Center, 3333 Coyote Hill Road, 94304, Palo Alto, CA, USA

    M. Bern

  2. Department of Computer Science, University of Illinois, 61801, Urbana, IL, USA

    H. Edelsbrunner

  3. Department of Information and Computer Science, University of California, 92717, Irvine, CA, USA

    D. Eppstein

  4. Center for Applied Mathematics, Cornell University, 14853, Ithaca, NY, USA

    S. Mitchell

  5. Department of Information Systems and Computer Science, National University of Singapore, Republic of Singapore

    T. S. Tan

Authors
  1. M. Bern
    View author publications

    Search author on:PubMed Google Scholar

  2. H. Edelsbrunner
    View author publications

    Search author on:PubMed Google Scholar

  3. D. Eppstein
    View author publications

    Search author on:PubMed Google Scholar

  4. S. Mitchell
    View author publications

    Search author on:PubMed Google Scholar

  5. T. S. Tan
    View author publications

    Search author on:PubMed Google Scholar

Additional information

The research of the second author was supported by the National Science Foundation under Grant No. CCR-8921421 and under the Alan T. Waterman award, Grant No. CCR-9118874. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the National Science Foundation. Part of the work was done while the second, third, and fourth authors visited the Xerox Palo Alto Research Center, and while the fifth author was on study leave at the University of Illinois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bern, M., Edelsbrunner, H., Eppstein, D. et al. Edge insertion for optimal triangulations. Discrete Comput Geom 10, 47–65 (1993). https://doi.org/10.1007/BF02573962

Download citation

  • Received: 07 December 1991

  • Revised: 21 September 1992

  • Published: 01 July 1993

  • Issue date: July 1993

  • DOI: https://doi.org/10.1007/BF02573962

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Voronoi Diagram
  • Delaunay Triangulation
  • Simple Polygon
  • Polygonal Region
  • Nondegenerate Case
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

23.94.208.52

Not affiliated

Springer Nature

© 2025 Springer Nature