这是indexloc提供的服务,不要输入任何密码
Skip to main content

Spatio-Temporal Extraction of Articulated Models in a Graph Pyramid

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6658))

  • 1306 Accesses

Abstract

This paper presents a method to create a model of an articulated object using the planar motion in an initialization video. The model consists of rigid parts connected by points of articulation. The rigid parts are described by the positions of salient feature-points tracked throughout the video. Following a filtering step that identifies points that belong to different objects, rigid parts are found by a grouping process in a graph pyramid. Valid articulation points are selected by verifying multiple hypotheses for each pair of parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, J.K., Cai, Q.: Human motion analysis: A review. Computer Vision and Image Understanding 73(3), 428–440 (1999)

    Article  Google Scholar 

  2. Aggarwal, J.K., Cai, Q., Liao, W., Sabata, B.: Articulated and elastic non-rigid motion: A review. In: IEEE Workshop on Motion of Non-Rigid and Articulated Objects, pp. 2–14 (1994)

    Google Scholar 

  3. Altunbasak, Y., Eren, P.E., Tekalp, A.M.: Region-based parametric motion segmentation using color information. Graphical Models and Image Processing 60(1), 13–23 (1998)

    Article  Google Scholar 

  4. Artner, N.M., Ion, A., Kropatsch, W.G.: Rigid part decomposition in a graph pyramid. In: The 14th Iberoamerican Congress on Pattern Recognition, pp. 758–765. Springer, Heidelberg (2009)

    Google Scholar 

  5. Artner, N.M., Ion, A., Kropatsch, W.G.: Multi-scale 2d tracking of articulated objects using hierarchical spring systems. Pattern Recognition 44(4), 800–810 (2010)

    Article  Google Scholar 

  6. Birchfeld, S.: Klt: An implementation of the kanade-lucas-tomasi feature tracker (March 2008), http://www.ces.clemson.edu/~stb/klt/

  7. Celasun, I., Tekalp, A.M., Gokcetekin, M.H., Harmanci, D.M.: 2-d mesh-based video object segmentation and tracking with occlusion resolution. Signal Processing: Image Communication 16(10), 949–962 (2001)

    Google Scholar 

  8. Chen, H.T., Liu, T.L., Fuh, C.S.: Segmenting highly articulated video objects with weak-prior random forests. In: European Conference on Computer Vision, pp. 373–385. Springer, Graz (2006)

    Google Scholar 

  9. Drouin, S., Hébert, P., Parizeau, M.: Incremental discovery of object parts in video sequences. Computer Vision and Image Understanding 110, 60–74 (2008)

    Article  Google Scholar 

  10. Gavrila, D.M.: The visual analysis of human movement: A survey. Computer Vision and Image Understanding 73(1), 82–980 (1999)

    Article  MATH  Google Scholar 

  11. Godec, M., Leistner, C., Saffari, A., Bischof, H.: On-line random naive bayes for tracking. In: ICPR, pp. 3545–3548 (2010)

    Google Scholar 

  12. Kropatsch, W.G., Haxhimusa, Y., Pizlo, Z., Langs, G.: Vision pyramids that do not grow too high. Pattern Recognition Letters 26(3), 319–337 (2005)

    Article  Google Scholar 

  13. Lauer, F., Schnrr, C.: Spectral clustering of linear subspaces for motion segmentation. In: ICCV, pp. 678–685. IEEE, Los Alamitos (2010)

    Google Scholar 

  14. Li, H., Lin, W., Tye, B., Ong, E., Ko, C.: Object segmentation with affine motion similarity measure. In: Multimedia and Expo., pp. 841–844 (2001)

    Google Scholar 

  15. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104(2-3), 90–126 (2006)

    Article  Google Scholar 

  16. Nordberg, K., Zografos, V.: Multibody motion segmentation using the geometry of 6 points in 2d images. In: ICPR, pp. 1783–1787. IEEE, Istanbul (2010)

    Google Scholar 

  17. Ross, D.A., Tarlow, D., Zemel, R.S.: Learning articulated structure and motion. International Journal of Computer Vision 88(2), 214–237 (2010)

    Article  Google Scholar 

  18. Tuceryan, M., Chorzempa, T.: Relative sensitivity of a family of closest-point graphs in computer vision applications. Pattern Recognition 24(5), 361–373 (1991)

    Article  Google Scholar 

  19. Walther, T., Würtz, R.P.: Unsupervised learning of human body parts from video footage. In: 2nd Workshop on Non-Rigid Shape Analysis and Deformable Image Alignment, pp. 336–343 (2009)

    Google Scholar 

  20. Yan, J., Pollefeys, M.: A factorization-based approach for articulated nonrigid shape, motion and kinematic chain recovery from video. IEEE Trans. Pattern Anal. Mach. Intell. 30(5), 865–877 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Artner, N.M., Ion, A., Kropatsch, W.G. (2011). Spatio-Temporal Extraction of Articulated Models in a Graph Pyramid. In: Jiang, X., Ferrer, M., Torsello, A. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2011. Lecture Notes in Computer Science, vol 6658. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20844-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20844-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20843-0

  • Online ISBN: 978-3-642-20844-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics