这是indexloc提供的服务,不要输入任何密码
Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Advances in Cryptology – EUROCRYPT 2008
  3. Conference paper

Efficient Non-interactive Proof Systems for Bilinear Groups

  • Conference paper
  • pp 415–432
  • Cite this conference paper
Advances in Cryptology – EUROCRYPT 2008 (EUROCRYPT 2008)
Efficient Non-interactive Proof Systems for Bilinear Groups
  • Jens Groth1 &
  • Amit Sahai2 

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4965))

Included in the following conference series:

  • Annual International Conference on the Theory and Applications of Cryptographic Techniques
  • 6758 Accesses

  • 710 Citations

  • 9 Altmetric

Abstract

Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs have played a significant role in the theory of cryptography. However, lack of efficiency has prevented them from being used in practice. One of the roots of this inefficiency is that non-interactive zero-knowledge proofs have been constructed for general NP-complete languages such as Circuit Satisfiability, causing an expensive blowup in the size of the statement when reducing it to a circuit. The contribution of this paper is a general methodology for constructing very simple and efficient non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs that work directly for groups with a bilinear map, without needing a reduction to Circuit Satisfiability.

Groups with bilinear maps have enjoyed tremendous success in the field of cryptography in recent years and have been used to construct a plethora of protocols. This paper provides non-interactive witness-indistinguishable proofs and non-interactive zero-knowledge proofs that can be used in connection with these protocols. Our goal is to spread the use of non-interactive cryptographic proofs from mainly theoretical purposes to the large class of practical cryptographic protocols based on bilinear groups.

Work presented and part of work done while participating in Securing Cyberspace: Applications and Foundations of Cryptography and Computer Security, Institute of Pure and Applied Mathematics, UCLA, 2006.

Download to read the full chapter text

Chapter PDF

Similar content being viewed by others

Efficient Designated-Verifier Non-interactive Zero-Knowledge Proofs of Knowledge

Chapter © 2018

Malleable Commitments from Group Actions and Zero-Knowledge Proofs for Circuits Based on Isogenies

Chapter © 2024

Fully Homomorphic NIZK and NIWI Proofs

Chapter © 2019

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Communication of Non-Profit Organizations
  • Computational Complexity
  • Non-associative Rings and Algebras
  • Non-homologous-end joining
  • Nomograms
  • Proof Theory and Constructive Mathematics

References

  1. Ballard, L., Green, M. de Medeiros, B., Monrose, F.: Correlation-resistant storage via keyword-searchable encryption. Cryptology ePrint Archive, Report 2005/417 (2005), http://eprint.iacr.org/2005/417

  2. Barreto, P.: The pairing-based crypto lounge (2006), http://paginas.terra.com.br/informatica/paulobarreto/pblounge.html

  3. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Non-interactive anonymous credentials. In: PACS 2000. LNCS (2008), http://eprint.iacr.org/2007/384

  4. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: STOC, pp. 103–112 (1988)

    Google Scholar 

  5. Boneh, D.: Personal communication (2006)

    Google Scholar 

  6. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

    Google Scholar 

  7. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)

    Google Scholar 

  8. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Google Scholar 

  9. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

    Google Scholar 

  10. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM Journal of Computing 32(3), 586–615 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)

    Google Scholar 

  12. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Boyen, X., Waters, B.: Compact group signatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15. Springer, Heidelberg (2007), http://www.cs.stanford.edu/~xb/pkc07/

    Chapter  Google Scholar 

  15. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Damgård, I.: Non-interactive circuit based proofs and non-interactive perfect zero-knowledge with proprocessing. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 341–355. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  17. De Santis, A., Di Crescenzo, G., Persiano, G.: Randomness-optimal characterization of two NP proof systems. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 179–193. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM Journal of Computing 30(2), 391–437 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs under general assumptions. SIAM Journal of Computing 29(1), 1–28 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Galbraith, S.D., Rotger, V.: Easy decision Diffie-Hellman groups. London Mathematical Society Journal of Computation and Mathematics 7, 201–218 (2004)

    MATH  MathSciNet  Google Scholar 

  21. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proofs. SIAM Journal of Computing 18(1), 186–208 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  22. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS, pp. 89–98 (2006)

    Google Scholar 

  23. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 444–459. Springer, Heidelberg (2006), http://www.brics.dk/~jg/NIZKGroupSignFull.pdf

    Google Scholar 

  24. Groth, J.: Fully anonymous group signatures without random oracles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg (2007), http://www.brics.dk/~jg/CertiSignFull.pdf

    Chapter  Google Scholar 

  25. Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero-knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Groth, J. Sahai, A.: Efficient non-interactive proof systems for bilinear groups. Cryptology ePrint Archive, Report 2007/155 (2007), http://eprint.iacr.org/2007/155

  29. Kilian, J., Petrank, E.: An efficient noninteractive zero-knowledge proof system for NP with general assumptions. Journal of Cryptology 11(1), 1–27 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In: PODC, pp. 12–19 (2003)

    Google Scholar 

  31. Paterson, K.G.: Cryptography from pairings. In: Blake, I.F., Seroussi, G., Smart, N.P. (eds.) Advances in Elliptic Curve Cryptography. London Mathematical Society Lecture Note Series, vol. 317, pp. 215–251. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  32. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

    Google Scholar 

  33. Scott, M.: Authenticated ID-based key exchange and remote log-in with simple token and PIN number. Cryptology ePrint Archive, Report 2002/164 (2002), http://eprint.iacr.org/2002/164

  34. Verheul, E.R.: Evidence that XTR is more secure than supersingular elliptic curve cryptosystems. Journal of Cryptology 17(4), 277–296 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)

    Google Scholar 

  36. Waters, B.: New techniques for slightly 2-homomorphic encryption, Manuscript (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University College London,  

    Jens Groth

  2. University of California Los Angeles,  

    Amit Sahai

Authors
  1. Jens Groth
    View author publications

    Search author on:PubMed Google Scholar

  2. Amit Sahai
    View author publications

    Search author on:PubMed Google Scholar

Editor information

Nigel Smart

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Groth, J., Sahai, A. (2008). Efficient Non-interactive Proof Systems for Bilinear Groups. In: Smart, N. (eds) Advances in Cryptology – EUROCRYPT 2008. EUROCRYPT 2008. Lecture Notes in Computer Science, vol 4965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78967-3_24

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-78967-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78966-6

  • Online ISBN: 978-3-540-78967-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Non-interactive witness-indistinguishability
  • non-interactive zero-knowledge
  • common reference string
  • bilinear groups

Publish with us

Policies and ethics

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

23.94.208.52

Not affiliated

Springer Nature

© 2025 Springer Nature